
.v;i kl 

.98 3rd internacional meeting on 
vector and parallel processing 

Faculdade de Engenharia 
da Universidade do Porto 

^fri*'>vs:5 ie.-  oft 

;•« M Ä 

»r-fc' 

is 
feSirHviviii.oE. Ü:.ffi 

Proceedings 
Part  II (June 22) 

rxj 

fD ■ff*1 f'TT/ 

fl<j>FW- /4- ^5 



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

10 August 1998 

3. REPORT TYPE AND DATES COVERED 

Conference Proceedings 

4. TITLE AND SUBTITLE 

VECPAR 98 3rd International Meeting on Vector and Parallel Processing 

6. AUTHOR(S) 

Conference Committee 

5. FUNDING NUMBERS 

F6170898W0009 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Faculdade de Engenharia da Universidade do Porto 
Seccao dos Bragas 
Porto Codex 4099 
Portugal 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

N/A 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

EOARD 
PSC 802 BOX 14 
FPO 09499-0200 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

CSP 98-1006 

11.   SUPPLEMENTARY NOTES 

Consists of three volumes. 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

A 

13. ABSTRACT (Maximum 200 words) 

The Final Proceedings for VECPAR 98 3rd International Meeting on Vector and Parallel Processing, 21 June 1998 - 23 June 1998 

This is an interdisciplinary conference.   Topics include parallel and distributed computing, image processing and synthesis, real-time and 
embedded systems. 

14. SUBJECT TERMS 

Computers, Signal Processing, Mathematics, Modelling & Simulation 

15.   NUMBER OF PAGES 

1088 
16. PRICE CODE 

N/A 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18.   SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19, SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 

298-102 



VECPAR'98 
3rd International Meeting on 

Vector and Parallel Processing 

1998, June 21-23 

Conference Proceedings 
Part II 

(Monday, June 22) 

FEUP 
Faculdade de Engenharia 
da Universidade do Porto 



Table of Contents 

PARTI 

Invited Talk 1 
• Some Unusual Eigenvalue Problems 1 

Zhajun Bai and Gene Golub (USA) 

Technical Session 1 
• Parallel Preconditioners for Solving Nonsymmetric Linear 17 

Systems 
Antonio J. Garcfa-Loureiro, Tomas F. Pena, J.M. Lopez- 
Gonzalez and LI. Prat Vinas (Spain) 

• Parallel Preconditioned Solvers for Large Sparse Hermitian 31 
Eigenproblems 
A. Basermann (Germany) 

• Comparisons of Parallel Algorithms to Evaluate Orthogonal 45 
Series 
R. Barrio (Spain) 

Technical Session 2 
• Coarse-grain Parallelization of a Multi-Block Navier-Stokes 59 

Solver on a Shared Memory Parallel Vector Computer 
P. Wijnandts and M.E.S. Vogels (The Netherlands) 

• Using Synthetic Workloads for Parallel Task Scheduling 73 
Improvement Analysis 
Joäo Paulo Kitajima and Stella Porto (Brazil) 

• Influence of the Discretization Scheme on the Parallel Efficiency 87 
of a Code for the Modelling of a Utility Boiler 
P.J. Coelho (Portugal) 

Technical Session 3 
• Parallel Implementation of Edge-Based Finite Element Schemes 99 

for Compressible Flows on Unstructured Grids 
P.R.M. Lyra, R.B. Willmersdorf, MA.D. Martins and A.L.G.A. 
Coutinho (Brazil) 



• Parallel 3D Air Flow Simulation on Workstation Cluster 113 
Jean-Baptiste Vicaire, Loic Prylli, Georges Perrot and Bernard 
Tourancheau (France) 

• 2D Pseudo-Spectral Parallel Navier-Stokes Simulations of the 127 
Rayleigh-Taylor Instability 
E. Fournier and S. Gauthier (France) 

Technical Session 4 
• A Unified Approach to Parallel Block-Jacobi Methods for the 139 

Symmetric Eigenvalue Problem 
D. Gimenez, V. Hernandez and A. M. Vidal (Spain) 

• Solving Large-Scale Eigenvalue Problems on Vector-Parallel 153 
Processors 
David L. Harrar II and Michael R. Osborne (Australia) 

• Solving Eigenvalue Problems on Networks of Processors 167 
D. Gimenez, C. Jimenez, M., J. Majado, N. Marin and A. Martin 
(Spain) 

Invited Talk 2 
• Parallel Domain-Decomposition Preconditioning for 181 

Computational Fluid Dynamics 
Timothy Barth, Tony Chan and Wei-Pai Tang (USA) 

Technical Session 5 
• Parallel Turbulence Simulation: Resolving the Inertial Subrange 209 

of Kolmogorov's Spectra 
Thomas Gerz and Martin Strietzel (Germany) 

• A Systolic Algorithm for the Factorisation of Matrices Arising in 217 
the Field of Hydrodynamics 
S. G. Seo, M. J. Downie, G. E. Hearn and C. Phillips (UK) 

• The Study of a Parallel Algorithm Using the Backward-Facing 227 
Step Flow as a Test Case 
P.M. Areal and J.M.L.M. Palma (Portugal) 

• High Performance Cache Management for Parallel File Systems 239 
F. Garcia, J. Carretero, F. Perez and P. de Miguel (Spain) 



Technical Session 6 
• Parallel Jacobi-Davidson for Solving Generalized Eigenvalue 253 

Problems 
Margreet Nool and Auke van der Ploeg (The Netherlands) 

• A Level 3 Algorithm for the Symmetric Eigenproblem 267 
Dieter F. Kvasnicka, Wilfried N. Gansterer and Christoph W. 
Ueberhuber (Austria) 

• Synchronous and Asynchrounos Parallel Algorithms with 277 
Overlap for Almost Linear Systems 
Josep Arnal, Violeta Migallön and Jose Penades (Spain) 

• Spatial Data Locality With Respect to Degree of Parallelism in 291 
Processor-and-Memory Hierarchies 
Renato J. O. Figueiredo, Jose A. B. Fortes and Zina Ben Miled 
(USA) 

PART II 

Technical Session 7 
• Pardoning Regular Domains on Modern Parallel Computers 305 

M. Prieto-Matfas, I.Martfn-Llorente and F. Tirado-Fernändez 
(Spain) 

• A Performance Analysis of the SGI OriginlOOO 319 
Aad J. van der Steen and Ruud van der Pas (The Netherlands) 

• Parallel Computing over the Internet with Java 333 
Hernäni Pedroso, Luis M. Silva, Victor Batista, Paulo Martins, 
Guilherme Soares and Telmo Menezes (Portugal) 

• The Parallel Problems Server: A Client-Server Model for 345 
Interactive Large Scale Scientific Computation 
Parry Husbands and Charles L. Isbell (USA) 

Technical Session 8 
• A Thread-level Distributed Debugger 359 

Joäo Lourenco and Jose C. Cunha (Portugal) 

• New Access Order to Reduce Inter-Vector Conflicts 367 
A. M. del Corral and J. M. Llaberia (Spain) 

• Multilevel Mesh Partitioning for Aspect Ratio 381 
C. Walshaw, M. Cross, R. Diekmann and F. Shlimbach (UK) 



• Visualization ofHPF Data Mappings and of their 395 
Communication Cost 
Christian Lefebvre and Jean-Luc Dekeyser (France) 

Invited Talk 3 
• Parallel and Distributed Computing in Education 409 

Peter Weich (UK) 

Technical Session 9 
• An ISA comparison between Superscalar and Vector Processors 439 

Francisca Quintana, Roger Espasa and Mateo Valero (Spain) 

• Implementing the Time-Warp Simulation Model in Java 453 
Pedro Bizarro, Luis M. Silva and Joäo Gabriel Silva (Portugal) 

• Evaluation of High Performance Fortran for an Industrial 461 
Computational Fluid Dynamics Code 
Thomas Brandes, Falk Zimmermann, Christian Borel and Marc 
Bredif (Germany) 

Technical Session 10 
• Automatic Detection of Parallel Program Performance Problems 481 

Antonio Espinosa, Tomas Margalef and Emilio Luque (Spain) 

• Registers Size Influence on Vector Architectures 495 
Luis Villa, Roger Espasa and Mateo Valero (Spain) 

• The Adaptive Restarted Procedure for ORTHOMIN(k) Algorithm 507 
Takashi Nodera and Naoto Tsuno (Japan) 

Invited Talk 4 
• Reconfigurable Systems: Past and Next 10 Years 519 

Jean Vuillemin (France) 

Technical Session 11 
• A Method Based on Orthogonal Transformation for the Design of 541 

Optimal Feedforward Network Architecture 
Bachiller P., Perez R.M., Martinez P., Aguilar P.L., Calle J.E. 
(Spain) 

• Preprocessor Based Implementation of the Versatile Advection 553 
Code for Workstations, Vector and Parallel Computers 
Gabor Töth (Hungary) 



• A Parallel N-Body Integrator Using MPI 561 
Nuno S. A. Pereira (Portugal) 

• Efficient Molecular Dynamics on a Network of Personal 575 
Computers 
Giuseppe Ciaccio and Vincenzo Di Martino (Italy) 

Technical Session 12 
• Limits of Instruction Level Parallelism with Data Speculation 585 

Jose Gonzalez and Antonio Gonzalez (Spain) 

• Simulating Magnetized Plasma with the Versatile Advection 599 
Code 
R. Keppens and G. Töth (The Netherlands) 

• Parallel Grid Manipulations in Earth Science Calculations 611 
W. Sawyer, L. L. Takacs, A. da Silva, P. M. Lyster (USA) 

• Molecular Dynamics as a Natural Solver 625 
Witold Dzwinel, Jacek Kitowski, J. Moscinski and D. Yuen 
(Poland) 

Posters 
• Co-Design Decisions for High Performance Parallel 639 

Architectures 
J.C. Moreno and A. Alcolea (Spain) 

• Achieving Data Availability on Parallel and Distributed File 645 
Systems 
Francisco Rosales and Raimundo Vega (Spain) 

• PC and DSP based A C motor adaptive vector control system 651 
David Juan Bedford Guaus, Antoni Arias Pujol, Emiliano 
Aldabas Rubira and Jose Luis Romeral Martinez (Spain) 

• Parallel Optimisation for Optical Lens Design . 657 
Enric Fontdecaba Baig. Jose M. Cela Espfn and Juan C. Dürsteier 
Lopez (Spain) 

• Supercomputer Opnmisrd Microwave Domestic Oven Design via 663 
FD-TD 
Gaetano Bellanca. PJOIO Bassi, Giovanni Erbacci, Gianni de 
Fabritiis and Ruggcro Roccari (Italy) 



Debugging Message Passing Parallel Applications: a General 669 
Tool 
Ana Paula Claudio, Joäo Duarte Cunha and Maria Beatriz Carmo 
(Portugal) 

Parallel Ensemble-Averaged Molecular Dynamics Simulation of 675 
Shock Wave on Distributed Memory Multicomputers 
Sergey V. Zybin (Russia) 

The Influence of Communication Patterns in the h-Relation 681 
Hypothesis in the IBM SP2 
J.L. Roda, C. Rodriguez, F. Almeida, D.G. Morales (Tenerife, 
Spain) 

One-sided block Jacobi methods for the Symmetric Eigenvalue 687 
Problem 
D. Gimenez, J. Cuenca, R. M. Ralha and A. J. Viamonte (Spain) 

Efficient sparse data distribution for the Conjugate Gradient on 693 
distributed shared memory systems 
D.E. Singh, F.F. Rivera and J.C. Cabaleiro (Spain) 

Synchronized Parallel Algorithms on Red Black trees 699 
Xavier Messeguer and Borja Valles (Spain) 

Parallelization of GIS algorithms based on data partitioning 705 
M. Luisa Cordoba Cabeza and Antonio Perez Ambite (Spain) 

Emulating a superscalar processor to teach pipeline and 711 
superscalar concepts 
Santiago Rodriguez de la Fuente, M. Isabel Garcia Clemente, 
Rafael Mendez Cavanillas and Jose M. Perez Villadeamigo 
(Spain) 

A Parallel Genetic Algorithm for Solving the Portioning Problem 717 
in Multi FPGA Sxstems 
J. I. Hidalgo, M Prieio. J. Lanchares and F. Tirado ( Spain) 

HaskelW: A Functional Language with Explicit Parallelism 723 
R.M.F.Lima and R I) Lins (Brazil) 

Parallel and DistnhutrJ Algorithm in State Estimation of Power 729 
System Energy 
J. Beleza Carvalho jnd K Maciel Barbosa (Portugal) 

Parallel Block T*<<-Slum- Preconditioners for the Conjugate 735 
Gradient Method 
M. Jesus Castel. Violctj Migallön and Jose Penades (Spain) 



• Parallelization of a Direct Method for Systems of Linear 741 
Equations 
M.F. Costa and R.M. Ralha (Portugal) 

PART III 

Technical Session 13 
• Parallel Genetic Algorithms for Hypercube Machines 749 

R. Baraglia and R. Perego (Italy) 

• Parallel Quadric Rendering with Load Balancing Strategy 763 
Dana Petcu (Romania) 

• Efficient Parallelization Approaches for the SAI Representation 111 
A. Sanchez, S. Campos and A. Rodriguez (Spain) 

• Parallel Implementations of Morphological Connected Operators 791 
Based on Irregular Data Structures 
Christophe Laurent and Jean Roman (France) 

Technical Session 14 
• Dynamic Load Balancing in Crashworthiness Simulation 805 

H.G. Galbas and O. Kolp (Germany) 

• A Parallelization Strategy for Power Systems Composite 813 
Reliability Evaluation 
Carmen L.T. Borges and Djalma M. Falcäo (Brazil) 

• Parallel Paradigms applied in a Fluid-Dynamic Problem to 825 
model a Glass Manufacturing Process 
J. Vinuesa, R. Menendez de Llano, V. Puente and B. Torön 
(Spain) 

Vll 



Technical Session 15 
• Neural Classifiers Implemented in a Transputer Based Parallel 839 

Machine 
J. M. Seixas, A. R. Anjos, C. B. Prado, L. P. Calöba, A. C. H. 
Dantas and J. C. R. Aguiar (Brazil) 

• Algorithm-Dependant Method to Determine the Optimal Number 851 
of Computers in Parallel Virtual Machines 
J.G. Barbosa and A.J. Padilha (Portugal) 

Technical Session 16 
• Behaviour Analysis Methodology oriented to Configuration of 865 

Parallel, Real-Time and Embedded Systems 
F.J. Suärez, D.F. Garcia (Spain) 

• Epsilon Balanced Decomposition for Power System Simulation N.A. 
on Parallel Computers 
Felipe Morales S. Hugh Rudnick V. D. W. Aldo Cipriano Z. 
(Chile) 

Invited Talk 5 
• High Performance Computing for Image Synthesis 879 

Thierry Priol (France) 

Technical Session 17 
• Modeling Snow Transport by Wind. A Cellular Automata 895 

Alexandre Masselot and Bastien Chopard (Switzerland) 

• Some Concepts of the software package FEAST 907 
Christian Becker, Susanne Kilian, Stefan Turek and John Wallis 
(Germany) 

• Dynamic Routing Balancing in Parallel Computer 921 
Interconnection Networks 
D. Franco, I. Garces, E. Luque (Spain) 

Technical Session 18 
• Calculation of Lambda Modes of a Nuclear Reactor: a Parallel 935 

Implementation using the Implicitly Restarted Arnoldi Method 
Vicente Hernandez, Jose E. Roman, Antonio M. Vidal, Vicent 
Vidal (Spain) 



• Stochastic Control of the Scalable High Performance Distributed 949 
Computations 
Zdzislaw Onderka (Poland) 

• Direct Linear Solver for Vector and Parallel Computers 963 
Friedrich Grand (Germany) 

Invited Talk 6 
• The Design of an ODMG Compatible Parallel Object Database 977 

Server 
Paul Watson (UK) 

Technical Session 19 
• Parallel Query Processing in a Shared-Nothing Object Database        1007 

Server 
L.A.V.C. Meyer M.L.Q. Mattoso (Brazil) 

• High Performance Computing of a New Numerical Algorithm for        1021 
an Industrial Problem in Tribology 
M. Arenaz, R. Doallo, G. Garcia and C. Vazquez (Spain) 

• Distributed Simulation Strategies of Graphite Electrode Forming        1035 
Process 
M. Danielewski, B. Bozek, K. Holly, G. Mysliwiec, J. Sipowicz 
and R. Schaefer (Poland) 

Technical Session 20 
• Experimental Analysis of a Parallel Quicksort-Based Algorithm 1049 

for Suffix Array Generation 
Autran Macedo, Elaine Spinola Silva, Denilson Moura Barbosa, 
Marco Antonio Cristo, Joäo Paulo Kitajima, Berthier Ribeiro, 
Gonzalo Navarro and Nivio Ziviani (Brazil) 

• A Low Cost Distributed System for FEM Parallel Structural 1063 
Analysis 
CO. Moretti, T.N. Bittencourt and L.F. Martha (Brazil) 

• Low Cost Parallelizing, a Way to be Efficient 1077 
Marc Martin and Bastien Chopard (Switzerland) 



VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing 

Partitioning Regular Domains on Modern Parallel 
Computers 
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mpmatias@eucmos.sim.ucm.es, {llorente,ptirado}@eucmax.sim.ucm.es 

Abstract. It has become apparent in recent years that the performance of 
current high performance computers, from powerful workstations to massively 
parallel processors, is strongly dependent on the behaviour of the memory 
hierarchy. In fact, it does not only affect the computation time but the time 
consumed in performing communications. In this research, the impact of the 
memory hierarchy usage on the partitioning of multidimensional regular 
domain problems is studied. We use as an example the numerical solution of a 
three-dimensional partial differential equation in a regular mesh, by means of a 
multigrid-like iterative method. Experimental results contradict the traditional 
regular partitioning techniques on some present parallel computers like the Cray 
T3E or the SGI Origin 2000: a linear decomposition is more efficient than a 
three dimensional one due to the better exploitation of the spatial data locality. 
For similar reasons, computation-communication overlapping increases also 
execution time. 

1. Introduction 

The performance of current parallel computers, composed of up to hundreds of 
superscalar commodity microprocessors, presents an increasing dependence on the 
effective usage of their hierarchical memory structures. Indeed, the maximum 
performance that can be obtained in current microprocessors is limited by the memory 
access. The peak performance of the microprocessors has increased by a factor of 4-5 
every 3 years by exploiting the increasing integration density, reducing the clock 
cycle, and by implementing architectural techniques to take advantage of the multiple 
levels of parallelism. However, the memory access time has been reduced by a factor 
of just 1.5-2 over the same period. Thus, the latency of memory access in terms of 
processor performance grows by a factor of 2-3 every three years. This situation 
seems likely to continue over the next few years and it has been suggested that such 
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trends may result in a "memory wall" in which application performance is entirely 
dominated by memory access time [1][2]. 

The common technique to bridge this gap and hide the problem is by using a 
hierarchical memory structure with large and fast cache memories close to the 
processor. As a result, the memory structure has a strong impact on the design and 
development of a code, and the programs must exhibit spatial and temporal locality to 
make efficient use of the cache memory and so keep the processor busy. The 
effectiveness of data locality has been well demonstrated in the LAPACK project, and 
major research has just begun to develop cache-friendly iterative methods [3] [4]. 
However, to the best of the authors' knowledge, the impact of the memory hierarchy 
usage on the partitioning has not previously been studied. 

In this research, we have studied applications where the main computational 
portion of the program belongs to a class of kernels known as stencils. A stencil is a 
matrix computation in which groups of neighbouring data elements are combined to 
calculate a new value. This type of computation is common in image processing, 
geometric modelling and solving partial differential equations by means of finite 
difference or finite volume. The simplest approach to parallelizing these kinds of 
regular applications distributes the data among the processes, and each process runs 
essentially the same program on its share of the data. For three-dimensional 
applications, decompositions in the x, y, and/or z dimensions are possible. 

During the last decade, a d-dimensional mesh of processors has been considered as 
the best partitioning to split a d-dimensional regular domain because in this way the 
interconnection network is more efficiently exploited [5][6]. Furthermore, 
communication-computation overlapping techniques are performed to keep the 
processor busy and so improve the parallel efficiency. However, our results show that 
in modern parallel computers it is more important to make effective use of the local 
memory hierarchy than to reduce the overheads due to network delay cost. The 
interconnection systems have also taken advantage of the increasing integration 
density offered by the integrated circuit processing technology and the effective 
bandwidth and latency are now hundreds of times faster than ten years ago. 

This paper is organised as follows. In Section 2 we describe the sample code that 
has been used in our research. The effect of spatial locality on message sending is 
described in Section 3. Based on this analysis, the choice of an optimal partition is 
presented in Section 4. The influence of overlapping computations with 
communications is presented in Section 5. The paper ends with some conclusions to 
guide the partitioning of regular applications in current parallel computers. 

2. Sample Code. 

In this research, we are only interested in a qualitative description of the most 
important aspects that affect the performance, and that should be considered for 
making informed design decisions. As a sample problem, we have studied the 
numerical solution of a time-dependent partial differential equation, the three- 
dimensional  Bose-Einstein equation  [7], in a regular mesh subject to Dirichlet 
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boundary conditions. The problem is to describe the evolution of a physical field (a 
complex function) given an initial condition. An implicit finite difference method has 
been used to carry-out the simulation, and the systems of equations are solved by 
means of a multigrid-like iterative method [8]. The execution times that we present in 
this paper are the result of a single time step simulations using only one multigrid 
iteration. 

Like other regular applications, the parallel program execution is a sequence of 
computation and communication steps. The subdomains of every processor are 
independently computed and then, a communication between neighbouring logical 
processors updates the boundaries of these subdomains. 

The code used in this study parallelizes well for a number of reasons. The 
discretization is regular, and the same operations are applied at each grid point, even 
though the evolution of the system is non-linear. Thus, the problem can be statically 
load-balanced at the start of the code. 

3. Spatial Locality Impact on Message Sending. 

Message sending between two tasks located on different processors can be divided 
into three phases: two of them are where the processors interface with the 
communication system (the send and receive overhead phases), and a network delay 
phase, where the data is transmitted between the physical processors. Details of what 
the system does during these phases varies. Typically, however, during the send 
overhead phase the message is copied into a system-controlled message buffering 
area, and control information is appended to the message. In the same way, on the 
receiving process, the message is copied from a system-controlled buffering area into 
user-controlled memory (receive overhead is usually larger than send overhead): 

In several out-of-date parallel computers, like the Thinking Machines CM5, the 
Parsys Supernode 1000 or the Meiko CS-2, the most important component was the 
network delay [9]. However, in current machines like the Cray T3E or the SGI Origin 
2000, as the interconnection networks increase their bandwidth, the send and receive 
overheads are becoming important. The factors determining these overheads are 
different in each system, but they are mainly due to uncached operation, misses and 
synchronisation instructions, generally considered to be infrequent events and 
therefore a low priority for architectural optimisations of commodity microprocessors. 
The use of these components allows a rapidly increasing performance and excellent 
price performance, but microprocessors are designed for workstations and modestly 
parallel servers. A large-scale multiprocessor creates a foreign environment into 
which they are ill- equipped to fit. For example, the memory interfaces are cache line 
based, making references to single words (corresponding to strided or scatter/gather 
references in a vector machine) inefficient [10]. Therefore, the cost of communication 
depends not only on the amount of communication but also on how it is structured to 
interact with the architecture (mainly the spatial data locality). 
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3.1 The Cray T3E Message Passing Performance 

The T3E used in this study had 32 DEC Alpha 21164 running at 300 MHz at the 

beginning of our research, and has recently been upgraded with 450 MHz processors. 

Like the T3D, The T3E contains no board-level cache, but the Alpha 21164 has two 

levels of caching on-chip: 8 KB first-level instructions and data caches, and a unified, 

3-way associative, 96-Kbyte write-back second-level cache. The local memory is 

distributed across eight banks, and its bandwidth is enhanced by a set of hardware 
stream buffers. These buffers, which exploit spatial locality alone, can take the place 
of a large board-level cache, which is designed to exploit both spatial and temporal 
locality. Each node augments the memory interface of the processor with 640 (512 
user and 128 system) external registers (E-registers). They serve as the interface for 

message sending; packets are transmitted by first assembling them in an aligned block 
of 8 E-registers. 

The processors are connected via a 3D torus with an inter-processor 

communication bandwidth of 480 Mbytes/sec. Using MPI, however, the effective 

bandwidth is smaller due to overhead associated with buffering and with deadlock 

detection. The library message passing mechanism uses the E-registers to implement 

transfers, directly from memory to memory. Data does not cross the processor bus; it 

flows from memory into E-registers and out to memory again in the receiving 

processor. E-registers enhance performance when no locality is available by allowing 
the on-chip caches to be bypassed. However, if the data to be loaded were in the data 
cache, then accessing that data via E-registers would be sub-optimal because the 
cache-backmap would first have to flush the data from data cache to memory 
[9][10][11]. 

20000000 40000000 
Message Size (bytes) 

60000000 

Fig. 1. CRAY T3E message passing performance for contiguous data. The network distance 
between the processors involved in the communication varies. 

Figure 1 shows the measured one-way communication bandwidth for different 
message sizes using MPI. The test program uses all of the 28 processors available in 
the system. There is always the same sender processor and one receiver processor that 
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varies. The sender initiates an immediate send followed by an immediate receive, then 
it waits until both the send and the receive have been completed. The receiver begins 
by starting an immediate receive operation, then waits until it is finished. It replies 
with another message using a send/wait combination. Because this operation is 
repeated many times, if all the data fits into the cache then, except for the first echo, 
the required data will be found in the cache. But, on the CRAY T3E, the suppress 
directive [12] can be used to invalidate the entire cache and so, it forces all entities in 
the cache to be read from memory. The measures demonstrate that there is no 
difference between close and distant processors in the CRAY T3E. 

Figure 2 shows the impact of the spatial data locality. We use also the simple echo 
test, but we modify the data locality by means of different strides between successive 
elements of the message. The stride is the number of double precision data between 
successive elements of the message, so stride-1 represents contiguous data. We use 
MPI datatypes (MPI_Type_vector) instead of the MPI_Pack / MPI_Unpack 
routines, because they may allow certain performance optimisations. However, we 
must be careful because the use of certain MPI datatypes can dramatically slow down 
communication performance, e.g., the MPI_Type_hvector type in the T3E 
implementation. We send buffers that are 8-byte aligned because the T3E copies non- 
aligned data slowly. This is automatic for the usual case of sending double precision 
data. Due to memory constraints the larger message is limited to 32Kbytes, although 
it is not big enough to obtain the asymptotic bandwidth for the stride-1 case, these 
sizes are similar to the messages used in our application program. 

WOO      10000      15000      20000     25000     30000     35000 

Message Size (Bytes) 
- Sum* i 

- So» ■«■ 
-smv 2V 

-Stride 2 
- Stride 32 

Stride 512 

Stride 4 
-Stride 64 

Stride 1024 

- Stride 8 
— Stride 128 

Stride 2048 

Fig. 2. CRAY "PE mcAvafc passing performance using non-contiguous data 

It is interesting to note ihji almost the same effective bandwidth is obtained for 
strides between 16 and <!.' double precision data. For 32 KB messages, stride-1 
bandwidth is around 5 timo hotter than stride-16. Beyond Stride-1024 this difference 
grows, being stride-1 10 times hotter than stride-2048. 
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3.2 SGI Origin 2000 Message Passing Performance 

We repeated these tests in a SGI Origin 2000. The Origin is a distributed shared- 
memory system with a hypercube network in which each processing node contains 
two processors, a portion of the shared memory, a directory for cache coherence, and 
interfaces to I/O devices and other system nodes. The system used in this study has 
the MIPS R10000 running at 195 MHz. Each processor has a 32 Kbyte two-way set- 
associative primary data cache and a 4-Mbyte two-way set-associative secondary data 
cache. One important difference between this system and the T3E is that it caches 
remote data, while the T3E does not. The memory bandwidth per node is 780 
Mbytes/sec. Latencies to the memory modules of the Origin 2000 system depend on 
the network distance from the issuing processor to the destination memory node. 
Accesses to local memory take 80 clock cycles (CC) (400 ns), while latencies to 
remote nodes are the local memory time plus 22 CC (110 ns) for each network router, 
plus a one-time penalty of 33 CC for a remote access. On a 32-processor machine, the 
maximum distance covers 4 routers, so that the longest memory access is about 201 
CC (1005 ns) [13][I4][I5]. 

However, as in the CRAY T3E, using MPI, the time required to send a message 
from one processor to another is almost independent of both processor locations. We 
have measured erratic differences of around 7%. 

100.00 1 

80.00 

60.00 

40.00 

20.00 

0 00 

4000000      8000000 

Message size 
12000000     16000000 

Fig. 3. SGI Origin 2<XX) me\sjpe passing performance for contiguous data. The network 
distance between the pnxrw>t\ involved in the communication varies 

It is interesting to nocc ihji ihe measured bandwidth slows down when the message 
sizes are larger-than the ^ *KJ level cache (4 MB). Figure 4 shows the impact of the 
spatial data locality, the leitend on the right is the number of double precision data 
between successive elements To avoid temporal locality effects we build and free the 
message every echo opcrjn.-n 
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50000       100000     150000     200000 
Message Size (Bytes) 

250000     300000 

-Stride 1 
Stride 8 

-Stride 64 

-Stride 2 
-Stride 16 
-Stride 128 

Stride 4 
—•— Stride 32 
___. Stride 256 

Fig. 4. SGI Origin 2000 message passing performance using non-contiguous data . 

For non-contiguous data, the reduction in the effective bandwidth is even greater 
than in the T3E case. For 256 KB messages, stride-1 bandwidth is around 6.3 times 
better than stride-2. This difference grows with the stride, being 23 times for stride- 
256. The memory interface of the Origin is cache line based, making references to 
single data more inefficient than in the Cray T3E. Moreover, the current MPI 
implementation on the Origin 2000 requires one extra buffer copy. 

3.4 Experimental Results in Our Sample Code 

Although the communication pattern that we found in our application program is 
not a one-way transfer, but a message exchange between neighbouring logical 
processors, we notice the impact of the spatial locality as well. In this data exchange, 
advantage can be taken of bi-directional links, and a greater bandwidth can be 
obtained than is possible with the echo test. The code was written in C, so a three 
dimensional domain is stored in a row-ordered (x,y,z)-array. It can be distributed 
across a ID mesh of processors following three possible partitionings: x-direction, y- 
direction and z-direction. The x and y-direction partitioning were found to be more 
efficient, because the message data exhibits a better spatial locality. X and Y 
boundaries are stride-1 data, except strides between different Z-columns (two 
complex data, i.e. four doubles, for X-partitioning and this quantity plus two times the 
number of elements in a x-plane for Y-partitioning). A message using Z-partitioning 
has a stride 2 times the number of elements in dimension z (all the elements are 
double precision complex data). Figures 5 and 6 show the experimental results from 
the CRAY T3E and the SGI Origin 2000 respectively. Due to main memory capacity, 
the SGI allows larger simulations. 

X-partitioning is found to be 2 times better than Z-partitioning for the 128-element 
simulation on the two different configurations of the CRAY T3E. Although message- 
passing bandwidth is very important, we should also note that this difference is not 
only a message passing effect. X and Y-partitioning more efficiency exploit stream 
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buffers because they maximise inner loop iterations [11]. By means of the MPP 
Apprentice performance tool we have found that the time spent in the initiation of 
message sending is 5 times larger in the Z-partitioning simulations. This fact fits in 
with what we measure in the echo test. 

64 128 
Problem size 

B.X(300Mhz)      ■YßOOMhz)      DZ(300Mhz) 
aX(450Mhz)      ■Y(450Mhz)      ■Z(450Mhz) 

Fig. 5. Different linear partitioning of our sample application using sixteen processor in the 
CRAY T3E. The problem size is the number of cells in each dimension for the finest grid in the 
multigrid hierarchy. 
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50 
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X Partitioning    HYPartitioning    DZ Partitioning 

Fig. 6. Different linear partitioning of our sample application using 32 processors in the SGI 
Origin 2000. The problem size is the number of cells in each dimension for the finest grid in the 
multigrid hierarchy. 

Equivalent differences in the Origin 2000 are important, but lower than the T3E 
ones. For the 128-element problem, X partitioning is only 1.2 times better. For the 
256 one, it grows to 1.4. The large second-level cache of this system, which allows 
the best exploitation of the temporal locality, influences these results [16]. 
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Using 2D and 3D decompositions, we notice the same effects. Z-plane boundaries 
slow down the performance of the application because they are discontinuous in 
memory. Therefore, as figure 7 show, a 2D decomposition using a 4x4x1 array of 
abstract processors (4 processors in the x and y dimensions and no decomposition in 
the z direction) is better than 4x1x4 and 1x4x4 topologies (the differences are around 
15 % in the Cray T3E). In the same way, a 3D decomposition using a 4x2x2 array is 
better than a 2x2x4 one. 

25 

64 128 
Problem size 

H4x4xl (300Mhz) B4xlx4(300Mhz) □ 1x4x4(300Mhz) 

D4x4xl (450 Mhz) B4xlx4(450Mhz) ■ 1x4x4(450Mhz) 

Fig. 7. Different 2D decompositions of our sample application using 16 processors in the 
CRAY T3E. The problem size is the number of cells in each dimension for the finest grid in the 
multigrid hierarchy. 

4. Partitioning for Performance 

Over the last decade the partitioning has been focused on reducing 
communications that are inherent to the parallel program. As is well known, for a d- 
dimensional problem, the communication requirements for a process grow 
proportionally to the size of the boundaries, while computations grow proportionally 
to the size of its entire partition. The communication to computation ratio is thus a 
perimeter-to-surface area ratio in a two-dimensional problem, and similarly, a surface 
area to volume ratio in three-dimensions. So, the three dimensional decomposition 
leads to a lower inherent communication-to-computation ratio. 

Moreover, as we have experimentally proved in the previous section, the time 
required for sending a message from one processor to another is independent of both 
processor locations. Therefore, there is no sense in talking about physical neighbours, 
and the mapping of the logical processors over the physical ones is not very 
important, as far as communication locality is concerned. 

Therefore, these ideas suggest a general rule: Higher-dimensional decompositions 
tend to be more efficient than lower-dimensional decompositions [5][8]. 
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However, as we discussed in the previous section, the communication cost is also a 
function of the spatial data locality. Therefore, a trade-off between the improvement 
of the message data locality and the efficient exploitation of the interconnection 
network exists. 

The following figures compare the different decompositions for our sample 
application in the Cray T3E. In the larger problem using 8 processors, and for the new 
processor, the best ID-decomposition achieves improvements of 6.5% and 14,5% 
over the best 2D and 3D-decompositions respectively. These differences have grown 
by 2% and 10 % compared to the old 300 MHz configuration. In the 16-processor 
simulation the differences are lower (only 2.2 % and 7%) for the same problem size 
because the local matrices are smaller too. 

20 

f-    5 

■>«■ ■IM 
64 128 
Problem size 

BlD(300Mhz) ■2D(300Mhz) 
D3D(300Mhz) DlD(450Mhz) 
■ 2D(450Mhz)   ■3D(450Mhz) 

40 

30 

20 

H   10 

■~r-j.BiBr 
64 128 
Problem size 

■ lD(300Mhz)    »20(300 Mhz) 
□ 3D(300Mhz)    DID(450Mhz) 
■ 2D(450Mhz)    ■3D(450Mhz) 

Fig. 8. Different decompositions for our sample program in the CRAY T3E using 16 (on the 
left) and 8 processors (on the right). The problem size is the number of cells in each dimension 
for the finest grid in the multigrid hierarchy. 
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20 - ■ i 
0 - —-■  M 1 

64               128 
Problem size 

■ ID ■ 2D           D3D 

Fig. 9. Different decompositions tor our sample program in the SGI Origin 2000 using 16 (on 
the left) and 8 processors (on the right). The problem size is the number of cells in each 
dimension for the finest grid in the multigrid hierarchy. 

In the SGI Origin 2000. we have obtained lower differences. Using 8 processors, 
the best choice is also a linear decomposition, but it is only 5% and 7% better than the 

2D and 3D decompositions. However, for the 16-processor simulation, the 2D 
decomposition is 15 % and 1% better than the ID and 3D decompositions. The large 
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second-level cache of this system is again the reason of these results. Cray T3E is 
more sensitive to spatial data locality than the SGI because its performance depends 
significantly on the effective use of the stream buffers system. 

Therefore, in both multiprocessors, it is more important to make effective use of 
the local memory hierarchy than to reduce the overheads due to network delay cost. 
So, the best performance is usually obtained by means of a simple linear 
decomposition. 

We should also note that, although we have considered execution time as the 
performance metric, there are many aspects to the evaluation of a parallel program. A 
lower-dimensional partitioning program is easier to code, so if we consider 
implementation cost, a one-dimensional partitioning is also the best choice. Besides, it 
allows the implementation of fast sequential algorithms in the non-partitioned 
directions [17]. 

In a workstation cluster a linear data distribution is also the best because the fewer 
the number of neighbours, the fewer the number of messages to be sent. Therefore, a 
one-dimensional decomposition reduces TCP/IP overheads as well [18]. So, if we 
consider portability, a one-dimensional partitioning is also the best choice. 

5. Computation - Communication Overlapping. 

A typical approach for dealing with the communication cost due to the transit 
latency, the bandwidth-related cost, and contention, is to hide it by overlapping this 
part of the communication with other useful work. The results in the previous sections 
have been obtained without overlapping, but these types of algorithms can be 
structured so that every process request for remote data is interleaved explicitly with 
local computation. For this purpose, it is necessary to deal with the boundaries before 
the inner domain. In this way, it is possible to initiate an immediate send operation 
before the point where it naturally appears in the program and the message may reach 
the receiver before it is actually needed. Thus, the receive operation does not stall 
waiting for the message to arrive; it will copy the data straight away from an 
incoming buffer into the application address space. Therefore, instead of using the 
simple pattern: 

1- Exchange artificial Boundary: 
Send boundaries to neighbours 
Receive artificial boundaries from neighbours 

2- Update local domain using artificial boundaries 
we must use: 

1- Update boundaries 
2- Send boundaries to neighbours 
3- Update local domain using artificial boundaries 
4- Receive artificial boundaries from neighbours 
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In order to evaluate the benefits and limitations of this new approach, we will 
assume that message initiation and reception costs are the same in the two structures, 
so the execution time can be estimated as: 

Twithout_overlapping = Tlocal + Tcom_overhead + Tcom . (1) 

Toverlapping = Tboundaries + Tcom_overhead + max(Tinner,Tcom) . (2) 

Tlocal is the time spent in the local domain update, Tinner is the cost of inner 
domain actualisation, Tboundaries is the time required for updating the boundaries, 
Tcom_overhead is the send and receive overheads (it is important to recall that these 
overheads incurred on the processors cannot be hidden) and Tcom is the network 
delay. For a real problem, Tcom is lower than Tinner. Therefore, the overlapping 
pattern is better than the simple approach while: 

Tboundaries + Tinner < Tlocal + Tcom . (3) 

Tlocal can be divided in a Tinner and a Tboundaries_2, so the last inequality can be 
simplified to: 

Tboundaries - Tboundaries_2 < Tcom . (4) 

This latter boundary actualisation time is different from the previous one. Usually, 
the cost of updating the boundaries in the non-overlapping approach (they are updated 
together with the inner local domain) is lower than in the overlapping pattern due to 
the better exploitation of the memory hierarchy. 

The overlapping approach has been successfully used in old parallel computers like 
the Parys Supernode SN 1000, where the network bandwidth-related cost is very 
important. In workstations clusters, the benefits are even greater because the network 
is usually a non-private resource [18]. However, as we have discussed in the previous 
sections, in the current generation of parallel computers Tcom is not so important. 
Therefore, the increase due to the boundary actualisation may be greater than the 
reduction obtained by way of the overlapping. 

We have verified these ideas with our test program. Figure 10 illustrates both 
patterns using a linear decomposition. In the CRAY T3E the non-overlapping 
approach performance is 7.3% higher than the overlap pattern for the 16-processor 
simulation (for the larger problem size with the 450 MHz processor) and 5% higher 
using 8 processors. These differences have grown compared to the old configuration 
where the differences are 6.4% and 4% respectively. Using 2D and 3D 
decompositions we have obtained the similar differences [16]. 

In the SGI, the differences are similar. In the 32 processor-simulation, using a 
linear decomposition, the difference for the larger problem is 7.5 % [16]. 
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64 128 

Problem size 
■ Simple (300 Mhz)   «overlap (300 Mhz) 

GSimple (450 Mhz)   Doverlap (450 Mhz) 

64 128 

Problem size 
■ Simple(300Mhz)   «overlap (300Mhz) 

G Simple (450 Mhz)   G overlap (450 Mhz) 

Fig. 10. Overlapping versus non-overlapping approach on the Cray T3E using 8 (on the left) 
and 16 processors (on the right). The problem size is the number of cells on each dimension for 
the finest grid in the multigrid hierarchy. 

6. Conclusions 

We have shown how the optimal data partitioning of regular domains is a trade off 
between the improvement of the message data locality and the 
computation/communication ratio. In older parallel computers the performance 
depends mainly on the efficient exploitation of the interconnection network. 
However, the performance obtained on current parallel computers, based op the 
replication of commodity microprocessors, present a growing dependence on the 
efficient use of the memory hierarchy. 

The main conclusions of the paper can be summarized in the following points, that 
contradict to a certain extent the traditional wisdom on data partitioning: (1) the 
partioning of the domain must avoid boundaries with poor data locality due to the 
reduction in the effective bandwidth, (2) ID partitioning is becoming more efficient 
than higher dimension partitioning (Moreover, it is easier to code, more suitable to 
include fast sequential algorithms in non-partitioned directions and more portable), 
and (3) communication/computation overlapping does not reduce execution time. 
These conclusions have been verified by experimental results on two microprocessor 
based computers: the Cray T3E and the SGI Origin 2000. 
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Abstract. In this paper we present the results of benchmark experi- 
ments carried out on a Silicon Graphics Origin2000. We used the three 
modules of the EuroBen Benchmark ([1]) to assess the performance of a 
single node, as a shared memory system, and as a distributed memory 
system. Where the situation calls for it, we compare the results with 
those obtained on a Cray T3E and an IBM SP2. The results obtained 
from this benchmark give a good impression of what performances can 
be attained on the Origin2000 under what circumstances and expose the 
weak and strong points of the system. 

Keywords: Performance analysis, High-performance computers, Programming 
models. 

1    Introduction 

The Silicon Graphics Origin2000 has been introduced in the last quarter of 
1996. Since then a considerable amount of these systems have been installed, 
ranging from 4-128 processors per system. The Origin2000 machine has a rather 
complicated architwture and, like most high-performance computers, shows a 
wide range of performance levels depending on memory access patterns, loop 
content, fitness for and main size of parallelism, etc. It was our intention to make 
a performance pn>füt < A t he Origin2000 which will allow to obtain a fair estimate 
of the performance und«-! a variety of realistic operating circumstances. At, the 
same time, architect m.ii (.«.»tlenecks can be identified. This may be valuable for 
future system dpw!<>|>m.:it and will in the end be of benefit for end users. 

To assess the pet t<.rrn.nice of the Origin2000 we used the EuroBen Bench- 
mark, version 3.2 {[1_ I !u» benchmark was initially designed for testing shared- 
memory MIMD system» However, for a limited number of important cases also 
message-passing code> haw been developed. 
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W-liN"! 

|»N»| : Node card 

(§) : Router board 

 : XpressLtnk 

Fig. 1. Configurations of Origin2000 systems with 16 and 32 processors. 

This paper has the following structure: first the Origin2000 and the EuroBen 
Benchmark are briefly described, next we present the most relevant results of 
our benchmark study and we conclude with a summary and issues that might 
be addressed in further research. 

2     The Origin2000 system 

The Origin2000 is a cache coherent, logically shared, physically distributed mem- 
ory system with 4-128 MIPS R10000 RISC processors. The features of the pro- 
cessors are extensively described in [2,3]. These include out-of-order execution 
of instructions and prefetching of operands in order to hide data-access latency. 

The system as we have benchmarked contained 195 MHz processors with 
a theoretical peak performance of 390 Mflop/s. The processors have 32 KB, 
two-way set-associative primary instruction and data caches and a combined 
secondary instruction and data cache of 4 MB. In parallel processing the caches 
of the processors involved are kept coherent via a directory memory, see [2]. The 
memory of the total system was in our case 16 GB. 

Two processors are mounted on a node card together with a local part of the 
memory and & HUB chip, an ASIC which connects all components on the node 
card with each other In addition, the HUB chip also connects the node card to 
the other node car d> «uid the I/O facilities of the system. The raw bandwidth 
of the connection«, on \\\*> node card and between node cards is 780 MB/s, see 
[4]. However, the t».. |>n«.'ssors have to share this bandwidth when accessing 
data from memor\ l-.'t tti«- actual point-to-point bandwidth between processors 
on the user level Sih< <m < .t.tphics quotes a bandwidth of 150 MB/s. This is due 
to various overhea<l> .tn.i the cache-coherency that is enforced by the system. 

Node cards are. \ M t ;>.-n HUB chip, connected by routers to the rest of the 
system. The intercom!«-* n.m of the routers has a hypercube topology. However, 
for up to 32 processoi- M -< ailed XpressLinks can be added to reduce the system 
diameter Q to 3. Figun   1 --hows some system configurations. 
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Silicon Graphics provides auto-parallelising compilers that attempt to spread 
the content of loops evenly over the processors. In addition, the user may add par- 
allelisation directives in various styles. Next to SGI-proprietary, also ANSI X3H5 
recommended ([5]) and OpenMP ([6]) directives are accepted. Also distributed 
memory message passing libraries are available. Apart from the SGI/Cray-style 
shmem library, MPI ([7]) and PVM ([8]) are supported. An HPF compiler ([9]) 
for the Origin2000 is distributed by the Portland Group. 

3    The EuroBen Benchmark 

To get a complete insight in the behaviour of the machine one has to investigate 
the single-node performance, the shared-memory parallelisation capabilities, and 
the possible (dis)advantages of using the system as distributed memory system. 
The EuroBen Benchmark has been build in a hierarchical way to extract the 
necessary information and to build the performance profile from programs in 
three modules of increasing complexity: 

- The first module contains programs that identify the machine parameters 
that govern upper and lower bounds of the performance. 

- The second module contains simple but basic algorithms: full and sparse 
linear systems solvers, FFTs, random number generation, etc. 

- The third module places the algorithms in a compact application setting 
and applies them in various PDE and ODE problem implementations. In 
addition, linear and non-linear least-squares problems and some I/O-bound 
problems are considered. 

For a full description of the benchmark one is referred to [1]. 

3.1    Testing circumstances 

The full benchmark applied on single nodes, together with the parallel execu- 
tion of relevant programs from the benchmark both with a shared-memory and 
a distributed-memory message-passing programming model gives a sufficient in- 
sight in the machine behaviour to enable reasonable performance estimates in 
many circumstances. For the shared-memory programming model we used both 
the SGI-proprietary as well as the ANSI X3H5 directives, for the message-passing 
programs MPI was used. Moreover, features like Inter Procedural Analysis and 
the quality of the numerical libraries provided by Silicon Graphics have been 
assessed to complete the profile of the machine. Where relevant, to compare and 
contrast the distributed memory results we also have done similar tests on two 
other widely available DM-MIMD systems, a Cray T3E Classic and a IBM SP. 
In addition some results from a Hitachi SR2201 were used. 

We had the following testing circumstances for the systems quoted in this paper: 

- Origin2000 The FORTRAN 77 MlPSPro compiler, version 7.20, compiler op- 
tions -03 -64 -OPT: IEEE:arithmetic=3:roundoff=3, Operating System 
IRIX 6.4 02121744. For the hardware specifications seen section 2. 
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- IBM RS6000/SP We used IBM RS6000/SP Thinnodes with 160MHz 
P2SC processors and 512 MB memory per node. The Fortran 90 compiler was 
xlf, version 4.1, compiler options were -03 -qarch=pwr2, Operating Svstem 
AIX, version 2.4 002006959400. 

- Cray T3E Classic We used 300 MHz DEC Alpha 21164 processors with 
128 MB memory per node. The Fortran 90 compiler was CF90, version 
3.0.1.3, compiler options were -03 -dp, Operating System UNICOS/mk, 
version 2.0.2.19. 

- Hitachi SR2201 We used 200 MHz PA-RISC 720 processors with 256 MB 
of memory per node. The Fortran 90 compiler was OFORT90, version V02- 
05-/A, compiler option was -03, Operating System HI-UX/MPP, version 
SR220001 02-02 0. 

In all cases we used the system clock with resolutions ranging from 0.5-15 (is. 
We took care to use timing measurement intervals of at least a few hundred ms 
to exclude measuring artefacts, repeating measurements where necessary. 

4    Benchmark results 

From each of the three benchmark modules we present some representative re- 
sults as the complete discussion of all results is far to extensive for this paper. 
One is referred to the report [3] for a comprehensive presentation. The report is 
downloadable from: http://www.phys.uu.nl/-steen/euroben/reports/ as a 
compressed PostScript file. 

4.1    Module 1 results 

Program modlac measures the speed of a number of important basic operations 
as a function of the array length. With the bandwidth to the CPU known we 
should be able to assess whether the code generated by the compiler is optimal. 
In Table 1 we list the single-node speeds for these operations with stride 1 access 
to the operands as found for operation from the level 1 and level 2 cache. 

Program modlac obtains which the speeds of the operations with stride 1, 
3, and 4 memory access. Moreover, also the speeds of the same operations is 
measured when accessing the operands via an index vector. Non-unit stride ac- 
cess turns out to have quite little influence on the performance. Indirect indexed 
operations incur a loss of roughly 30% in speed due to address operations. So, we 
present only the stride-1 values. The first and fourth column show the maximum 
observed performance. 7-„mx. when accessed from the primary and secondary 
cache, respectively. As the secondary cache is quite large (4 MB), a relatively 
small proportion of data references will have to be to the main memory. 

The dependency of the execution time of the array length can be modelled 
with considerable precision by a linear model t{n) = a + bn where a is the la- 
tency and b is the time per operation per element. These parameters are given 
as the third and second column entries of Table 1. It enables us to draw defi- 
nite conclusions about the optimality of the generated code for the operations 
considered. 
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L-l cache L-l cache L-l cache L-2 cache 
7* 111 ax Cycles per Latency r 111 ax 

Operation Mflop/s op/element cycles Mflop/s 

1 Broadcast 195.60 1 23 61.92 

2 Copy 95.29 2 15 43.65 

3 Addition 64.66 3 21 34.36 

4 Subtraction 64.48 3 18 34.57 

5 Multiplication 64.45 3 18 34.52 

6 Division 9.23 21 0 9.22 

7 Dotproduct 194.46 2 14 137.61 

8 x — x + ay 128.92 3 19 69.13 

9 z = x + ay 128.62 3 17 66.99 

10 y = x\x-i + X3X4 107.39 6 23 56.97 

11 1st order recurs. 96.39 2 23 46.04 

12 2nd order recurs. 96.69 4 22 80.31 

13 2nd difference 242.31 2.5 36 132.54 

14 9th Degr. Polynomial 376.92 9 31 351.17 

Table 1. rmax, the number of cycles per operation per element, and the latency values 
for the primary cache operations on a single processor of the Origm2000. Only results 
of the first 14 of kernels are shown. The operations all have unit stride access. The 
operation latency from secondary cache is completely hidden by the data access. 

The dyadic operations addition, subtraction, and multiplication operate at 
l/6th of the Theoretical Peak Performance, 390 Mflop/s, when accessed from the 
primary cache as the total operation takes 3 cycles. With an ideal bandwidth 
situation, transferring two operands to the relevant functional unit and shipping- 
one result back per clock cycle, the performance should approximately be half the 
Theoretical Peak Performance. One can conclude that only one 8-byte data item 
can be transferred per cycle. This is in agreement with the bandwidth quoted by 
the vendor. The dotproduct and the daxpy operation (kernel 7 and 8) also show 
speeds that closely agree with this bandwidth with computational intensities of 
1 and 2/3, respectively ([10]). It shows that, at least for these simple operations, 
the compiler is able to generate optimal code given the limited bandwidth of one 
operand/cycle. With a high reuse of operands, like the evaluation of a 9th-degree 
polynomial and a computational intensity of 9, a large fraction of the Theoretical 
Peak Performance can be obtained: kernel 14 shows a performance of 96% of the 
Theoretical Peak Performance. 

Shared-memory parallel performance of program modlac Ideally, the 
simple, vector-oriented operations in program modlac should speed up almost 
linearly with the number of processors when executed in parallel. There are 
two effects that will decrease the potential speedup: the parallelisation overhead 
inherent in the distribution of the data and the synchronisation of the multiple 
processes and, secondly, the slowdown per processor when the array length per 
processor decreases because of the latency of the operation. In Figure 2 the 
speeds on 1, 8, and 32 processors is displayed for the first 14 kernels of program 
modlac. 
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Fig. 2. Speeds in Mflop/s of the first 14 kernels of program modlac on 1, 8, and 32 
processors. 

The FORTRAN compiler uses heuristics to determine whether the computational 
content of a loop is sufficient to warrant parallel processing. If not, the loop is 
executed sequentially. When recurrences are detected, the loop is also executed 
sequentially. This is the case with kernels 11 and 12 representing first and second 
order recurrences, respectively. All other kernels but one are executed in parallel. 
For all these kernel there turns out at least some benefit in parallel execution. The 
exception is the dotproduct that shows a lower performance on 8 processors in 
parallel and is executed sequentally on 32 processors. It shows that the heuristics 
used to determine a sufficient amount of parallelism basically are correct in that 
the parallel execution is not slower than the sequential one. 

In many cases, however, the speedup is not very high. The inherently slow 
division (kernel 6) and kernel 14, the evaluation of a 9th-degree polynomial, 
which have both a large computational content benefit the most while a kernel 
like the daxpy operation (kernel 8) show a speedup of only 12% from 8 to 32 
processors. Here also the latency of the operation plays a role: the array length on 
32 processors is only 31 elements. With this array length the speed per processor 
is already 15% lower than r,nax. 

In summary one can conclude that the computational content of a loop should 
preferably not be below 10 Hops to attain a sizable speedup at 32 processors. 

Distributed-memory parallel dotproduct From Figure 2 it was clear that 
the use of the shared-memory programming model is not suited for parallel ex- 
ecution of the dotproduct. We also executed the dotproduct with a distributed- 
memory programming mmodel using MPI. Three implementations were consid- 
ered: a "naive" implementation, in which all partial sums are sent to a root 
processor which also distributes the global sum back directly to all other proces- 
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Fig. 3. Performance in Mflop/s of the three distributed-memory dotproduct implemen- 
tation on 1-32 processors. 

sors, a FoRTRAN-implemented tree algorithm for gathering the partial sums and 
broadcasting the global sum, and an implementation based on MPI_Reduce and 
MPI-Broadcast. The last implementation contains MPI functions that should 
be optimised by the vendor and perform at least as good as the FORTRAN- 

implemented tree algorithm. Figure 3 shows the result of this distributed-memory 
dotproduct. 

The first observation that can be made is that the FORTRAN-based tree im- 
plementation and the MPI_Reduce/Broadcast implementation indeed are quite 
close in performance. So, MPI_Reduce and MPI_Broadcast are optimised commu- 
nication functions. Both perform considerably better than the naive implementa- 
tion, especially for a larger number of processors. The second observation is that 
the distributed-memory version of the dotproduct scales well with the number 
of processors: at 32 processors a speed of 3167 Mflop/s is attained: about 100 
Mflop/s, including the time lost in communication. So, the distributed-memory 
version is preferable by far over the shared-memory version from a performance 
point of view. 

Point-to-point communication The program modlh measures bandwidth 
and latency between two processors using the MPI library functions MPI_Send 
and MPIJleceive with message lengths varying from 40-10,000,000 bytes. This 
covers the full range of possibilities: communication from the primary cache, from 
the secondary cache, and from the main memory. The interprocessor communi- 
cation speed with point-to-point communication is not negligible in comparison 
with the speed between the local memory and the CPUs. Therefore, it is useful 
to consider this full range as it may affect the communication patterns one wants 
to use. 
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Fig. 4. Graph of bandwidths in point-to-point message passing using HPI.Send and 
MPI-Recieve. Results for the Origin2000, the SGI/Cray T3E-Classic, and the IBM SP 
are shown. On the T3E the stream buffers were on. 

The same program has also been run on a Cray T3E Classic, an IBM SP2 and 
a Hitachi SR2201. As the cache sizes of these systems are different, one might 
expect to see different behaviour for these systems as indeed is the case. This is, 
however, not only due to the different access speed in the memory hierarchies. 
In MPI the strategy in MPI-Send of buffering messages, or not, is left to the 
implementator. As it may be assumed that different implementation decisions 
have been made for different machines, observed differences in bandwidth may 
originate from differences in local access times, another message buffer strategy 
or both. Therefore, the best decision seems to be to give the bandwidth as a 
function of the message length and the latency as derived from very short mes- 
sages (e.g., up to 400 bytes). For these short messages one may assume that no 
auxiliary buffering is required and one may obtain a fair idea of the latency as 
experienced through the software. In addition, this information is important be- 
cause of the frequency that messages of only one data item are exchanged which 
enables an estimate for the slow-down caused by such messages. The bandwidth 
versus the message length is shown in Figure 4. 

Note that the bandwidth of the Origin2000 is decreasing from about 115 
MB/s for sufficiently long messages up to 2 MB to 102 MB/s at 4 MB. As already 
mentioned in section 2, the bandwidth available at the application level is 150 
MB/s, so the bandwidth found reasonably matches this figure. For messages 
longer than 4 MB the bandwidth even drops to about 78 MB/s. We do not 
observe this behaviour on the other three systems. We ascribe the decreasing 
bandwidth on the Origin to the fact that buffer copies above 4 MB do not fit, in 
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Bandwidth Latency 
System Mbyte/s US 

SGI Origin2000 115.75 14.6 
SGI/Cray T3E-Classic 117.30 22.3 
IBMSP 104.85 34.7 
Hitachi SR2201 216.69 29.7 

Table 2. Maximum bandwidths and latencies for the Origin2000, the SGI/Cray T3E- 
Classic, the IBM SP, and the Hitachi SR2201. 
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Fig. 5. Performance for y = Ax. Only the fastest FORTRAN 77 and the SGI library 
routine are shown. 

the secondary cache anymore and therefore the memory must be accessed. The 
less than ideal MPI implementation might be at the base of this effect. In table 
2 we summarise the maximal bandwidths and latencies for the four systems. 

4.2    Module 2 results 

Of module 2 we present two programs. Program mod2a, which measures the 
speed of a matrix-vector multiplication and mod2e which solves a large sparse 
eigen value problem system. For the discussion of all programs of module 2 one 
is referred to [3]. 

mod2a, single-node In In the single-node version problem sizes of n = 25, 50, 
100, 200, 300, and 500 are considered for each of five implementations. For the 
sake of clearness, we show only the fastest of the FORTRAN 77 implementations 
together with the result of the library version of the BLAS 2 routine dgemv 
in Figure 5. The implementations actually used are a dotproduct, or row-wise 
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Not unrolled 4 x unrolled Not unrolled 4 x unrolled Librar y 
Row-wise Row-wise Column-wise Column-wise versio n 

Order Mflop/s Mflop/s Mflop/s Mflop/s Mflop/s 
25 135.8 78.2 181.3 130.4 53. 9 
50 173.3 102.3 269.0 166.5 226. 2 

100 167.7 123.7 233.4 169.5 225. 6 
200 184.2 138.4 242.3 184.4 234. 5 
300 186.9 138.1 239.0 187.6 227. 6 
500 187.1 77.3 201.4 181.2 189. 5 

Table 3. Performances on the Ongin2000 for y = Ax. Four different Fo RTRAN 77 
implementations and the SGI libary version are shown. 

implementation, a daxpy or column-wise implementation and the four times 
unrolled versions of these two methods. On many systems the unrolled versions 
perform better than their not unrolled equivalents. This is, however, not the case 
on the Origin. The reason is that the FORTRAN 77 compiler itself already unrolls 
loops where possible and this is certainly so for the simple inner loops used in 
the various not unrolled implementations. For the implementations where a hand 
unrolling is done the compiler is not able to generate code of comparable quality 
and the performance of the unrolled versions lag behind as shown in Table 3. 
So, a fairly obvious hand optimisation does not work out very well here. The 
lesson could be not to do these kind of optimisations on the Origin to give the 
compiler a better chance for automatic optimisation. One of the objectives of 
program mod2a is to make users aware of such facts. 

Note that in the column-wise version, using daxpy operations a speed is 
attained that is twice as high as found with program mod lac for kernel 8 (see 
Table 1). Within the context of a matrix-vector multiplication with the daxpy 
as an inner loop, the compiler is able to overlap two succesive iterations of the 
inner loop, thus winning a factor of 2 in speed. 

mod2a, parallel versions Of mod2a also a shared-memory and a distfibuted- 
memory version were executed to assess the potential benefit of the paralleli- 
sation in both programming models. In Figure 6 the results for the two imple- 
mentations is shown. It is clear from the Figure that the distributed-memory 
version is much faster than its shared-memory counterpart: 7.3 vs. 2.7 Gflop/s 
on 32 processors. In the distributed-memory implementation the data distribu- 
tion is such that no data have to be communicated between the processors. In 
this situation the distributed-memory is preferable. However, when the trans- 
posed matrix-vector product is performed, all-to-all communication is required. 
The overhead in sending messages turns out to be so high in this case that the 
shared-memory version is now faster then the distributed-memory version: 2.5 
vs. 0.15 Gflop/s on 32 processors. 

Program mod2e In program mod2e the 10 smallest eigenvalues of penta-diagonal, 
symmetric systems with matrix orders n =100,... ,10000 are computed by a gen- 
eralised Lanczos iteration scheme. In Figure 7 we show the speed per iteration 
for the range of system orders both without and with interprocedural analysis. 
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Figure 7 show« that th«' interprocedural analysis results in a small but consis- 
tently better perform-uif »■ over the whole problem range. The difference becomes 
slightly larger for Ui2>-t [noblem size because in this case the floating-point op- 
erations in the gcm't.iii»»-«) Lanczos routine more strongly dominate the compu- 
tation. 

The floating-pumt ••(«•rations on the diagonals of the matrices are typical 
vector operations a> «»-T- measured in program modlac and therefore the ker- 
nels from modlac sin .ui'1 ; .1 >'dict the speed of the Lanczos routine to a reasonable 
extent. The mix of Hu.itmn-point operations as measured in modlac was as fol- 
lows: 
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Dotproduct 34.3% 
Kernel 10 25.7% 
axpy 22.9% 
Dyadic mult. 17.1% 
The weighted average of the peak speeds of these operations in the primary cache 
is 134.5 Mflop/s. From Figure 7 we see that with interprocedural analysis the 
speed for the largest problem is 133 Mflop/s and without interprocedural anal- 
ysis we find 127 Mflop/s. This is in excellent agreement with the speeds found 
for the kernels of modlac. This consistency shows that in the right context the 
prediction of the performance from kernel speeds might help to understand the 
observed performance. The right context is important though, as was demon- 
strated with program mod2a. 

In the present form program mod2e is badly suited for parallelisation. There- 
fore no parallel results are presented. 

4.3    Module 3 results 

In module 3 various programs are considered that represent important classes of 
applications. The programs have been tailored in the sense that only the essential 
floating-point parts have been retained as this is our main concern. However, the 
first two programs in this module are designed to test important I/O patterns 
to obtain an idea of the I/O capabilities of the systems considered. Again, we do 
not discuss the full range of programs in this module. See [3] for the complete 
results. 

Most of the programs in this module have a complexity that, makes it dif- 
ficult to estimate their Mflop-rate. So, mainly execution times are reported. In 
addition, only one of the programs was amenable for parallelisation (program 
mod3h). On the other hand, many module 3 programs have a complexity that 
made it worthwhile to subject them to interprocedural analysis. 

To place the results in context, we added timings of two other systems: the 
T3E-Classic and the IBM RS/6000 SP. 

PDE programs In module 3 three implementations of Elliptic/Parabolic PDE 
solvers are included, programs mod3c a Multigrid solver, mod3g a Fast Elliptic 
solver, and mod3h a Block Relaxation solver, respectively. They all solve the 
same model proMt-m a Laplace equation on the unit square. They differ vastly 
in their solution *!>.•«•<] lor this particular problem but each method has its own 
virtues that m.ik< t h»-:u more or less complementary. The execution times are 
given in Table -4 A« . .m lie seen from the Table, a single node of the the T3E 
is consistently slow: •>..il, those of the IBM SP and the Origin2000. Note that 
only in program aodic •;,.• IBM SP is significantly faster than the Origin2000, 
although the theory., .i- j«-.ik performance is much higher: 640 vs. 390 Mfiop/s. 
Furthermore, it tin;,- M' That interprocedural analysis gives a very slight ad- 
vantage over the n..iin.»i .uialysis. In general, for the programs of this module 
the effects of intepro. .•-lii.il analysis were not large. 

ODE program In |>!-u:.nn mod3f the problem of gas diffusion into a porous 
medium is considered   In this program two gases with different diffusion coef- 
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mod3c mod3g mod3h 
System seconds seconds seconds 
Cray T3E-Classic 2.424 0.114 10.083 
IBM RS/6000 SP 0.970 0.083 3.670 
SGI Origin2000 1.486 0.065 2.366 
SGI Origin2000 
Interproc. analysis — 0.062 — 

Table 4. Execution times for three PDE solvers on the Cray T3E- Classic, the. IBM 
RS/6000 SP, and the Origin2000. 

Execution time 
System seconds 
Cray T3E-600 16.003 
IBM RS/6000 SP 8.5646 
SGI Origin2000 8.7060 
SGI Origin2000 
Interproc. analysis 7.6141 

Table 5. Performances in seconds in program mod3f for various systems (single-node 
performance). 

firients are modeled. The implementation is such that a time sequence of stiff 
two-point boundary-value ODEs is solved. The timing results for the program 
are displayed in Table 5. Table 5 shows the same general pattern as was found for 
the PDEs: the T3E is notably slower than the other two machines while the IBM 
SP is only marginally faster than the Origin2000 with standard code analysis, 
notwithstanding its higher Theoretical Peak Performance. With interprocedural 
analysis, the Origin2000 is about 15% faster than with standard code analysis. 

5    Summary and future work 

The amount of information from our experiments has been vast and, although we 
have discussed them to a fair extent, we are sure that a more extensive analysis 
would still bring up new points in the interpretation. It would almost certainly 
also would give grounds for new experiments. In this study we also have refrained 
from hand-optimisation: we just let the compiler do the work with the appro- 
priate complier options. Other subjects not considered but probably important 
are: the explicit placement of data on the Origin2000 system and the migration 
of data by the operating system to the processor that most uses them. On the 
other hand, a number of useful conclusions can be drawn from this study of 
which we list the main ones below: 

- In many cases a large proportion of the Theoretical Peak Performance can be 
attained when operating from the primary cache. The performance with ac- 
cess from the secondary is generally 2-3 times slower, except for the division 
operation. 
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- The experiments in program modlac showed that one 8-byte operand can be 
loaded or stored from/to the primary cache. From the secondary cache this 
is about one operand per two cycles. 

- When automatic parallelisation is applied, the default choices whether or not 
to parallelise a certain loop seem to be adequate in most cases we observed. 

- The point-to-point bandwidth measured with MPI is about 110 MB/s. about 
70% of the bandwidth of 150 MB/s quoted by SGI. 

- The automatic shared-memory parallelisation of codes generates a non-ne- 
gligible parallelisation overhead as shown by program mod2a, a matrix-vector 
multplication. Compared with the distributed-memory version it gives a 
large performance loss. On the other hand, as soon as also messages must, 
be exchanged, the shared-memory implementation is clearly faster than the 
MPI version. The similar phenomenon was observed in the FFT program 
mod2f. Communication timings suggest that MPI implementation we used 
in the present tests is not optimal. 

- In the rather small programs of module 3 interprocedural analysis generally 
had a quite modest influence on the execution time (5-15% decrease). 
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Abstract. JET is a parallel library implemented with Java for parallel 
computing over the Internet. The JET library is oriented to long-running 
Master/Worker applications with a coarse-grain task distribution. The 
computation is performed by Java applets that are downloaded through a Web 
page. The paper describes some internals of JET and its mechanisms to provide 
support for fault-tolerance, interoperability with PVM/MPI and the use of 
statistics. The paper includes some performance figures that were taken with 
simple benchmarks and more complex applications. 

1.   Introduction 

In the last years we have seen an extraordinary increase in the number of machines 
that are connected to the Internet, this is estimated to continue with an exponential 
growth. According to a survey accomplished by Network Wizards [NetWizards] in 
January 1998, 29.6 millions hosts were connected to the Internet (against 16 million 
in January 1997). This mass of processors connected together represent a very 
significant processing power, with a performance level of a Petaflop (10 '). 

In a large percentage of their time, workstation machines and personal computers 
are only used to small iterative tasks, such as reading mail or editing files. As was 
remarked in [Schrage92] workstations remain idle in about 90% of their time. 

The idea of using this spare computational power in computers that are connected 
to the Internet seems to be quite promising and is getting an enthusiastic acceptance 
within the high-performance computing community. Two main things are required: 

• appropriate applications,  that take a long time to execute and  have  low 
communication requirements; 

• an  effective  infrastructure  to  support the  execution  of massively  parallel 
applications in hundreds or thousands of computers geographically dispersed 
throush the Internet; 
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The main challenge of JET is to provide such infrastructure. It was implemented in 
Java [JavaSoft] to provide the portability of code, to solve the problem of 
heterogeneity of systems and to allow the easy distribution of code through the 
machines that want to volunteer their CPU spare cycles for solving a massively 
parallel application. 

Applications that are good candidate programs to the JET parallel machine should 
divide the problem into small tasks to be executed by different processors distributed 
over the Internet. Those applications should be coarse-grained, take a long time to 
execute, do not require ultimate performance and should tolerate, in some extent, the 
low latency of the network. There are some quite important applications from the field 
of cryptography and mathematics that can be effectively executed with JET. 

2.  JET Architecture 

The applications that can be executed with JET follow the Master/Worker paradigm. 
There is a process, the Master, which is responsible for the decomposition of the 
problem into small and independent tasks. The tasks are distributed among the worker 
processes, which are executing a simple cycle: receive a task, compute it and send 
back the result. The results are gathered by the Master process, which merges them to 
construct the final solution. Since every task is independent from each other, there is 
no need for communication between the worker processes. 

JET is non-intrusive to the machines that access any Web page: only those users 
that are willing to volunteer their CPU time will have an applet working on their 
computer contributing for a JET computation. The users that wish to volunteer to a 
JET computation have to access to a Web page using a Java-enabled browser and 
follow a Web link. The downloaded Web page has an inlaid Java applet (Worker 
applet) which will indicate the status of the computation and communicates with the 
JET Master. 

The security features of Java only allow the applets to communicate with the 
machine from where they where downloaded. Hence, the Master process has to be 
executing in the same machine where the http daemon is executing. It has a well- 
known port to all the Workers. The communication between Workers and Master is 
done through UDP sockets. Although the UDP protocol does not guarantee the 
delivery of messages, it provides a higher scalability and consumes fewer resources 
than TCP sockets. The communication layer of JET implements a reliable service that 
assumes sequenced and error-free message delivery. 
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JET 
Master 

HTTP- HDP «ickas 

World Wide Web 
Clusters of Workstation! running PVM or MP1 

Fig. 1. The structure of the JET virtual computation. 

The JET library as a server checkpointing mechanism to assure the continuity of 
the application when there is a failure or a preventive shutdown of the JET Server. 
The critical state of the application is saved periodically in stable storage in some 
portable format that follows its resumption later in the same or different machine. 

To tolerate the loss of the stateless worker applets the JET library maintains a task- 
reconfiguration scheme. The library keeps the jobs that have been sent to each worker 
applet. If one applet fails or withdraws from the virtual machine, the only part of the 
computation that is affected is the task it was being executed. Re-allocating that task 
to another worker would reproduce the lost work without changing the ultimate 
outcome of the computation. However, for those applications with very long-running 
tasks it is important to save intermediate states of the task execution in the worker 
applets. 

Implementing client checkpointing is not trivial in a Java applet since it cannot 
write to the local disk. Thereby, the only way he had to implement the client 
checkpointing was to send the checkpoint data over a socket stream to the associated 
JET Master. When a Worker applets withdraws from the virtual machine the last 
checkpoint of its task is distributed to another worker. 

The JET machine needs to motivate the Web surfers to participate in the 
computation, and even on interesting applications is necessary to increase their 
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enthusiasm. The JET Server gathers information about the computation done by each 
volunteer and creates a statistics module with several rankings. The statistical 
information, organized by several categories (e.g. users, countries, operating systems, 
processors and browsers) ranks, is published on the Web. The users are also able to 
create teams. These rankings create a healthy competition between users and keeps 
their interest to participate in the computation. 

JET is not restricted to Web-based computation. The use of some existing parallel 
libraries and computer resources is also be possible. The basic idea is to allow 
existing clusters of machines running PVM or MPI to inter-operate with JET 
computations. 

To achieve this we have used two Java bindings developed in-our research group 
for Windows versions of the MPI (WMPI) [WMPI] and PVM (WPVM) [Alves95] 
libraries. The big master process of the PVM/MPI cluster only needs to create an 
instance of a class that implements a bridge between the cluster and the JET Master. 
The jobs are fetched by this object and placed in an internal buffer of the PVM/MPI 
big master, which is responsible to distribute them among the workers of the cluster. 
The results are gathered by the big master of the cluster and passed to the bridge 
object to be sent to the JET Master. 

3.   Performance Results 

In this section, some performance results of JET are presented. These measurements 
were taken in a heterogeneous environment of NT and Solaris Workstations. The 
workers were running on 6 PentiumPro-based machines, all of them running at 200 
MHz, with the NT Workstation operating system. Two of those machines are dual- 
processor; hence, in overall the performance results were taken with 8 processors. The 
Master process was running on a Sun Ultra-Sparc machine running Solaris V4.0. The 
machines were connected through a non-dedicated 10 Mbit/sec Ethernet network. The 
Worker applets were executed through the Netscape Communicator 4.0; the Master 
process was executed with JDK 1.1. 

3.1 Simple Benchmarks 

The relative speedup of the NQUEENS application with 14, 15 and 16 queens is 
presented in Figure 2. In this example, the speed up was calculated with the parallel 
version of the algorithm running on one processor. The achieved results are quite 
good: with 8 processors the speed up was 7.66, 7.36 and 7.24 with 14, 15 and 16 
queens respectively. The reason why the speedup decreases with the increase of the 
number of queens is due to small differences of performance of the processors that are 
more visible with larger jobs. Hence, the time that the JET machine has to wait for the 
last job increases with the size of the jobs. Although the task distribution of JET has 
intrinsic load-balancing behavior, they can not tolerate these fine-grain differences. 
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Fig. 2. Relative speedup of NQUEENS (14, 15 and 16 queens). 

The EP-NAS application, which makes part of the NAS benchmark suite 
[Bailey93], was also used as benchmark. Due to the temporary unavailability of the 
dual-Pentium machines, the results were taken in just four processors. The speedup 
presented in Figure 3 was calculated with a serial Java version of the program. 

Fig. 3. Relative Speedup of EP-NAS. 
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Although EP-NAS problem has a significant amount of floating-point calculations 
the performance of Java, and therefore JET performance, was not affected since the 
speedup once again is quite good: 3.87 with 4 processors. 

Although the speedup results are always dependent from the characteristics of each 
application, these results show that JET does not degrade the performance with the 
Increasing number of processors. 
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Fig. 4. Relative speedup of TSP (20 cities) with and without additional 
information. 

The next experiment was made with an application that has different characteristics 
from the last two. In the Travel Salesman Problem (TSP), additional information was 
passed asynchronously to the Workers, which is enabled by the JET library. Each 
Worker is informed if a shorter path (new minimum path) was found by another 
Worker every time a result with a new minimum arrives to the Master. A version 
without this capability (in this case each worker only knows its minimum) also was 
implemented. Figure 4 presents the relative speedup achieved by the two versions 
when searching on a 20 cities map. 

The application, due to its intrinsic characteristics, does not scale as well as the 
previous examples. The version that does not use the JET library capability of pass 
information additional information to the workers does not scale so well when 
compared with the other one. 
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3.2 Complex Applications 

Besides these simple benchmark applications, a few more complex applications 
were ported to JET: a program to find Mersenne Primes [Mersenne] and a RC5 (64- 
bit key) encryption algorithm [Rivest95] crack application. 

The RC5 encryption attack is an example of a embarrassingly parallel application. 
The jobs are a set of keys to be tested, by using them to decrypt the message and test 
is if it is the correct one. The result only has to indicate if the correct key was in the 
tested set and the correct key. The key-space to be searched is enormous and a 
concerted world effort [Bovine] is on the way to crack this code. The JET 
computation is a candidate to join this effort and use Web-based computation to help 
finding the correct key. 

5 6 7 8 

Number of Processors 

Fig. 5. Speedup of the RC5 64-bit encryption attack application. 

Figure 5 shows the speedup achieved by JET when computing this application. The 
speedup was calculated »>th * serial Java version of the application. 

The Merssene Primes s<-jfi.h application was tested with two versions, the 
difference between thest- »croons is the order by which the numbers are searched. 
The version which starts u*m >he higher number has a better speedup (Figure 6). This 
fact occurs due to the better usk distribution achieved by JET. The size of the jobs 
grows exponentially with the increase of the number to be searched. If the biggest 
task is the last to be assigned, (hen all the other processes will stall waiting for that 
task to be ended. However, it the largest task is the first one, all the other processes 
will be working (on other tasks). At the final of the computation, the tasks are so 
small that the time to wait for the end of the last job is very small. 
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Fig. 6. Speedup of the Mersenne Primes search application. 

Figure 6 presents the speedup of the Mersenne Primes search, relative to a serial 
Java version of the application. As it can be seen the version with decreasing tasks 
size scales better, this shows the importance of a correct task distribution. 

4. Related Work 

In the past years several projects have confirmed the ability of the Internet for 
massively parallel computing. In [Silverman91] was presented an example of 
massively distributed computing over the Internet. It used 400 machines that were 
located at research institutes of three different continents. The problem was the 
factorization of a 100-hits integer used by the RSA cryptographic algorithm. Each site 
has received by electronic mail a set of polynomials to independently work with. It 
took 275 MIP-Years m pcrlorm one of the computations. The project has been active 
[RSAFact] since then and ihc factoring of 130-bits number was successfully solved in 
November 1996. To <->he this problem a collection of CGI scripts were used to 
automate and coordmaic ihc (low of tasks within the distributed network of Web 
sieving clients. 

Another representative example is the Gordon Bell Prize of 1992 big winner: a 
collection of 192 heterogeneous machines scattered around the United States was 
used   to   solve   a   simulation   of   polymer   chains   [Karp93].   The   outstanding 

One MIP-Year is referred a*, the amount of work performed by 1-MIP machine running for 
one year. 
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price/performance ratio achieved granted the prize to the project. In [NiepIocha96] is 
presented another project which had used four supercomputers located in 
geographically dispersed computing centers of the United States connected together to 
compute a molecular simulation program. The speedups achieved were quite good. 
Another interesting example was presented in [Strumpen93]. This paper describes the 
use of 800 workstations to solve a problem that involved molecular sequence analysis. 
The machines were dispersed through 31 different local area networks and 5 
continents. 

More recently, there were other remarkable examples of Internet parallel 
computing. For instance, in February of 1997 a team of researchers using 3500 
computers spread across Europe was able to crack a RSA code of 48 bits in less than 
two weeks [Lash97]. 

In January 27th of 1998 a Californian 19 year-old student found the 37lh Mersenne 
Prime (the world's largest known prime) on behalf of the GIMPS project (Great 
Internet Mersenne Prime Search) [GIMPS]. The computation comprised about 4000 
users that volunteer their machines to that computation and the lucky man was Roland 
Clarkson, that have contributed with his 200 MHz Pentium computer for 46 days, in 
part-time, to prove the number prime. 

Finally, in October 19"' of 1997, it was announced that one of the largest 
distributed-computing effort ever seen, involving tens of thousands of computers 
connected to the Internet: the Bovine cooperative effort [Bovine] decrypted a message 
encoded with RSA Labs' 56-bit RC5 encryption algorithm. The search took 250 days 
of massive Internet computing: the medium computational power was equivalent to 
14,685 Intel Pentium Pro 200 processors. This time the lucky man that found the right 
key was Peter Stuer from Belgium. 

All these examples demonstrate that the use of worldwide-distributed computing 
resources is feasible to perform large computations. 

In the latest years, the exploitation of geographically distributed machines for parallel 
computing has become a clear trend. A considerable number of project have been 
proposed: Globe [Steen95], Legion [Grimmshaw96], Globus [Foster96], Atlas 
[Baldeschweiler96], ParaWeb [Brecht96], Popcorn [Camiel96], Charlotte 
[Baratloo96], DAMPP [Vanhelsuwe97], IceT [Gray97], Javelin [CappeIo97], 
JavaParty [Philippsen97], Albatross [Bal97], among others. 

Some of these projects were also developed in Java: Javelin, Popcorn, DAMPP, 
Charlotte, JavaParty, Atlas, ParaWeb, IceT and Albatross. Most of these systems lack 
some support of fault-tolerance, scalability, support for interoperability with other 
existing tools and a module of statistics to motivate Internet users to participate in 
Web-based computations. 
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Although there are some differences between these projects and JET, all of them 
try to prove the idea that Java can be used for parallel computing over the Internet. It 
would be interesting that some standardization protocols could be developed to allow 
the cooperative execution of JET and any of these Java-based parallel tools. This way 
the number of machines working out on the same global computation could be 
extended. 

5.   Final Conclusions 

JET can be a massively parallel machine. It may compromise several hundreds of 
machines connected to the Internet. Each machine that takes part on a JET 
computation is absolutely ubiquitous: it just requires a Java-enabled browser. The user 
can volunteer his CPU spare cycles just by clicking in some URL of a Web page. A 
Java applet is downloaded to that machine and executes some independent tasks of a 
number-crunching application. JET is a really inexpensive parallel computing 
platform: it is based on the idea of "scavenging" the idle CPU cycles of machines that 
are connected to the Internet, reusing the existing computing facilities. 

Some built-in features provide support for fault-tolerance on the JET computation, 
interoperability with PVM and MPI libraries and the usage of statistics to keep the 
motivation and enthusiasm of the user volunteers. 

The first performance results of JET with simple benchmarks were very promising. 
When complex application were ported to JET the results achieved have confirmed 
the ability of JET to be used for massively parallel computing over the Internet. 
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Abstract. Applying fast scientific computing algorithms to large prob- 
lems presents a difficult engineering problem. We describe a novel archi- 
tecture for addressing this problem that uses a robust client-server model 
for interactive large-scale linear algebra computation. 
We discuss competing approaches and demonstrate the relative strengths 
of our approach. By way of example, we describe MITMatlab, a power- 
ful transparent, client interface to the linear algebra server. With MIT- 
Matlab. it is now straightforward to implement full-blown algorithms 
intended to work on very large problems while still using the powerful 
interactive and visualization tools that Matlab provides. We also examine 
the efficiency of our model by timing selected operations and comparing 
them to commonly used approaches. 

1    Introduction 

We describe a novel architecture for a "linear algebra server" that operates on 
very large matrices. Matrices are created by the server and distributed across 
many machines or processors. Operations take place automatically in parallel. 
The server includes a general communication interface to clients and is extensible 
via. a robust package system. 

We are motivated by three observations. First, many widely-used algorithms 
in machine learning, differential equations, simulation, etc. can be realized as 
operations on matrices. Second, it is vital to be able to test new ideas quickly in 
an interactive setting. Finally, algorithms that appear promising on small data 
sets can fail on large problems and it would be helpful to have a tool that easily 
enables experimentation on large problems. 

Common approaches suffer from several difficulties. Interactive prototyping 
environments such as Mathematica, Maple, Octave, and Matlab exist; however, 
they often fail to work well on large problems. Linear algebra libraries designed 
to work on large problems abound; however, they involve steep learning curves. 
Further they are typically not interactive, requiring that applications be written 
in a compiled language, such as C++ or Fortran. This is a burden for users who 
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simply want a library's functionality and for programmers who wish to extend 
it. 

We address these problems directly. Like standard libraries, our system en- 
capsulates basic functionality; however, by modeling the system as a server, we 
allow for on-the-fly interaction with arbitrary user interfaces. Further, the server 
is a self-contained application, so we are able to extend it at run-time. 

In this paper, we show that our model opens several possibilities. We briefly 
describe standard'approaches in Section 2 before describing the Parallel Prob- 
lems Server itself in Section 3. We detail its architecture, focusing on its exten- 
sibility. Section 4 describes MITMatlab, a system that enables users to compute 
interactively with very large data sets directly from within Matlab. We then 
report on the results of some performance experiments in Section 5. Finally, we 
conclude, discussing further extensions to the system. 

2    Standard Approaches 

2.1 Linear Algebra Libraries 

For many compute-intensive tasks, the best way to maximize performance is 
to use a library. For example, optimized versions of LAPACK [1] exist that 
outperform similar code written in a. high-level programming language (thanks 
primarily to native implementations of the BLAS). For distributed memory ar- 
chitectures, vendor-optimized libraries (e.g. Sun's S3L and IBM's ESSL) coex- 
ist with public domain offerings such as ScaLAPACK [5], PARPACK [11] and 
Petsc [4] [9]. 

Each of these libraries has its own idiosyncratic interface and assumptions 
about the types and distributions of data allowed. It is often a major program- 
ming effort, to incorporate library routines into an application. 

2.2 Interactive Systems 

The power of prototyping systems like Maple, Matlab, Mathematica and Octave 
is that they are interactive. It is straightforward for both seasoned programmers 
and relatively naive tis«»r< to develop algorithms and to visualize results from 
such algorithms. Unfortunately, while these tools work well for small problems, 
they are often inad<<|iiat<- for production-level data. 

There have been main attempts to extend prototyping tools in order to make 
them work in parallel with large data sets. Here, we focus on systems that add 
parallel features to Matlab. a widely-used scientific computing tool. 

Both MultiMatlab from Cornell University [13] and the Parallel Toolbox for 
Matlab from Wake Forest University [10], make it possible to manage Matlab 
processes on different machines. Matlab is extended to include send, receive and 
collective operations so that separate Matlab processes can communicate. In 
short, these approaches implement traditional message passing with Matlab as 
the implementation language. 
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fashion and managed among worker processes, which may live on different ma- 
chines. Currently we support row and column distributed dense arrays, column 
distributed sparse arrays, and replicated arrays in single precision. Communica- 
tion and synchronization among the workers is accomplished using the MPI [8] 
message passing library. This is a standard library available on a wide range 
of platforms; it is currently the most portable way to develop applications on 
distributed memory computers. 

Machine Machine? Machinen 

Fig. 1. The General Organization of the Parallel Problems Server. The server 
process provides an interface to any client that implements its communication protocol. 

3.2     Communication and Extensibility 

We use the client-server model in two ways. First, there is a protocol for commu- 
nicating with clients. Just as importantly, there is a separate plug-in architecture 
that allows for straightforward run-time extensibility of the PPServer. 

The Client Interface While we believe that servers are crucial, they remain 
only academic oddities without useful clients. HTTP servers are useful but they 
are much more useful when powerful browsers exist. Therefore, it is important 
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Compilers for Matlab are also an active area. Both the CONLAB system from 
the University of Umea [7] and the FALCON environment from the University 
of Illinois at Urbana-Champaign [3][12] translate Matlab-like languages into in- 
termediate languages for which high performance compilers exist. For example, 
FALCON compiles Matlab to Fortran 90 and pC++. Sophisticated analyses of 
the Matlab source are performed so that efficient target code is generated. 

Both of these approaches have merits; however, it is our claim that they 
do not adequately address the issues we have raised. The former approach is 
too involved for the naive user and the latter approach sacrifices direct interac- 
tion with the computation and includes an edit-compile-run cycle that increases 
development time. 

3    The Parallel Problems Server 

The Parallel Problems Server (PPServer) combines many aspects of the ap- 
proaches we have described so far. Like standard linear algebra packages, the 
PPServer neatly encapsulates basic functionality; however, because it is a server 
with a general communication protocol, interaction with arbitrary programs 
(with their own user interfaces) is possible. Also, the server implements a ro- 
bust, protocol for accessing compiled libraries. Thus, extending the functionality 
of the PPServer is a simple, modular task. 

3.1    The Client-Server Model 

The client-server model is ubiquitous. There are HTTP servers that allow access 
to data via the World Wide Web and database servers that admit access to 
specially indexed data. Because these servers implement robust protocols for 
communicating the information they provide, it is possible to build useful clients, 
such as web browsers. 

We believe that this model is also a useful one for scientific computation. 
First, there is no need to force a client to operate in parallel by endowing it 
with communication primitives; rather, such communication remains implicit. 
As a result, the user is not responsible for managing data among various pro- 
cesses. The user simply issues the client's standard commands: these are then 
transparently executed on multiple machines. 

Secondly, there is no need to use the client as the computational engine. While 
this has the possible short-term disadvantage of the server's functionality being 
different than the client's, we gain extremely high performance. We are free to use 
the fastest distributed memory implementations of the algorithms that we need. 
Furthermore, we are not required to use the client's data representation. For 
example, Matlab uses double precision numbers. For the very large operations 
that concern us. it often preferable to use single precision, gaining significant 
time and space advantages when accuracy is not a concern. 

A high-level view of our implementation of the PPServer is shown in Fig- 
ure 1. Clients make requests of the server. Data are created in a distributed 
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that, the client interface be simple to use but powerful enough to allow for arbi- 
trary operations. 

The PPServer uses standard Unix sockets for client communication. The pro- 
tocol is straightforward. A client sends a request, consisting of a command and 
arguments. A command is a string, naming a function. Functions may request, 
data or the loading, saving, or creating of data. Furthermore, they may require 
that specific operations be performed on already existing data or that library 
extensions to be included with the server. Arguments are lists of characters, inte- 
gers and real numbers. Once a command has been completed, it is acknowledged 
with a message from the server that includes any errors and returned values. 

A C++ library (and source) is provided that implements this protocol, in- 
cluding automatic conversion between standard C/C++-style data types and a 
form suitable for transmission to/from the server. Clients need only provide a 
suitable wrapper for these functions. 

The Server Interface The PPServer is extensible (see Figure 2). It includes a 
robust, function interface using C++ objects. New functions are defined using this 
interface. These new functions are compiled into dynamically loadable libraries, 
dubbed "packages" and loaded on demand. Each package is its own name space, 
so new functions can be loaded "on top" of others, hiding functions of the same 
name in other packages. Like the PPServer itself, package functions use MPI. 
These functions enjoy access to the basic functionality of the Server, including 
direct access to data and the ability to execute all the same commands that are 
available to clients, including those in other packages. 

Figure 3 shows the code for a sample package. It contains one function sumall 
that sums the elements of a distributed matrix. This example shows the mecha- 
nisms for extracting input arguments, accessing the elements of the matrix, and 
returning results to the client. With only a handful of exceptions, all current 
server functionaliu i- written in this way. 

We have used tin- l'|>(vrver as the core of several applications, implementing 
packages that pm\ii. arr.>ss to ARPACK. SCALAPACK and S3L, Sun's opti- 
mized version of *»< VL AI'ACK. The functions in the packages are merely short 
wrappers for the MII-1»TI\ ma functions provided by the libraries. 

Portability Tin- u- * »i^ndard C++ and MPI has allowed us to develop a 
system that is hißlih i • f »Me. Although the PPServer was originally developed 
on a network of »\ ii,Hi«-'n<- multiprocessors from Sun Microsystems, we have 
been able to port n • * luster of SMPs from Digital Equipment Corporation 
with minimal effort \\ • *"■ -urrently working on a port to Pentium-driven Linux 
systems. 

3.3     Other Client-Server Models 

There have been previou» library systems that implement a similar model. Both 
RCS [2] and Netsolve [(>] an as fast back-ends for slower clients. In their model. 
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Scalapack S3L Libraries 

mathfun.cq | scalapack.cc 
Computational & 
Interface Routines 

Fig.2. Extending the PPServer. A client communicates with the PPServer using 
a simple command-argument protocol. The Server itself uses a '•package'" mechanism 
to implement all but its most basic functions. New functionality can be added to the 
PPServer and managed in a reasonable way. (S3L is Sun's optimized version of some 
ScaLAPACK routines) 
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void sumall(PPServer fttheServer, PPArgList fcinArgs, PPArgList fcoutArgs) 

{ 
// Get the matrix identifier that was passed in 
PPMatrixID srcID=*(inArgs[0]); 

// Make sure that we're passing in a dense matrix 
if(ItheServer.isDense(srcID)) { 

// Return the corresponding error 
outArgs.addErrorCBADINPUTARGS,"Expecting a Dense Matrix"); 

outArgs.add(0); 
return; 

} 

// Get a pointer to the actual matrix 
PPDenseMatrix *src = (PPDenseMatrix *) theServer.getData(srcID); 

float sum=0, answer; 

// Find the local sum of all of the elements 
for(int i=0;i < src->numRows();i++) 

for(int j=0;j < src->numCols();j++) 
sum+=src->get(i,j); 

// Add the local sums to find the global sum 
MPI.AllReduce(ftsum.ftanswer,1.MPI.FLOAT,MP1_SUM,MPI_C0MM.W0RLD); 

// Return an error code 
outArgs.addNoError0; 

// Return the result to the client 
outArgs.add(answer); 

} 

// Register this function to the server 
extern "C" PPError ppinitializeCPPServer fttheServer); 
PPError ppinitializeCPPServer fttheServer) 

{ 
theServer.addPPFunct i on("sumall",sumall); 
return(NDERR); 

} 

Fig. 3. A Sample Server Extension. This code is essentially complete other than a few 
header files 
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clients issue requests, arguments are communicated to the remote machine and 
results sent back. Clients have been developed for Netsolve using both Matlab 
and Java. 

Our approach to this problem is different in many respects. Our clients are 
not responsible for storing the data to be computed on. Generally, data, is created 
and stored on the server itself: clients receive only a •'handle" to this data (see 
Figure 4 for an example). This means that there is no cost for sending and 
receiving large datasets to and from the computational server. Further, this 
approach allows computation on data sets too large for the client itself to even 
store. 

We also support transparent access to server data from clients. As we shall 
see below, given a sufficiently powerful client, PPServer variables can be created 
remotely but still be treated like local variables. 

Both Netsolve and RCS assume that the routines that perform needed com- 
putation have already been written. Through our package system we support 
on-the-fly creation of parallel functions. Thus, the server is a meeting place for 
both data and algorithms. 

Machine Machine,, 

Fig. 4. MITMatlab V*ri*t.L-s. Use of the PPServer by Matlab is almost completely 
transparent. PPServet i4n*M.-s remain tied to the server itself while Matlab receives 
"handles" to the data ' -,i.» Matlab scripts and Matlab's object, and typing mecha- 
nisms, functions using IM'-, M.T variables invoke PPServer commands implicitly. 
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4    MITMatlab 

Using the client interface, we have implemented a Matlab front end, called MIT- 
Matlab. At present, we can process gigabyte-sized sparse and dense matrices 
"within" Matlab, admitting many of Matlab's operations transparently (see Fig- 
ure 5). By using a client as the user interface, we take advantage of whatever 
interactive mechanisms are available to it. In Matlab's case, we inherit a host 
of parsing capabilities, a scripting language and a host of powerful visualization 
tools. 

For example, we have implemented BRAZIL, a text retrieval system for large 
databases. BRAZIL can process queries on a million documents comprised of 
hundreds of thousands of different words. Because of Matlab's scripting capabil- 
ities, little functionality had to be added to the server directly; rather, most of 
BRAZIL was "written" in Matlab. 

» a=nuidn(512,512*p); a2=ones(512*p,512); 
m=sprand(10000,1000*p,0.01); 

»whose 
Your variables are: 

Name       Size Bytes        Class 
a 512  x512p   1048576      ddense array 
a2       512px512     1048576      ddense array 
m     10000  xlOOOp   810176       dsparse array 
Grand total is 624560 elements using 2907328 bytes 

»b=mv(a)i csa*b; ~*(1:$E37 
ans = 

4.0000 ^aow^&oooo 

~ 0.0000  -0.0000   1.0000 
>>csd^a^^t(e,'*')^jäT[^'30 40'30D»xb('sqiiarer)/ 
>>[nÄv]=svds(m>5)^' 
ans=   ■    . 

7.7153   7.7342   7.7447   7.7831   163842 
»idseye(1000*p)pcBCamsam(id,l);y=camsum(x,l); 
»ima«esc(y+y') 

Fig. 5. A Screen Dump of a Partial MITMatlab Session. Large matrices are 
created on the PPServer through special constructors. Multiplication and other matrix 
operations proceed normativ 

5    Performance 

In this section we present results demonstrating the performance of the PPServer. 
We begin with experiments comparing the efficiency of individual operations in 
Matlab with the same operations using MITMatlab. We conclude with a case 
study of a computation that requires more than a single individual operation. We 
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compare the performance impact of implementing a. short program in Matlab, 
directly on the PPServer, and using optimized Fortran. 

5.1    Individual Operations 

We categorize individual operations into two broad classes, according to the 
amount of computation that is performed relative to the overhead involved in 
communicating with the PPServer. For fine grained operations, most of the time 
is spent communicating with the server. A typical fine grained task would involve 
accessing or setting an individual element of a matrix. Coarse grained operations 
include functions such as matrix multiplication, singular value decompositions, 
and eigenvalue computations where the majority of the time is spent computing 
instead of communicating input and output arguments with the server. 

Below we assess MITMatlab's performance on both kinds of operations. Ex- 
periments were performed on a network of Digital AlphaServer 4/4100s con- 
nected with Memory Channel. 

Fine Grained Operations These operations are understandably slow. For 
example, in order to access an individual element, the client sends a message 
to the server specifying the matrix and location, the server locates the desired 
element among its worker processes, and then finally sends the result, back to 
the client. 

MITMatlab cannot compete with the local function calls that Matlab uses 
for these operations. For example, accessing an element in Matlab only takes 
139 microseconds on average, while on a request from the server such can take 
2.8 milliseconds. This result can be entirely explained by the overhead involved 
in communicating with the server; a simple "ping" operation where MITMatlab 
asks the PPServer for nothing more than an empty reply takes 2 milliseconds. 

Coarse Grained Operations For coarse grained operations, the overhead of 
client/server communication is only a small fraction of the computation to be 
performed. 

Table 1 shows the performance of dense matrix multiplication using Matlab 
and MITMatlab. Large performance gains result from the parallelism obtained 
by using the server: however, even in the case where the server is only using a 
single processor, it gains significantly over Matlab. This is due in part because 
the PPServer can use an optimized version of the BLAS. This illustrates one of 
the advantages of our model. We can use the fastest operations available on a 
given platform. 

Using PARPACK, MITMatlab also shows superior performance in computing 
singular value decompositions on sparse matrices (see Table 2). 

It is worth noting that Matlab"s operations were performed in double preci- 
sion while the PPServer s used single precision. While this clearly has an effect 
on performance, we do not believe that it can account for the great performance 
difference between the two systems. 
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Table 1. Matrix multiplication performance of the MITMatlab on p processors. Time 
are in seconds. Here "p = 3 + 3" means 6 processors divided between two machines. 

Matrix Size N 
lKxlK 2Kx2K 4Kx4K 

Matlab 41.1 267.1 2814.9 
MITMatlab 
with p = 1 5.5 45.1 357.9 

p = 2 2.8 21.5 175.6 

p = 4 3.9 12.9 94.7 

p = 3 + 3 1.4 14.4 64.5 

Table 2. SVD performance of MITMatlab on p processors using PARPACK. These 
tests found the first 5 singular triplets of a random 10K by 10K sparse matrix with 
approximately 1, 2, and 4 million nonzero elements. Matlab failed to complete the 
computation in a reasonable amount of time. Times are in seconds. 

Processors 
used 

Nonzeros 
IM 2M 4M 

2 136.8 169.2 433.5 

4 88.8 91.9 241.0 
3 + 3 75.2 78.8 168.6 

Discussion These results make it. clear what, types of tasks are best performed 
on the server. Computations that can be described as a series of coarse grained 
operations on large matrices fare very well. By contrast, those that use many fine 
grained operations may be slower than Matlab. Such tasks should be recoded to 
use coarse grained operations if possible, or incorporated directly into the server 
via. the package system. Note that on many tasks that involve computation on 
large matrices, fine grained operations occupy a very small amount of time and 
so the advantages that we gain using the server are not lost. 

5.2    Executing Programs 

Figure 6 shows the Matlab function that we used for this experiment. It per- 
forms a matrix-vector multiplication and a vector addition in a loop. Table 3 
shows the results when the function is executed: 1) in Matlab, 2) in Matlab with 
server operations, 3) directly on the server through a package, and 4) in Fortran. 
Experiments were performed using a Sun E5000 with 8 processors. The Fortran 
code used Sun's optimized version of LAPACK. 

The native Fortran version is the fastest: however, the PPServer package 
version did not incur a substantial performance penalty. The interpreted MIT- 
Matlab version, while still faster than the pure Matlab version, was predictably 
slower than the two compiled versions. It had to manage the temporary vari- 
ables that were created in the loop and incurred a little overhead for every server 
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function called. We believe that this small cost is well worth the advantages we 
obtain in ease of implementation (a simple Matlab script) and interactivity. 

A=rand(3000,3000); 
x0=rand(3000,l); 
Q=rand(3000,9); 
n=10; 

function X=testfun(A,xO,Q,n) 

X(:,l)=x0; 
for i=l:n-l 

X(:,i+l)=A*X(:,i)+Q(:,i); 
end 

Fig. 6. Matlab code for the program test. The Matlab version that used server opera- 
tions included some garbage collection primitives in the loop. 

Table 3. The performance of the various implementations of the program test. Al- 
though Matlab takes some advantage of multiple processors in the SMP we list it in 
the p = 1 row. 

Processors 
Used 

Time (sec) 
Fortran Server 

Package 
Matlab 

with Server 
Matlab 

1 3.07 49.93 
2 1.61 1.92 2.43 
4 0.90 1.02 1.49 
6 0.62 0.78 1.26 
8 0.55 0.67 1.84 

6    Conclusions 

Applying fast scientific computing algorithms to large everyday problems rep- 
resents a major engineering effort. We believe that a client-server architecture 
provides a robust approacli that makes this problem much more manageable. 

We have shown that wo can create tools that allow easy interactive access 
to large matrices. With MITMatlab, researchers can use Matlab as more than a 
prototyping engine restricted to toy problems. It is now possible to implement 
full-blown algorithms intended to work on very large problems without sacrificing 
interactive power. MITMatlab has been used successfully in a graduate course 
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in parallel scientific computing. Students have implemented algorithms from ar- 
eas including genetic algorithms and computer graphics. Packages encapsulating 
various machine learning techniques, including gradient-based search methods, 
have been incorporated as well. 

Work on the PPServer continues. Naturally, we intend to incorporate more 
standard libraries as packages. We also intend to implement out-of-core algo- 
rithms for extremely large problems, as well implement interfaces to other clients, 
such as Java-enabled browsers. Finally, we wish to use the PPServer as real tool 
for understanding the role of interactivity in supercomputing. 
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Abstract. In order to address the diversity of existing parallel programming models, it is important to provide develop- 
ment environments that can be incrementally extended with new services. Concerning the debugging of process-based 
models, we have previously designed and implemented a basic interface that can be accessed by other tools as well as by 
debugging modules associated with high-level programming languages. 
In this paper we describe our work towards the support of further debugging functionalities for parallel and distributed 
programs, by discussing a model to support thread-based debugging services. We then show how those services are 
supported on top of a distributed monitoring and control software architecture. 

1 Introduction 

In order to ease the task of parallel and distributed application development, a debugging service must support the following 
aspects: 

1. Inspection and control of the computation state; 
2. Tool interfacing; 
3. Heterogeneity. 

There are several difficulties regarding the development of debugging services. On one hand, due to the large diversity 
of programming and computational models, it is not possible to define a universal debugging interface that can meet the 
requirements of all such models. On the other hand, there is an increasing number of applications which are composed of 
multiple separate components, each based on its own computational model, be it sequential or parallel. 

So aspect (1) depends on each specific computational model, e.g. process-based, object-based, multi-threaded, as well 
as the underlying programming paradigm, e.g. imperative or declarative. At a basic level, as far as parallel and distributed 
debugging is concerned, the following entities should be modeled: processes, threads, and their interactions. Efforts such as 
the one from the HPDF initiative (BFP97] are currently trying to establish a standard interface for the most common basic 
debugging functionalities, that can hopefully improve the current situation. 

Aspects (1) and (2) were addressed in our previous work [CL97,KCD+97,LCK+97], when we have developed a dis- 
tributed process-level debugger (OOM> for C/PVM programs. The DDBG debugger was integrated in a parallel software 
engineering environment within the *cope of an European project [S+94]. 

In both of the above situations. * debug ging service must be able to handle the requirements of very distinct models, and 
this can be achieved through hetenifen*«ms debuggers (aspect (3) above). 

We have recently implemented J p»<Kess-level debugging interface on top of a very flexible monitoring and control 
software architecture (DAMS) [CLV * **«1 One important aspect of this architecture is that it can be easily extended with 
new services and functionalities, suvh a* for debugging, profiling, and distributed resource management. This allows an 
incremental development of tools and their experimentation with rapid prototyping. 

In this paper we extend such debugging functionalities with a thread-based service, and show how it is implemented on 
top of the mentioned architecture. 

The organization of the paper is as follows. Section 2 discusses process and thread-based debugging services, and Sec. 3 
discusses implementations on top of the DAMS architecture. Then we discuss related work and present some conclusions. 

2 Process and Thread-oriented Debugging Services 

In order to provide debugging functionalities for process- and thread-based models, we must identify the basic concepts and 
mechanisms supporting inspection and control of the computation state. We define a model that is intended to be neutral 
concerning the diversity of semantics of existing process and thread-based models. 
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2.1   The Components of the Model 

The model defines the following basic entities: 

- Processes. A process is a passive entity, a kind of "capsule" supporting contexts for the concurrent execution of multiple 
threads. A context is defined by a non-empty set of cells. A process is completely specified by four types of "contexts": 

• Process Memory Context. It corresponds to the process address space which is represented by a set of values of 
accessible memory cells. Code, data and stack regions are mapped onto such memory cells. 

• Process Synchronization Context. It contains cells representing synchronization variables such as locks and mu- 
texes, as well as condition variables. Of course they are also mapped onto memory cells but we prefer to separate 
them for greater clarity of the model. 

• Process Communication Context. It is represented by the values of the input/output ports and the communication 
channels (such as message queues). Such communication channels and input/output ports can also be modeled by 
associated memory cells, but they are explicitly identified here, because they describe the process interaction with 
its outside environment. 

• Process Execution Context. This is defined by the set of threads that execute within the scope of the process. Each 
such thread has a precise logical specification in terms of specific contexts, as described below. Additionally, each 
process has an associated Scheduling Context which describes the status of the physical processor scheduling for 
all threads (this is not further detailed in this paper). 

- Threads. A thread is an active entity which executes some code within the contexts defined by its enclosed process. It 
is specified by two types of "contexts": 

• Thread Memory Context. It is defined by the set of values of the memory cells containing the code, the data, and 
the stack regions that were specified for each thread. Of course, both the code and data regions are shared by all 
threads in a single process, unlike the stack regions which must be kept private. 

• Thread Execution Context. This is defined by the status of the Virtual Processor that is associated with each thread 
in order to model its logical behavior. The status of a virtual processor is defined by the set of values of the 
processor registers, and by a logical state, a cell containing one of the values T_Running, T_Blocked, T_Stopped, 
T_Terminated. 

The thread logical state transition diagram presented in Fig. 1 identifies the possible state transitions allowed to a thread, 
identifying at the same time some of the debugging functionalities that trigger each state transition. Associated with each 
transition in the state diagram there is a set of labels naming the possible causes of the transition. Their name suggest the 
associated functionality. Labels between angle braces, such as <T_Exit>, define actions resulting of'the thread execution 
and generated internally or by the system. Other labels, such as T_step, identify transitions forced by an external agent, 
such as the debugger. 

Fig. 1. The thread state transition diagram 
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- T_DETACHED. The thread is running free and it is not under control of the debugger. 
- T_RUNNING. The thread is running under control of the debugger. 
- T_STOPPED. The thread is stopped as a result of a debugger command or due to the occurrence of some exception. 
- T_BLOCKED. The thread has invoked a blocking call and is temporarily blocked until that request is satisfied. 
- T_TERMINATED. The thread has terminated due to a debugger or system command, or because it has reached its exit 

point. 

2.2 Events 

Using such a model, we are able to precisely identify the events which are relevant to describe and control a concurrent 
computation with multiple processes and threads. 

In the following we briefly illustrate how this model can help in the process of precisely specifying the operational 
semantics of debugging primitives in terms of events. 

Generally, given a specific Context (as previously defined above) an event is defined by a modification in a single value 
of a cell contained in that context. This corresponds to the basic notion that an event describes a transition from one state to 
another state. 

Process-level Events These events describe all modifications made to any of the contexts defined in the process (Memory, 
Synchronization, Communication, and Execution). For example, events are triggered by modification of global process 
variables, by modifications of the state of a mutex, by the arrival of a message, or by the creation or destruction of a thread 
in a process. 

Thread-level Events These events describe the modifications in the thread Memory and Execution contexts. For example, 
the modification of a local thread variable, or a physical processor register. Thread-level events are also triggered by any 
change in the logical state of its virtual processor. 

2.3 Actions 

An action is responsible for the state modification that triggers each event. We identify two classes of actions: 

- Internal Actions. They are enforced by the virtual processor associated with a given thread in a process. The sequence 
of all pairs (Internal_action, Generated_Event) that are produced during thread execution, precisely specify the compu- 
tation path followed by the thread. Such internal actions may correspond to physical processor instructions or to higher 
level instructions, for example C code statements. 

- External Actions. They are enforced by external controller entities such as the debugger, acting upon the contexts 
defined within a process. The sequence of all pairs (External_action, Generated_Event) gives the history of a debugging 
session. 

2.4 The Debugging Activity 

Debugging functionalities fall into two categories: inspection commands, and controlling commands. On the other hand, 
they can refer to individual processes or threads. They can also refer to process interactions or thread interactions. The core 
of the debugging activity amounts to observe and/or enforce well-defined sequences of events so that deviations from the 
program specification can be localized and corrected. Our model provides a foundation to develop a mechanism that controls 
the detection and registering of events. Basicly event detection can be enabled for a well-defined class of action/event pairs. 
For example: 

- Detect events in a given process/thread, associated with its Memory context, which were generated by internal actions 
only. It is possible to detect events associated with a given memory cell. 

- Detect events in a given process, associated with its Synchronization context, and generated by internal actions of a 
given thread. 

- Detect events in a given process/thread, associated with the logical state of its Execution context, and were generated 
by external actions. 
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In general it is possible to selectively enable/disable event detection for specific types through the specification of the 
following elements: 

- Which class of action triggers the event (External, Internal). 
- Which entity should be monitored (Process, Thread, Context, Cell). 

Well-known debugging primitives can easily be represented in terms of this model. For example, concerning threads, a 
command "set_var()" of a local variable in a given thread would generate an event related to the Thread Memory Context. 
A command "set_breakpoint()" in a given thread would relate to the Thread Execution Context. Concerning processes, a 
command "kill_thread()" would relate to the Process Execution Context (and also to the Thread Execution Context because 
it also changes the thread state). 

By monitoring the occurrence of events of a certain type, it is possible to construct event histories that contribute to 
a better understanding of the concurrent computation. For example, in.order to implement a deterministic replay facility 
concerning process interactions only (i.e. message exchange), one needs to enable the detection of events related to the 
Process Communication Context. A replay facility for thread interactions internal to a single process depends on the enabling 
of events related to Process Memory and Process Synchronization Contexts. 

2.5   Asynchronous Event Notification 

Several types of debugging commands provide an immediate response, e.g. as in a "set_var()" or "set_breakpoint()", which 
give a success or failure indication, and possibly return some result (e.g. a breakpoint identification). 

Other types of debugging commands typically act upon Thread Execution Contexts in such a way that it is not possible 
to obtain immediate meaningful imformation, besides knowing that the command was successfully applied. For example, 
commands like "continue()" or "next()" immediately originate a logical state transition in a thread (from T_STOPPED to 
T_RUNNING), but it might take an unpredictable amount of time for the thread to reach a point that should be inspected 
during debugging, e.g. to reach a breakpoint. In general, the debugger interface or the application that is invoking debugging 
commands should not be forced to wait until the desired event is reached. Instead, an asynchronous event notification 
mechanism must be provided by the debugging interface, allowing a thread to explicitly register its interest in receiving 
event notifications through the declaration of an event handler. 

This declaration is achieved by calling the service 

T_sethandler (process_thread_list, event_type, handler) 

which defines the function handler as an handler of events of the given type (according to the previous subsection) 
which are originated from any of the processes or threads from process_thread_list. Multiple threads in the same or 
different processes can register handlers for a specific type of events. If such event occurs, a notification is sent to all the 
registered threads. When a thread receives an event, its current execution is suspended while the associated handler function 
is executed. 

This event mechanism is also used to vupport tool synchronization and coordination in an integrated software devel- 
opment environment where multiple tools < for debugging, testing, visualization, etc.) concurrently observe and control the 
evolution of a computation. This coordination it *. hieved by having some tools, e.g. a graphical user-interface or a thread- 
based visualization tool, registering handlerv rtlMal to the occurrence of some types of events, that may be originated by 
internal and/or external actions (e.g. setting hrtalpoints). On event occurrence, such tools can react and update the graphical 
view that is being presented to the user, con\iucnih »ith the evolution of the computation and with the actions triggered by 
the debugging tool. 

2.6   Summary on the Debugging Functions 

In this section we have discussed how an event-ba<*d model can provide the foundation to develop process and thread based 
debugging services. In this paper we have not presented the interface of process and thread debugging primitives. Our goal 
is to be able to support distinct and evolving interface primitives so that our debugging framework can be used to support 
experimentation and building of prototypes. 

3   A Process- and Thread-oriented Debugging Tool 

In this section we discuss implementation issues, including the support for multiple connections from concurrent client 
tools, as well as the infrastructure for implementing the debugging functionalities that we have outlined in the previous 
section. 

362 



VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing 

Client Processes 

Thvoatl-avipMctl 

Ührnry /: 

DAMS 

Machine A 
-" TlAMS Driver ~~"- 

Loital 
Mauager 

*f DAMS Driver      v-. , 
^       Debuggrr '       K,H]r      \   \   / 

v/  Coatrolcr f  Debugger    \J f 

- ~~ 1)AMS Diimr ~"~ - 
Debugger 

Coul rolcr 

Node 
Debugger 

Machine B 

Local 
Mauager 

'~~'&AMSDiivZr~~--      " 
Debugger 

Coulroler 

Nmle 
Debugger 

 ;; ,/ 

_ _^. Event inoptiizaliou 

Fig. 2. The TDBG architecture 

3.1 The DAMS system 

The DAMS (Distributed Application Monitoring System) system provides the basic layer to support the incremental devel- 
opment of parallel and distributed monitoring and control services, such as debugging, profiling and resource management. 
Its design and implementation are neutral regarding the programming and computational models of the target application. 

The processes related to DAMS can be classified in one of three classes (see Fig. 2): 

- Target application processes. The set of processes that will be controlled/monitored by the DAMS system. 
- Client application processes. The set of independent client tools, that may operate concurrently over the Target appli- 

cation processes by issuing requests to the DAMS system, through a service interface library. 
- The DAMS processes. The set of internal processes that implement the DAMS system and its services. This set includes: 

• System processes. This includes a single Service Manager and several Local Managers, one per physical node of the 
target architecture. These processes manage the internal DAMS resources and provide an architecture independent 
communication layer that allows the Client application processes to control and inspect the evolution of the Target 
application processes. 

• Service processes. Each class of service (e.g. debugging, resource management, profiling) requires a DAMS config- 
uration which includes a set of specific components: one Service Module, to handle the Client application service 
requests and their high-level system-independent parts; and a set of Driver processes, usually one per process of 
the Target Application, to implement the low-level system-dependent control and monitoring aspects. 

The most important aspects of DAMS are: its extensibility; its neutrality concerning the target application models; its 
builtin support for multiple concurrent connections from client tools; and its functionalities for tool coordination and syn- 
chronization using events. 

3.2 The TDBG tool 

In [CLV+98] we have described the implementation of FDBG, a process-level debugger as a DAMS service. Here we describe 
how thread-level debugging (the TDBG debugger) is implemented as a service on top of the DAMS system by the provision 
of an adequate set of Service processes. 

For a better understanding of how the TDBG components interact, we present an example, which also refers to Fig. 2. 
There are three Target application processes; two Client applications: the Graphical Interface and the Text Interface; and, 
for simplicity, the pictured DAMS configuration is providing the TDBG service only. 
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Let us consider that a client application (e.g. a Text Interface) issues a debugging command by calling a debugging 
library function, that sets a breakpoint in a given line of a given thread e.g. set_break(t 12345, 1 9 8). This func- 
tion establishes the communication with the Service Manager, which identifies the type of requested service (related to 
debugging), and forwards it to the appropriate component: the Debugging Module. 

The Debugging Module parses the received data, identifies the type of request, and then sends the (possibly) transformed 
request to the Debugging Driver. The DAMS system internally manages the routing tables to assure that the request reaches 
the desired Debugging Driver which is associated with the identified target process. 

In order to allow easy plug-in of existing commercial or public-domain Node Debuggers, the Debugging Driver includes 
a front-end process, called a Controller, which is responsible for all interactions with the actual Debugger. The Controller 
acts as a kind of "user", as far as the Debugger is concerned1. 

After parsing the data that was sent by the Debugging Module, the Controller identifies the target process, and is- 
sues an adequate sequence of commands conforming to the existing Debugger interface e.g. select_thread 12345, 
break_line 98. The Controller waits for the completion of each command before issuing the next one. When the se- 
quence is terminated, the results of the command, e.g. local_brkpt_id=2, are sent back to the Debugging Module. 

The Debugging Module parses the received data, and does the necessary post-processing, for example converting a local 
breakpoint identifier into a global breakpoint identifier, e.g. global_brkpt_id=14. Afterwards, it sends the results back 
to the Client process in the form of return values of the invoked library call. 

3.3   Summary on DAMS and TDBG 

By describing how the interfacing between the client tools and the TDBG debugger is done, we have illustrated the great 
flexiblility of the DAMS architecture in order to support extended functionalities. Namely, it is possible to integrate multiple 
heterogeneous target debuggers, for processes and threads, in a single DAMS configuration. 

4   Related Work 

There are many current efforts on the field of parallel and distributed debugging (with and without thread's support) and 
related topics [LWSB97,Zho94,MB94,Lum95,XWZS96,PHK91,DJ88,HS88]. Because we cannot cover them all here, we 
have chosen two related approaches that are briefly presented and compared with our own approach. The first one concerns 
the specification of debugging functionalities and the second concerns a distributed design supported by an existing tool. 

4.1 The HPDF (proposed) Standard 

The High-Performance Debugging Forum (HPDF) [BFP97] is a collaborative effort between researchers and industry, aim- 
ing to define a standard for parallel debuggers. As of Version 1 of the standard, a command based (non-graphical) interface 
has been prepared, specifying either syntax and semantics of the proposed services. The definition of graphical interfacing 
and complex I/O operations are still under work. 

According to HPDF, a parallel debugger is either a thread-oriented debugger, a process-oriented debugger or a hybrid 
debugger, and sets of required and recommended services have been defined for each of them. Our design can easily 
accommodate most of the HPDF proposed functionalities for hybrid debuggers. 

In this regard, the tool integration features of TDBG, presenting an unified event-based model for the internal and 
external actions, is a distinct contribution to the integration of parallel debuggers in more complete and complex program 
development environments [KCD+97,LCK+97]. 

4.2 The p2d2 Distributed Debugger 

The p2d2 distributed debugger [Hoo96] is a process-oriented debugger. It uses a client-server approach, with a well defined 
interface, promoting portability by isolating the system dependent code into a debugger server. There is an user-interface 
capable of displaying and controlling many processes, individually or associated in groups. The GNU gdb is used as a Node 
Debugger, and a call-back method supports asynchronous interactions between gdb and the user-interface. 

The distinctive feature of our approach (i.e. TDBG+DAMS) is to support multiple concurrent client tools and to offer the 
necessary mechanisms to implement client tool coordination. 

From an implementation point of view, the existing Node Debugger must provide an interface library to be accessed by the Controller 
front-end. 
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5   Conclusions and Ongoing Work 

In this paper we have discussed a model to support the development of process and thread debugging functionalities, and 
their implementation as services of the DAMS distributed architecture. This work is part of our experimentation towards the 
incremental building of tool support services for parallel and distributed processing. 

There is a prototype of DAMS running on our Ethernet LAN with Linux/PC's nodes, and a cluster of FDDI-interconnected 
Alpha processors under OSF/1. A process-level debugger (PDBG) runs as a DAMS service, and uses the GNU gdb as the target 
debugger. The efficieny of this prototype suffers because gdb is very heavy. 

This prototype is being extended to implement TDB6 which provides a thread-based debugging service according to 
the description in Sec. 3.2. A different Node Debugger is used, namely SmartGDB [Hal92], which is a thread-oriented 
debugger, extending GNU gdb with TCL scripting capabilities and debugging support for user-level threads. 

An ongoing related project focus on the integration of TDBG and a visualization tool for thread-based programs. In this 
project we are experimenting with the TDBG tool integration and coordination support mechanisms. 
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Abstract In vector processors, when several vector streams concurrently access the 
memory system, references of different vectors can interfere in the access to the 
memory modules, causing module conflicts. Besides, in a memory system where 
several modules are mapped in every bus. delays due to bus conflicts are added to 
module conflict delays. This paper proposes an access order to the vector elements that 
avoids conflicts when the concurrent access corresponds to vectors of a subfamily, and 
the request rate to the memory modules is less than or equal to the service rate. For 
other cases of concurrent access, the proposal dramatically reduces conflicts. 

1     Introduction 

In vector processors, the ideal execution of a memory vector instruction would permit to 
obtain a datum at every cycle after an initial latency. As, in general the memory module 
reservation time is much longer than the processor cycle time, the memory system 
usually consists of multiple memory modules with independent access paths. 

Usually, vector processors have more than one port to the memory subsystem to 
allow several memory vector instructions to proceed concurrently. Under these 
conditions, conflicts appear in the access to the memory modules when two.or more 
references are simultaneously issued to the same module. Besides,.a reference to a busy 
module also causes a memory module conflict. 

In vector processors with several paths to the memory system, or in multi-vector 
processors, another factor that affects the performance of the memory system is the 
interconnection network between processors and memory modules. In the design of 
some memory systems, the decision of reducing the number of independent access paths 
to the memory modules (several modules are mapped on every bus) [2][6], implies a 
reduction in its economic cost. However, this solution implies assuming the presence of 
conflicts in the access to the interconnection network, as well as the memory module 
conflicts mentioned above. Both type of conflicts appear even in the specially common 
case of several one-strided vector streams concurrent access. The main effect of the 
conflicts is the starvation of the functional units, with the subsequent loss of 
performance. 

Memory vector instructions with regular access patterns generate periodical conflicts 
as these kind of instructions generate periodical streams of references (vector streams 
with a constant stride). In the context of this paper, our interest is the reduction, and the 
elimination when possible, of the memory conflicts (interconnection and memory 
module conflicts) caused by concurrent constant-strided vector streams. 

Several kind of methods have been proposed to reduce the number of cycles lost due 
to memory conflicts. Some authors propose to accurately place in memory the vectors to 
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be concurrently accessed [ J 0][ 14][ 17]. This technique implies that patterns must be 
known in compilation time, and, the access to a vector stream in different context of a 
program could decrease its effectiveness. Other authors propose the use of buffers in the 
memory modules [17] or in the interconnection network [19]. Buffers allow the 
requesting processor to keep sending requests without waiting, but this technique 
requires labelling the memory references to allow their reordering before being used by 
the processor; the cost of the interconnection network increases as the tag must be sent 
along with the request [17]. In addition, buffers do not directly solve the problem of the 
convergence to a single port of the requests in the return network [21]. 

Our proposal consists of a new access order to the vector stream elements. In parallel 
with our work, other authors have studied this kind of solution [15]. This new order 
working with a new arbitration algorithm will help concurrent vector streams perform 
their memory request with no conflicts or less number of conflicts than the classical 
access implies. 

One of the cases for which our proposal completely avoids conflicts is the very 
common case of the concurrent access of several one-strided vector streams. J. Fu and 
J.H. Patel in [7] show that between 7% and 54% of the vector streams in four programs 
of the Perfect Club benchmark set [1] (ADM, ARC2D, BDNA and DYESM) access the 
memory with stride 1. 

Section 2 outlines the architecture model, on which the present study is based, and 
the characterization of the interleaving mapping and vector access functions. The 
interaction between vector streams in a complex memory system is studied in Section 3. 
Section 4 presents the proposed access order to the memory modules and presents its 
hardware support. Finally, Section 5 deals with the comparison between the proposal 
and the method used in a classical system, like CRAY X-MP. 

2     Architecture 

The memory architecture presented in Fig. 1 is an example of the complex memory 
system, similar to the one used in the CRAY X-MP [2]. 

The memory subsystem consists of M = 2m memory modules (memory cycle, nc = 2C 

clock cycles), connected to P = \_M/n(.\ memory ports through an interconnection 
network. To reduce the number of access paths to the memory subsystem the memory 
modules are distributed into SC sections. A memory module request occupies the 
section path where the module is located during one cycle. It is supposed that SC = 2", 
and the number of memory modules is a multiple of SC. 

In each cycle, every port requests an element of a vector stream except when a 
conflict appears in the interconnection network or in a memory module. In case of 
conflict, only one vector stream obtains the access and the other requests must wait; a 
priority rule must determine which port will be able to proceed. In the present paper, we 
use the arbitration implemented in the CRAY X-MP [2], to measure the performance of 
the classical access (Definition 5) and in the examples of concurrent access when 
another algorithm is not specified. This arbitration gives priority to the vector stream 
with the lower 2s stride factor; for ports with same parity of strides, the priority is fixed. 

The memory is organized as an interleaved address mapping model (section = A; 
nwdSC, memory module = Aj mod M. offset = \_A/M\). The interleaving function which 
maps the address into memory modules has a period of P=M. 
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Fig. 1. Complex Memory System. 

The following definitions will help the reader to follow the method. 
Definition 1: A vector stream A = (AQ, S, VL) is the set of references to memory 
modules {/4,l A, = A0 + ixS, 0<i<VL], where AQ is the address of the first reference, S 
(stride) is the distance between two consecutive references and VL is the vector length, 
or number of references. If the length is not relevant a stream is specified as A = (AQ, S). 

Vector streams can be classified into different families according to their stride. 
Definition 2: A stride family (Fs) is the set of vector streams with strides S = CT X 2\ 
where a is an odd factor [9]. 

A vector stream with a stride S = 0x2s references Ps= M/ gcd(M, 2s) memory 
modules periodically, and the period is Py 

Definition 3: The memory module set (MA/5) of the vector stream A = (AQ, S) is the set 
of all the memory modules accessed by the vector stream A=(AQ,S,PX). MMS = /m,-l 
mj=(A0+ix.S)modM, 0<i<PJ. 
Definition 4: A stride subfamily (SF^O ) is the set of vector streams of a family that 
reference the same set of memory modules. 

To give some examples, the family F0 (odd-strided vector streams) only has one 
subfamily SF°0 , and the family Fj (even-strided vector streams) has two subfamilies, 
SF°j references the even memory modules, and SF1/ references the odd modules. 
Definition 5: Classical access is the access order that uses the recurrence Aj+J = At +S 
(S=Stride) to compute vector stream addresses. 

Since the vector length is usually greater than the vector register length, the compiler 
is required to transform the code using strip-mining. Under this condition, a great 
proportion of memors accesses from vector streams are issued by vector instructions 
load and store, which ore ot a fixed length equal to the vector register length. Let us 
assume that, in order in simplify the explanation of the proposed method, the vector 
stream length (VL = 2" > is * multiple of the vector register length MVL = 2mvl which is 
assumed to be a muliipk <»» the number of memory modules M = 2m. 

3     Characterization of the Conflicts 

Only in the case that the memory request rate imposed by concurrent vector streams is 
equal to or less than the memory module response rate, the concurrent access can be 
conflict-free. When the requesi rate is equal to the response rate, it is said that the 
memory system (or similarly ihe memory modules) works tight, and when the request 
rate is less than the response rale, the memory system works loose. 

To obtain a conflict-tree access, not only the system must work loose or tight, in 
addition, the concurrent access of the vector streams must fulfil two conditions: 

• consecutive references to a memory module must be distanced at least n(. cycles (to 
avoid memory module conflicts). 
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• since memory modules share sections, only a few sets of concurrent memory 
module references are correct (to avoid section conflicts). 

To analyse the effect of the first condition, we first study a memory system that can 
only present conflicts in the access to the modules, not in the interconnection network. 
Then, we extend the study to a complex memory system to discuss the second condition. 

Simple Memory System 
A simple memory system has an independent access path from every port to every 
memory module, thereby its interconnection network does not present conflicts. In a 
system like that, the concurrent classical access of vector streams that have the same 
stride has a conflict-free steady state when the request rate they imply is less than or 
equal to memory modules response rate (the system works loose or tight) [16][17]. 

Fig. 2 presents the concurrent classical access of four one-strided vector streams in a 
memory system with 16 memory modules and an nc of 4 cycles. Vector streams start 
their concurrent access in different memory modules. In the figure, it is possible to 
observe for every cycle the memory module that begins to be occupied by every vector 
stream (the module remains occupied during latency cycles). A delay due to a memory 
module conflict is depicted in black. 

Cycles |   0 1 2 |   3 4 |   5 6 |   7 |   g |   0 10|   11|   12|   13|   14|   15|   16 
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B 1 2 i 4 5 6 7 8 9 10 11 12 13 14 If IT 
C 4 5 6 7 8 9 10 11 12 13 14 ii 0 1 2 3 4 
D 8 9 10 11 12 13 14 15 Ü 1 2 3 4 5 6 7 8 

Fig. 2.16-way interleaved memory with nc = 4. Conflicts with the classical access. 

This concurrent access presents conflicts at the very beginning, but the steady state, 
that starts at cycle 8, is conflict-free. At the steady state, four sets of concurrent memory 
module references ({0, 4, 8, 12}, {1,5,9, 13}, {2, 6,10, 14} and {3,7, 11, 15}) are 
periodically repeated every «(. cycles, thereby, consecutive references to the same 
memory module are distanced n(. cycles. The periodicity of these four sets (called CMR 
-Concurrent memory Module References- from now on) can be guaranteed because 
vector streams reference the memory modules with the same order. 

R. Raghavan and J.R Hayes stated with theorem 6 of [17] the conditions the 
concurrent vector streams must fulfil to obtain a conflict-free classical access in a 
simple memory system. These conditions can be fulfilled only by vector streams that 
belong to the same subfamily. All the combinations of vector streams that have the same 
stride have a conflict-free access whenever the system works loose or tight. The 
concurrent classical access of vector streams of different subfamilies is always 
conflictive (corollary 3 of [4]). 

Complex Memory System 
Combinations of vector streams that obtain a conflict-free access in a simple memory 
system, may not have a good behaviour in a complex memory system. The sets CMR 
that are suitable in a simple memory system may not be appropriated in a system where 
several memory modules are mapped in the same section. As an example, none of the 
CMR of the concurrent access of Fig. 2 are appropriated in a complex memory system 
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where the 16 memory modules are interleavedly mapped in 4 sections (Fig. 1): all the 
memory modules of every CMR are mapped in the same section, then, they can not be 
concurrently accessed. 

Fig. 3 shows the conflictive classical access of four one-strided vector streams in the 
system of Fig. 1. The delay due to a section conflict is represented in light grey, and a 
memory module conflict is depicted in black; a section is locked during one cycle in the 
access to a memory module. In this concurrent access, conflicts are linked and 
periodically repeated: a section conflict causes a memory module conflict which also 
causes a section conflict, and so on. 
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Fig. 3. 16-way interleaved memory system with nc = 4 and 5C=4. 
Conflicts with the classical access. 

T. Cheung and J.E. Smith characterize in [2] the linked conflicts that appear in the 
concurrent classical access of two one-strided vector streams and use the term complex 
linked conflict (complex conflict) when three or more vector streams interfere with each 
other in a less precise way. Authors prove that the steady-state linked conflicts and 
complex conflicts reduce the effective bandwidth. 

Authors of [2] show that in the concurrent classical access of three one-strided vector 
streams (the system works loose), in 34% of the cases (combinations of initial memory 
modules) linked conflicts appear, in 7% of the cases complex conflicts are generated, 
and performance can be degraded by 20%. 

To solve these conflicts, W. Oed and O. Lange conclude in [16] that n,. and SC must 
be coprime (theorem 9). A solution with a prime SC is proposed in [15]. In [2], authors 
give some alternatives to avoid linked conflicts, i.e. a solution with odd values of«,.. For 
all the proposals, if vector streams have different strides conflicts persists and, in any 
case, complex conflicts do not disappear. 

Tab. 1 shows the asymptotic number of operations per cycle (R„) the classical 
access obtains in average for four types of combinations of vector streams, in a simple 
memory system (/W=16 and ;J,.=4) and in the corresponding complex system (M=16, 
«(.=4 and SC=4). The concurrent accesses simulated are all the combinations of four, 
three and two odd strided vector streams, two odd strided with one even strided vector 
streams, and two even strided vector streams. For the simple memory system, the 
average R„ for the classical access is far away from the ideal, even for combinations for 

1. /?„= ops xr„x tc, where /,. is the processor cycle time, dps is the number of concur- 
rent vector streams, and r«, is the asymptotic performance [12]. 
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which the system works very loose and vector streams belong to the same subfamily. 

Comparing the results for both memory systems, it can be easily concluded that in a 

complex memory system, the results are worst because of interferences in the 
interconnection network. 

Tab. 1. R„ for the classical access and Ideal. 

Combinations 
of Strides 

Complex i 
M=16nt. 

Mem. Syst. 
= 4SC=4 

Simple Mem. Syst. 
M=I6n,. = 4 

Odd Even Classical Ideal Classical Ideal 
4 0 1.57 4 1.86 4 
3 0 1.51 3 1.66 3 
2 0 1.35 2 1.38 2 
2 1 1.39 3 1.60 3 
0 2 1.05 2 1.27 2 

The next section presents an access method that completely avoids conflicts in the 

concurrent access of vector streams of the same subfamily when the system works loose 

or tight. This method also dramatically reduces conflicts for other cases of concurrent 

access. The name of the proposal is Skewed Sequence of memory Modules (SSM). 

4     Proposal SSM 

To reduce the number of memory module conflicts, we propose that concurrent vector 

streams reference the memory modules with the same order. All the vector streams of a 

subfamily reference the same set of Ps memory modules (Px = Mgcd(A/,25)), but with 

the classical access, the order every vector uses to access them depends on the C-factor 

of the stride. We propose to construct a O-independent access order, then all the vector 
streams of a subfamily will reference the Ps modules with the same order. 

To avoid section conflicts, this CJ-independent access order must be constructed 
considering that the resulting CMR sets must comprise memory modules mapped in 
different sections. 

This new sequence <>t memory modules will be called SSM {Skewed Sequence of 

memory Modules) f-\? 4 shows the SSM proposed for different subfamilies in a 

memory system thai ha> W= 16, n,.=4 and SC=4 (Fig. 1). For every sequence SSM it is 

also shown the sequeiKc <>( sections referenced and the corresponding CMR. 

Subfamily SF°„ (odd 

SSM 0    12 
sections 0     I     2 

subpenod a 

•M modules) - CMR = (10.7.10.13). (1.4.11.14). (2.5X15). (3.6.9.12)) 

-456 
■012 
tmkperiod 1 

10 11  8    9 
2    3    0     1 
subpenod 2 

13 14 15 12 
12    3     0 
subpenod3 

Subfamily SF°, (even stndr\. rrtn modules) 
CMR = 1(0.10). (2.8). (4.UI    '■   :;/ 

Subfamily SF 'j (even strides, odd modules) 
CMR = ///.///, (5.15). (7.13). (3.9)1 

SSM 0    2 
sections 0    2    0    2 

subperiod 0 

Hi H 

:   o 
subperiod I 

14  12 
i    0 

SSM 
sections 

/    3 7    5 
13    3     1 
subperiod 0 

11   9    13  15 
3     I     I 
subperiod 1 

Fig. 4. 16-way interleaved memory with nc = 4 and SC=4. SSM for several subfamilies. 
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Each one of the SSM we propose has nc CMR sets of PJn(. memory modules. In 
consequence, PJnc concurrent vector streams of a subfamily can concurrently reference 
memory modules of different sections, avoiding section conflicts. Besides, module 
conflicts are also avoided as consecutive references to a CMR are distanced n(. cycles. 

Fig. 5 shows the conflict-free access of four odd-strided vector streams in the system 
of Fig. 1, when the corresponding SSM is used. This SSM has nt.=A CMR sets with PJnl. 
= 16/4 modules, so four odd-strided vector streams could have a conflict-free access. 

Cycles 0 1 2 3 4 5 6 7 8 9|   10 11 12 13 14 15]   16 

to 
3 
c 
.*> to 

A 1 2 3 0 0 1 2 3 3 0 1 2 2 3 0 1 1 
B 2 3 0 1 1 2 3 0 0 1 2 3 3 Ü 1 2 2 
C 3 0 1 2 2 3 0 1 1 2 3 0 0 1 2 3 3 
D 0 1 2 3 3 0 1 2 2 3 0 1 1 2 3 Ü 0 

to 
■Si 

■§ 

1 

A 13 14 15 12 0 1 2 3 7 4 5 6 10 11 8 9 13 
B 10 11 8 9 13 14 15 12 0 1 2 3 7 4 5 6 10 
C 7 4 5 6 10 11 8 9 13 14 15 12 0 1 2 3 7 
D 0 1 2 3 7 4 5 6 10 11 8 9 13 14 15 12 0 

Fig. 5. 16-way interleaved memory system with n(. = 4 and 5C=4. Conflict-free 
concurrent access of four odd-strided vector streams using SSM. 

Vector streams of Fig. 5 start their concurrent access in correct memory modules 
(same CMR), so the concurrent access synchronizes from the beginning. When the start 
addresses do not correspond to a CMR, an arbitration algorithm is necessary. Section 4.2 
presents a dynamic arbitration that forces vector streams to concurrently access memory 
modules of the appropriate CMR [3]. 

4.1    Skewed Sequence of memory Modules - SSM 

The new sequence of memory modules is called "Skewed" as the SSM we define for 
every subfamily is the result of applying a skew function to the subfamily MMS 
lexicographically ordered. 
Definition 6: For a vector stream A = (A0, S, Ps), of the subfamily SFM

S° , (M() = A0 mod 
gcd(M,2'!)), we call Skewed Sequence of memory Modules (SSM) to the sequence 
determined by the expression: 

k =flnij) = ((mi+lm/nlj)modnr+lm/nl.}xn(.)/gcd(M,2'1), 

where k is the position that the memory module /n, (0<m,<A/) occupies in the sequence 
and mi belongs to the vector stream MMS. 

The function f'(nij), that gives the memory module from a position in the sequence 
(reverse function oi'fim,)). will permit to generate the SSM sequence. We express f'fnij) 
as an algorithm, but before presenting it, we will make some considerations (Fig. 6 
helps to follow the explanation): 

• The first module a vector references with the SSM is M0 = A0 mod gcd(M,2s). 
• Every set of [nlJgcd(M.2s) I consecutive memory modules of the MMS 

lexicographically ordered suffers a skew. We call GS to every one of these sets, and 
in a SSM there are (Mlnf.)kgcd(M,2s)/nl'] GS sets. 
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• The same skew is applied to gcd(M,2s) consecutive GS sets, but the first skew is 
applied to at most gcd(M,2") consecutive GS. If M0 is not the memory module 0, 
only the gcd(M,2>A/0 first GS sets suffer the same skew. 

To give an example of the former considerations, ina system with M=16, n(. = 4 and 
SC=4, the SSM of the subfamily SF1, has  (M/nc)^gcd(M,2s)/n^ = 4 GS sets. The first 
skew is applied only to gcd(M,2s)-Mo=\ GS as M0 is the memory module 1, but the 
second skew is applied to gcd(M,2x)=2 consecutive GS. 

Subfamily SF0 (odd strides, all modules) 
MMS 

SSM 
sections 

0    12    3 

i , 2    3 
0    12    3 

skew 0 

4    5    6 

7*4    5 

7 

6 
3    0    1 2 

skew 1 

8    9    10 11 

lbTt-m  9 
2    3    0    1 

skew 2 

12  13 14 IS 

13~l4~-tt+12 
12    3    0 

skew 3 

Subfamily SF°,   (even strides, even modules)        Subfamily SF', (even strides, odd modules) 
SSM 0   2\ 4   6 
sections        0    2 ' 0    2 

skew 0 
0' 2    0 
skew 1 

SSM 
sections 

I    3 7    S\ 11 9 13 IS 
1    3 3    1' 3    1 1    3 

skew 0 skew 1 skew 2 

Fig. 6. 16-way interleaved memory system with n(. = 4 and SC=4. SSM construction for 
several subfamilies. 

The algorithm used to generate the SSM sequence for any subfamily is: 
/W0 = /t0modgcd(M,2v,) 
control = M0 

skew = 0 
for NGS = M01 n(. to Mln, -1 step [gcd(M,2s)/n,l 

for 1 = M0 mod nc to nc-1 step gcd(M,2X) 
module = ((I - skew x gcd(M,2")) mod n(. + NGS x nc) mod M 

endfor 
control = (control +[gcd(M,2*)/nJ) mod gcd(W,2-v; 
if( control = 0 )   then skew = skew + 1 

endfor 
In the algorithm, NGS controls the generation of the memory module references for 

every GS set. The variable 1 controls the generation of the memory module references 
within a GS set. Control controls the skew changes after the generation of gcd(M.2s) 
consecutive GS. li'M0 is not the memory module 0, only the gcd(M,2s)-M0 first sets GS 
suffer the same skew. 

4.2    Arbitration algorithm 

An arbitration algorithm is needed in order to synchronize vector streams to reach a 
conflict-free steady-state phase, or to dramatically reduce inter-conflicts, for any 
combination of initial memory modules. 

The SSM sequences can be divided in PsJnc subperiods of nr memory modules. In 
Fig. 4, we can observe that each subperiod of a SSM references the sections following a 
predetermined order which is different for every subperiod. Thus, in the concurrent 
access of PJn(. vector streams of a subfamily, we obtain a conflict-free access if we 
overlap different subperiods (different sections are simultaneously referenced as in the 
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example of Fig. 5 with family F0). The main idea is that, in every cycle concurrent 
vector streams reference memory modules of a different subperiod, and these different 
subperiods must be aligned. 

The arbitration algorithm controls the subperiod changes between vector streams; 
when all subperiod changes have been detected for all the vector streams, subperiods 
are assigned using a fixed priority. The subperiod change is detected by computing the 
expression subperiod=lm/(n,xgcd(M,2s))]modSC (m, = AsfRmodM) for two 
consecutive memory module requests of a vector stream (the current and the previous). 

4.3   Skew Sequence of memory References - SSR 

The SSM is the order in which memory modules must be referenced periodically, then 
vector stream memory references must be generated to periodically access the modules 
with this new order. 
Definition 7: For a vector stream A = (AO, S) of the subfamily SF^° (M0 = A0 mod 
gcdfM^V), the Skewed Sequence of References (SSR) is the sequence of memory 
references that permits to reference the memory modules following the SSM periodically. 

The algorithm that generates SSR is a modification of the algorithm that generates 
SSM. The following definition will help designing the algorithm. 
Definition 8: The order number (ON) of a vector stream element, is the position on which 
its address is generated using the classical access, 0 < ON < VL. 

The address of an element of a vector stream A = (AQ, S), can be computed using its 
order number as Addr = A0 + ON X S. With the classical access, addresses of elements 
with consecutive ON are consecutively generated (ONi+] = ON/ + 1). This is not the 
case with the SSR, but, if we know how to generate the sequence of order numbers that 
fulfil SSM, we will be able to generate SSR. 

First, we suppose SSR is Ps references long, then we extend the study to any length. 

Ps references long (one Period) 
Vector elements placed in memory modules adjacent in the MMS lexicographically 
ordered have order numbers separated by a constant distance, Cv [3]. Then, we can 
compute the ON of a vector element from the ON of any other vector element if we 
know the distance between the memory modules' where they both are placed: ONj = 
ONj + K x Cx, where K is the distance. 

To compute the sequence of order numbers the SSM implies, the K we can use can be 
the distance between the memory module to be referenced and the first memory module 
referenced using the SSM that is M0 = A0 mod gcdfjW,2v). Then, we must use the order 
number of the first vector stream element referenced using the SSR, NOO, that can be 
easily computed. In this case, the order number of a vector element placed in the 
memory module »;,■ is: 

ONj = NOO + ((nij - M0)mod M/gcd(M,2s)) x Cy 

Any Length (any number of Periods) 
As the distance between memory modules can be computed within a period, the former 
recurrence actually gives the order number relative to a period (ONR). To extend the 

1. distance is the number of memory modules between them in the MMS lexicographi- 
cally ordered. 
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computation of the order number to any number of periods, we can consider that every 
period has a base order number (BN), to be added to the ONR to obtain the ON. From 
period to period this BN must be increased in Ps units. 

The next algorithm is based in the algorithm proposed in Section 4.1, adding the 
computation of the order number and the loop that controls the period. The bold lines 
are the ones added. 

M() = A0modgcd(M,2x) 
BN = 0 
for Q = 07o [VL/Pf] -1 

control = M0 

skew = 0 
for NGS = Mrf nt. to M/n(. -1 step [ gcd(M,2s)/nt~\ 

for I = M0 mod n,. to «,.-] step gcd(M,2") 
module=((I-skewxgcdfM,2'v;)mod nc.+NGSxn(.) mod M 
K = ((module - M0) mod M)/gcd(M,2s) 
ONR = (ONO + K x Cs) mod Ps 

AddrSSR= A0 + (BN + ONR) x S 
eiidfor 
control = (control +1 gcd(W,2v;//!r|) mod gcd(M,2x) 
if( control = 0 ) then skew = skew + 1 

endfor 
BN = BN + Ps 

eiidfor 
As a synopsis, the recurrences that compute the vector memory references are: 

A?SR = A0 + Base.Addr + Af and Af = (Af + KXC.XS) mod (/»,xS) 

where Af is the vector element address relative to a period, A?SR is its absolute address, 
K is the distance between memory modules where Af and Af are placed, and Base_Addr 
is the base address of a period (BN x S). 

4.4    Hardware Support to Reduce Conflicts 

To design the hardware that computes the SSR, we must rewrite the algorithm to make it 
easier to implement. There are two issues that must be solved: the presence of a 
multiplier and a modulo operation in the critical path of the address computation (every 
iteration). 

To avoid the use of a multiplier, the relative addresses Af are computed using the 
relative addresses Af, so only two precomputed products KxCxxS mod (Ps x S) must 
be used (#=1 and K=nt). This implies using three registers to store different previous 
values Af. 

The modulo operation (mod (Px x S)) can be performed by subtracting Px x S if 
necessary, as demonstrated in [5]. In fact, the two values, Af +KxCsxS and Af + K x 
Cs xS - Psx S, are computed in parallel, and the selection between them is performed 
by a signal that comes from the vector register index computation [5]. This signal 
indicates if ONf + K x Cs > PK. easier to compute as Ps is a power of two number. 

Fig. 7 shows a hardware design of the data-path. The hardware cost is moderate, two 
adders in the critical path and a CSA. and it is not more complex than that needed by 
other solutions [8][I8] proposed to reduce the average memory latency time in vector 
processors. 
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BASE ADDR 

US HCJ MD      CXS   n,xC,.x5 

-       -     t      £ %,' 

USE_ADDl{ pxs 
T   t   r 

i_^ 

CM 

JE: 

7Z>, 7B are /^computed before. 

C/., = (((nl/gcd{M.SmCs)mi>dPs) 

r^^n BASE_ADDR a_£ r^p> a P, 

c 
from the vector register index computation 

Fig. 7. SSR generation Hardware. 

The rate at which a memory request can be issued is limited by the rate at which 
additions can be performed. The design can be pipelined to obtain a reduction of the 
cycle time (this would be also needed in the classical access). The additional hardware 
introduces a initial delay of a few cycles in the memory path. The number of clock 
cycles needed to access the memory is of the order of 14 + MVL for the CRAY X-MP, 
17 + MVL for the CRAY Y-MP and 23 + MVL for the C90 [20]. However, as the 
processor speed continues to increase faster than the memory speed, an extra initial 
delay of some cycles introduced by the hardware proposed is acceptable. 

The number of parameters to be calculated is comparable to the number needed for 
other proposals [8][18][22], and most of them can be determined by the compiler. 

The hardware needed to access the vector registers is similar to the hardware shown 
at Fig. 7 but simpler. 

The cost of the hardware components can be considered a minor part of the cost of 
the memory subsystem. Additionally, in contrast with other solutions, which include a 
significant number of buffers to eliminate the effect of unsuitable temporal distributions 
[8][18], this proposal does not need buffers. 

5     New method performance 

In this section we present the advantages of the method proposed in this paper. Tab. 2 
shows the comparison between the SSM and the classical access in a memory system 
with M=16 memory modules, interleavedly mapped in SC=4 sections, with an n(.=4. 

Some considerations about the simulations: 
a) We obtain the value /?«, for the concurrent access, using the classical access and the 
proposal, of all the possible combinations of four, three or two vector streams of the 
families F0 and SF°i 
b) All the combinations of vector streams whose concurrent access has been simulated 
have a non void intersection of MMS sets. 
c) The parameter we use to perform the comparison is the increment in performance 
(IRJ) implied by the proposal, and il is computed as 1RX = ((R^SSM ' R<»i-hissiraiy 
R-chssualWWVM 
d) The results presented under the name Rx are harmonic means of the asymptotic 
number of operations per cycle that the classical access and the SSM obtain for 
combinations of vector streams we group in types. 
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Tab. 2 presents the Rm for several types of vector stream combinations the classical 
access and the SSM obtain in a 16-way interleaved memory system with n(. = 4 and 
SC=4. The table also shows the maximum number of operations per cycle (/#„ Ideal) 
that could be ideally obtained for every combination in the supposed memory system. 
The increment in performance the SSM implies is presented in the column labelled as 

Tab. 2. 16-way interleaved memory system with n(. = 4 and SC=A. R„ and lR^ for SSM. 

STRIDE *~          *~         /eM          m 
Odd Even Ideal       Classical       SSR              SSR 

4 0 4 1.57 3.95 152% 
3 0 3 1.51 2.98 97% 
2 0 2 1.35 1.99 47% 
2 1 3 1.39 1.99 43% 
1 1 2 1.18 1.33 13% 
1 2 2.4 1.19 1.99 67% 
2 2 2.67 1.34 2.65 98% 
0 2 2 1.05 1 99 90% 
0 3 2 1.03 1 50 46"-/ 
0 4 2 1.04 1.99 91% 

In the table, the types with an asterisk ('*') correspond to combinations of vector 
streams of the same subfamily that make the system work loose or tight. For these types 
the R„ the SSM obtains is almost R„ Ideal, and the IRX is very important, between 47% 
and 152%. For the other types, the //?„ is also important, between 13% and 98%. 

Fig. 8.a presents the IR^ the use of the SSM implies in function of the a-factor of the 
stride, in the concurrent access of: four vector streams of the family F0 (dark bars), four 
vector streams of the subfamily SFf (medium grey bars), and two vector streams of F0 

with two vector streams of SFf (light bars). For every case we grouped combinations 
that have four (bars labelled as "four"), three, two o zero (bars labelled as "zero") vector 
stream with the same a-factor. 

| SSR - .< MH'tini.\ Ft) 

| SSR ■ .< streams Sf", 

\_J SSR - 2 streams F0 

antt 1 stream SP) 

Number of vector streams with the same a 

Fig. 8. 16-way interleaved memory system with n,. = 4 and SC=4. IR„i'arSSM, in the 
concurrent access of four (a) or three vector streams (b). 
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When four F0 vector streams (odd-strides, dark bars) access the memory system, the 
memory works tight, but the concurrent access with the SSM is conflict-free and IR„ is 
substantial, between 85% and 159%. Even when all the concurrent vector streams have 
the same a-factor (same stride), SSM overworks the classical access, as this access does 
not avoids section conflicts. 

For combinations of four SFf vector streams (even-strides, medium grey bars) the 
concurrent access with the SSM is not conflict-free as there are more than Pslnc (=8/4=2) 
concurrent vector streams, but the 1R^ is important, between 69% and 105%. 

When in the concurrent access there are two F{) vector streams and two SFf vector 
streams the concurrent access with the SSM is not conflict-free as there are vector 
streams of different subfamilies but the IRX is important, it ranges from 69% and 104% 

Fig. 8.b presents the lR^ the SSM represents in function of the a-factor, in the 
concurrent access of: three vector streams of the family F0 (dark bars), three vector 
streams of the subfamily SFf (medium grey bars), and two vector streams of F0 with 
one vector stream of SFf (light bars). For every case we grouped combinations that 
have three (bars labelled as "three"), two or zero (bars labelled as "zero") vector stream 
with the same a-factor in the stride. For these cases, the IR„ the SSM obtains is lower 
than in the case of four vector streams, as the classical access finds the system working 
looser and, in consequence, there are less conflicts or they have less effect. 

Vectors and matrices are the most common data structures in vector processors. In 
Fortran, the most frequent accesses to matrices are made by columns, rows and 
diagonals, that correspond to the strides 1, n and n+J respectively, where n is the 
column length, which is dependent on the problem size that varies widely. Present 
compilation technology detects if n is even, then the matrix size can be increased in one 
row (odd stride), and the number of referenced memory modules is M. Thus, in row- 
major and column-major accesses the use of SSM performs equally well, and there are 
no conflicts. When n is even and there is no possibility of increasing the number of 
rows, the SSM reduces the number of conflicts. 

6     Conclusions 

The interferences between concurrent vector streams accessing the memory system of a 
vector or multivector pr<».c>.M>r cause conflicts in the memory that reduce the processor 
efficiency. 

The present paper rwv proposed a c-independent access order to the vector stream 
elements (SSM). for *hh.h *J! the vector streams of a subfamily reference the memory 
modules with the same order The use of the SSM associated with the proposed 
arbitration algorithm. a*onj\ conflicts when the concurrent access correspond to vector 
streams of the same NuMamtly and the system works loose or tight. The proposal 
significantly reduces conrtKi» lor other types of concurrent accesses. 

The hardware solution th.it generates the SSM and the hardware used to access the 
vector registers have ü iimdct JIC cost. 

The simulations continued that the proposal can achieve the maximum number of 
operations per cycle, and the results showed that the SSM always outperforms the 
classical access, with perlonnance increments between 13% and 152% for 
combinations of even and odd strided vector streams. In the interesting case of the 
concurrent access of 4 one-sirided vector streams the increment in performance is 85%. 
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Abstract Multilevel algorithms are a successful class of optimisation techniques 
which address the mesh partitioning problem. They usually combine a graph con- 
traction algorithm together with a local optimisation method which refines the par- 
tition at each graph level. To date these algorithms have been used almost exclu- 
sively to minimise the cut-edge weight, however it has been shown that for certain 
classes of solution algorithm, the convergence of the solver is strongly influenced 
by the subdomain aspect ratio. In this paper therefore, we modify the multilevel 
algorithms in order to optimise a cost function based on aspect ratio. Several vari- 
ants of the algorithms are tested and shown to provide excellent results. 

1   Introduction 

The need for mesh partitioning arises naturally in many finite element (FE) and finite 
volume (FV) applications. Meshes composed of elements such as triangles or tetrahe- 
dra are often better suited than regularly structured grids for representing completely 
general geometries and resolving wide variations in behaviour via variable mesh densi- 
ties. Meanwhile, the modelling of complex behaviour patterns means that the problems 
are often too large to fit onto serial computers, either because of memory limitations or 
computational demands, or both. Distributingthe mesh across a parallel computer so that 
the computational load is evenly balanced and the data locality maximised is known as 
mesh partitioning. It is well known that this problem is NP-complete, so in recent years 
much attention has been focused on developing suitable heuristics, and some powerful 
methods, many based on a graph corresponding to the communication requirements of 
the mesh, have been devised, e.g. [12]. 

A particularly popular and successful class of algorithms which address this mesh 
partitioning problem are known as multilevel algorithms. They usually combine a graph 
contraction algorithm which creates a series of progressively smaller and coarser graphs 
together with a local optimisation method which, starting with the coarsest graph, refines 
the partition at each graph level. These algorithms have been used almost exclusively 
to minimise the cut-edge weight, a cost which approximates the total communications 
volume in the underlying solver. This is an important goal in any parallel application, 
to minimise the communications overhead, however, it has been shown, [18], that for 
certain classes of solution algorithm, the convergence of the solver is actually heavily 
influenced by the shape or aspect ratio (AR) of the subdomains. In this paper therefore, 
we modify the multilevel algorithms (the matching and local optimisation) in order to 
optimise a cost function based on AR. We also abstract the process of modification in 
order to suggest how the multilevel strategy can be modified into a generic technique 
which can optimise arbitrary cost functions. 
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1.1 Domain decomposition preconditioned and aspect ratio 

To motivate the need for aspect ratio we consider the requirements of a class of solu- 
tion techniques. A natural parallel solution strategy for the underlying problem is to use 
an iterative solver such as the conjugate gradient (CG) algorithm together with domain 
decomposition (DD) preconditioning, e.g. [2]. DD methods take advantage of the par- 
tition of the mesh into subdomains by imposing artificial boundary conditions on the 
subdomain boundaries and solving the original problem on these subdomains, [4]. The 
subdomain solutions are independent of each other, and thus can be determined in par- 
allel without any communication between processors. In a second step, an 'interface' 
problem is solved on the inner boundaries which depends on the jump of the subdomain 
solutions over the boundaries. This interface problem gives new conditions on the inner 
boundaries for the next step of subdomain solution. Adding the results of the third step 
to the first gives the new conjugate search direction in the CG algorithm. 

The time needed by such a preconditioned CG solver is determined by two factors, 
the maximum time needed by any of the subdomain solutions and the number of itera- 
tions of the global CG. Both are at least partially determined by the shape of the subdo- 
mains. Whilst an algorithm such as the multigrid method as the sol ver on the subdomains 
is relatively robust against shape, the number of global iterations are heavily influenced 
by the AR of subdomains, [17]. Essentially, the subdomains can be viewed as elements 
of the interface problem. [7,8], and just as with the normal finite element method, where 
the condition of the matrix system is determined by the AR of elements, the condition 
of the preconditioning matrix is here dependent on the AR of subdomains. 

1.2 Overview 

Below, in Section 2, we introduce the mesh partitioningproblem and establish some ter- 
minology. We then discuss the mesh partitioning problem as applied to-AR optimisation 
and describe how the graph needs to be modified to carry this out. Next, in Section 3, 
we describe the multilevel paradigm and present and compare three possible matching 
algorithms which take account of AR. In Section 4 we then describe a Kernighan-Lin 
(KL) type iterative local optimisation algorithm and describe two possible modifications 
which aim to optimise AR. Finally in Section 5 we compare the results with a cut edge 
partitioner, suggest ho» ihc multilevel strategy can be modified into a generic technique 
and present some ideas tor turther investigation. 

The principal inn<>\ jtions described in this paper are: 

- In §2.2 we destnhc h<<» the graph can be modified to take AR into account. 
- In §3.2 we desoitv three matching algorithms based on AR. 
- In §4.3 we desuitv t»-- »ays of using the cost function to optimise for AR. 
- In §4.4 we desenrx- tv*» the bucket sort can be modified to take into account non- 

integer gains. 

2   The mesh partitioning problem 

To define the mesh partitioning problem, let G = G(\\ E) be an undirected graph of 
vertices V, with edges K ■*. hich represent the data dependencies in the mesh. We assume 
that both vertices and edges can be weighted (with positive integer values) and that \v\ 
denotes the weight of a vertex v and similarly for edges and sets"of vertices and edges. 
Given that the mesh needs to be distributed to P processors, define a partition v to be a 
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mapping of V into P disjoint subdomains SP such that \Jp Sp = V. To evenly balance 
the load, the optimal subdomain weight is given by S := \\V\/P] (where the ceiling 
function \x] returns the smallest integer > x) and the imbalance is then defined as the 
maximum subdomain weight divided by the optimal (since the computational speed of 
the underlying application is determined by the most heavily weighted processor). 

The definition of the mesh-partitioning problem is to find a partition which evenly 
balances the load or vertex weight in each subdomain whilst minimising some cost func- 
tion r. Typically this cost function is simply the total weight of cut edges, but in this 
paper we describe a cost function based on AR. A more precise definition of the mesh- 
partitioning problem is therefore to find IT such that SP < S and such that r is min- 
imised. 

2.1    The aspect ratio and cost function 

We seek to modify the methods by optimising the partition on the basis of AR rather than 
cut-edge weight. In order to do this it is necessary to define a cost function which we seek 
to minimise and a logical choice would be maxp AR(5P), where AR(5P) is the AR of 
the subdomain Sr. However maximum functions are notoriously difficult to optimise 
(indeed it is for this reason that most mesh partitioning algorithms attempt to minimise 
the total cut-edge weight rather than the maximum between any two subdomains) and 
so instead we choose to minimise the average AR 

rM = E^M. (1) 
P 

There are several definitions of AR, however, and for example, for a given poly- 
gon S, a typical definition, [15], is the ratio of the largest circle which can be contained 
entirely within S (inscribed circle) to the smallest circle which entirely contains S (cir- 
cumcircle). However these circles are not easy to calculate for arbitrary polygons and 
in an optimisation code where ARs may need to be calculated very frequently, we do 
not believe this to be a practical metric. It may also fail to express certain irregularities 
of shape. A careful discussion of the relative merits of different ways of measuring AR 
may be found in [ 16] and lor the purposes of this paper we follow the ideas therein and 
define the AR of a given shape by measuring the ratio of its perimeter length (surface 
area in 3d) over that ot some ideal shape with identical area (volume in 3d). 

Suppose then that in 2d the ideal shape is chosen to be a square. Given a polygon S 
with area fiS and perimeter length dS, the ideal perimeter length (the perimeter length 
of a square with area <?>) is 4\/T2S and so the AR is defined as dS/4\/J7S. Alterna- 
tively, if the ideal shape is chosen to be a circle then the same argument gives the AR of 
dS/2y/wQS. In fact, g i ven the definition of the cost function (1) it can be seen that these 
two definitions will produce the same optimisation problem (and hence the same results) 
with the cost just modified by a constant C (where C = 1/4 for the square and \/2y/n 
for circle). These definitions of AR are easily extendible to 3d and given a polyhedron 
S with volume QS and surface area dS, the AR can be calculated as CdS/{QS)2^3, 
where C — 1/4 if the cube is chosen as the optimal shape and C = l/(47r)1/,332^3 for 
the sphere. Note that henceforth, in order to talk in general terms for both 2d & 3d, given 
an object S we shall use the terms dS or surface for the surface area (3d) or perimeter 
length (2d) of the object and f?S or volume for the volume (3d) or area (2d). 
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Of the above definitions of AR we choose to use the square/cube based formulae for 
two reasons; firstly because we are attempting to partition a mesh into interlocking sub- 
domains (and circles/spheres are not known for their interlocking qualities) and secondly 
because it gives a convenient formula for the cost function of: 

r     --T 1  k'ill|*ik-   —    . ,   /   j 

dSv 

(VSP 

(2) 

where C = 2dP and d (= 2 or 3) is the dimension of the mesh. We refer to this cost 
function as f(„„,lak. or F, because of the way it tries to match shapes to chosen templates. 

In fact, it will turn out (see for example §3.2) that even this function may be too 
complex for certain optimisation needs and we can define a simpler one by assuming 
that all subdomains have approximately the same volume, ÜSP w QM/P, where QM 
is the total volume of the mesh. This assumption may not necessarily be true, but it is 
likely to be true locally (see §4.5). We can then approximate (2) by 

p 
*■ lemplntc  ■ -    f 7üT,ds* (3) 

where C = 2dP*{QM) — . This can be simplified still further by noting that the 
surface of each subdomain SP consists of two components, the exterior surface, deSP, 
where the surface of the subdomain coincides with the surface of the mesh dM, and the 
interior surface, d'SP, where SP is adjacent to other subdomains and the surface cuts 
through the mesh. Thus we can break the £p dSP term in (3) into two parts £ d'SP 
and EP d

eSp and simplify (3) further by noting that £p d
eSP is just dM, the exterior 

surface of the mesh M. This then gives us a second cost function to optimise: 

r, LV = -L^ö*'S'p + 7v5 
A"i 

(4) 

where A'i  = 2dP1« (QM)^1 and A"2 = dM/Ki. We refer to this cost function as 
r«m»x or r, because it is just concerned with optimising surfaces. 

2.2   Modifying the graph 

Fig.l. Left to right: a simple mesh (a), its dual (b), the same mesh with combined elements (c) 
and its dual (d) 
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To use these cost functions in a graph-partitioning context, we must add some additional 
qualities to the graph. Figure 1 shows a very simple mesh (la) and its dual graph (lb). 
Each element of the mesh corresponds to a vertex in the graph. The vertices of the graph 
can be weighted as is usual (to carry out load-balancing) but in addition, vertices store 
the volume and total surface oftheircorresponding element (e.g. Qv\ = Qtianddvi = 
dei). We also weight the edges of the graph with the size of the surface they correspond 
to. Thus, in Figure 1, if D(b, c) refers to the distance between points b and c, then the 
weight of edge (ri.tw) is set to D{b,c). In this way, for vertices Vj corresponding to 
elements which have no exterior surface, the sum of their edge weights is equivalent 
to their surface (or,- = YIE \{l'i>vi)\)- Thus for vertex i>2, <9i'2 = de2 — D{b,c) + 
D(c, e) + D(e, b) = |(t.-2, t>i)| + |(t>2, v3)\ + |(t>2, v5)|. 

When it comes to combining elements together, either into subdomains, or for the 
multilevel matching (§3) these properties, volume and surface can be easily combined. 
Thus in Figure lc where E\ = e\-\- e4, En = 63 + e5 and E3 — e$ we see that volumes 
can be directly summed, for example QV\ = QE\ = Qt\ + ße4 = Qv\ + Üv4, as can 
edge weights, e.g. |(V'i. V'2)| = D(b,c) + D(c, d) = j(vi, v2)| + 1(^4, vs)|- The surface 
of a combined object S is the sum of the surfaces of its constituent parts less twice the 
interior surface, e.g. d\\ = dE\ = ctei+<9e4-2 x D(a,c) = dv\ + di>i -2\{vu t'4)|. 
These properties are very similar to properties in conventional graph algorithms, where 
the volume combines in the same way as weight and surfaces combine as the sum of edge 
weights (although including an additional term which expresses the exterior surface de). 
The edge weights function identically. 

Note that with these modifications to the graph, it can be seen that if we optimise 
using the r, cost function (4), the AR mesh partitioning problem is identical to the cut- 
edge weight mesh partitioning problem with a special edge weighting. However, the in- 
clusion of non integer edge weights does have an effect on the some of the techniques 
that can be used (e.g. see §4.4). 

2.3    Testing the algorithms 

Table 1. Test meshes 
mesh      no vertices 10. edges              type aspect ratio mesh grading 

uk 4824 6837   2d triangles 3.39 7.98e+02 
t60k 60005 89440   2d triangles 1.60 2.00e+00 
dime20 224843 336024   2d triangles 1.87 3.70e+03 
cs4 22499 43858 3d tetrahedra 1.07 9.64e+0l 
mesh 100 103081 200976 3d tetrahedra 1.63 2.45e+02 
cyl3 232362 457853 3d tetrahedra 1.28 8.42e+00 

Throughout this paper we compare the effectiveness of different approaches using a 
set of test meshes. The algorithms have been implemented within the framework of JOS- 
TLE, a mesh partitioning software tool developed at the University of Greenwich and 
freely available for academic and research purposes under a licensing agreement (avail- 
able from http: //www.gre.ac .uk/~c.walshaw/ jostle). The experiments 
were carried out on a DEC Alpha with a 466 MHz CPU and 1 Gbyte of memory. Due 
to space considerations we only include 6 test meshes but they have been chosen to be 
a representative sample of medium to large scale real-life problems and include both 2d 
and 3d examples. Table 1 gives a list of the meshes and theirsizes in terms of the number 
of vertices and edges. The table also shows the aspect ratio of each entire mesh and the 
mesh grading, which here we define as the maximum surface of any element over the 
minimum surface, and these two figures give a guide as to how difficult the optimisation 
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may be. For example, 'uk' is simply a triangulation of the British mainland and hence 
has a very intricate boundary and therefore a high aspect ratio. Meanwhile, 'dime20' 
which has a moderate aspect ratio, has been very heavily refined in parts and thus has 
a high mesh grading - the largest element has a surface around 3,700 times larger than 
that of the smallest. 

Table 2. Final results using template cost matching and surface gain/template cost optimisation 
P = i6 P = 32      P = 64      P = 128 

mesh   r, \Ec\ t*   r, \EC\    t,  r,  \EC\    t,  n  \Ec\    t, 
uk    1.48 206 0.12 1.31 331 0.12 1.23 543 0.22 1.25 917 0.50 
t60k   1.16 1003 1.63 1.10 1547 2.07 1.11 2437 2.33 1.11 3647 2.65 
dime20 1.22 1623 5.78 1.20 2868 5.17 1.15 4406 5.70 1.12 6620 7.57 
cs4   1.22 2727 0.85 1.22 3738 0.90 1.23 5066 1.12 1.23 6747 1.60 
mesh 100 1.25 5950 3.20 1.24 8752 3.53 1.26 12467 4.13 1.28 17346 5.13 
cyl3   1.21 11141 10.05 1.21 15944 10.77 1.23 22378 13.02 1.22 29719 13.18 

Table 2 shows the results of the final combination of algorithms - TCM (see §3.2) 
and SGTC (see §4.3) - which were chosen as a benchmark for the other combinations. 
For the 4 different values of P (the number of subdomains), the table shows the average 
aspect ratio as given by f,. the edge cut \EC\ (that is the number of cut edges, not the 
weight of cut edges weighted by surface size) and the time in seconds, ts, to partition 
the mesh. Notice that with the exception of the 'uk' mesh, all partitions have average 
aspect ratios of less than 1.30 which is well within the target range suggested in [6]. 
Indeed for the 'uk' mesh it is no surprise that the results are not optimal because the 
subdomains inherit some of the poor AR from the original mesh (which has an AR of 
3.39) and it is only when the mesh is split into small enough pieces, P = 64 or 128, that 
the optimisation succeeds in ameliorating this effect. Intuitively this also gives a hint as 
to why DD methods are a very successful technique as a solver. 

3   The multilevel paradigm 

In recent years it has been recognised that an effective way of both speeding up partition 
refinement and, perhaps more importantly giving it a global perspective is to use multi- 
level techniques. The idea is to match pairs of vertices to form clusters, use the clusters to 
define a new graph and recursively iterate this procedure until the graph size falls below 
some threshold. The coarsest graph is then partitioned and the partition is successively 
optimised on all the graphs starting with the coarsest and ending with the original. This 
sequence of contraction followed by repeated expansion/optimisation loops is known as 
the multilevel paradigm and has been successfully developed as a strategy for overcom- 
ing the localised nature of the KL (and other) optimisation algorithms. The multilevel 
idea was first proposed by Barnard & Simon, [1], as a method of speeding up spectral 
bisection and improved by Hendrickson & Leland, [11], who generalised it to encom- 
pass local refinement algorithms. Several algorithms for carrying out the matching have 
been devised by Karypis & Kumar, [13], while Walshaw & Cros~s describe a method for 
utilising imbalance in the coarsest graphs to enhance the final partition quality, [19]. 

3.1    Implementation 

Graph contraction. To create a coarser graph 6'/+i (V'/+i, Ei+1) from 6'/(V}, E-t) we 
use a variant of the edge contraction algorithm proposed by Hendrickson & Leland, 
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[11]. The idea is to find a maximal independent subset of graph edges, or a matching 
of vertices, and then collapse them. The set is independent because no two edges in 
the set are incident on the same vertex (so no two edges in the set are adjacent), and 
maximal because no more edges can be added to the set without breaking the indepen- 
dence criterion. Having found such a set, each selected edge is collapsed and the vertices, 
ui, «2 £ Vi say, at either end of it are merged to form a new vertex v G Vi+\ with weight 
\v\ = |MI| -+- |M2|- 

The initial partition. Having constructed the series of graphs until the number of 
vertices in the coarsest graph is smaller than some threshold, the normal practice of the 
multilevel strategy is to carry out an initial partition. Here, following the idea of Gupta, 
[10], we contract until the number of vertices in the coarsest graph is the same as the 
number of subdomains, P, and then simply assign vertex i to subdomain 5,-. Unlike 
Gupta, however, we do not carry out repeated expansion/contraction cycles of the coars- 
est graphs to find a well balanced initial partition but instead, since our optimisation al- 
gorithm incorporates balancing, we commence on the expansion/optimisation sequence 
immediately. 

Partition expansion. Having optimised the partition on a graph Gi, the partition 
must be interpolated onto its parent Gi-\. The interpolation itself is a trivial matter; if 
a vertex i> G V\ is in subdomain SP then the matched pair of vertices that it represents, 
vi, t>2 £ l';-i, will be in Sr. 

3.2    Incorporating aspect ratio 

The matching part of the multilevel strategy can be easily modified in several ways to 
take into account AR and in each case the vertices are visited (at most once) using a 
randomly ordered linked list. Each vertex is then matched with an unmatched neighbour 
using the chosen matching algorithm and it and its match removed from the list. Vertices 
with no unmatched neighbours remain unmatched and are also removed. In addition to 
Random Matching (RM), [12], where vertices are matched with random neighbours, 
we propose and have tested 3 matching algorithms: 

Surface Matching (SM). As we have seen in §2.2, the AR partitioning problem can 
be approximated by the cut-edge weight problem using (4), the Ts cost function, and 
so the simplest matching is to use the Heavy Edge approach of Karypis & Kumar, [ 13], 
where the vertex matches across the heaviest edge to any of its unmatched neighbours. 
This is the same as matching across the largest surface (since here edge weights represent 
surfaces) and we refer to this as surface matching. 

Template Cost Matching (TCM). A second approach follows the ideas of Bouh- 
mala, [3], and matches with the neighbour which minimises the cost function. In this 
case, the chosen vertex matches with the unmatched neighbour which gives the result- 
ing element the best aspect ratio. Using the rt cost function, we refer to this as template 
cost matching. 

Surface Cost Matching (SCM). This is the same idea as TCM only using the Ts 

cost function, (4), which is faster to calculate. 

3.3    Results for different matching functions 

In Tables 3,4 & 5 we compare the results in Table 2, where TCM was used, with RM, SM 
& SCM respectively. In all cases the SGTC optimisation algorithm (see §4.3) was used. 
For each value of P, the first column shows the average AR, r, of the partitioning. The 
second column for each value of P then compares results with those in Table 2 using the 
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metric JCM for RM, etc. Thus a figure > 1 means that RM has produced worse 

results than TCM. These comparisons are then averaged and so it can be seen, e.g. for 
P = 16 that RM produces results 24% (1.24) worse on average than TCM. Indeed the 
average quality of partitions produced by RM was 30% worse than TCM. This is not 
altogether surprising since the AR of elements in the coarsest graph could be very poor 
if the matching takes no account of it, and hence the optimisation has to work with badly 
shaped elements. 

Table 3. Random matching results compared with template cost matching  

P = 16 P = 32 P = 64 P = 128 

tnMh        r     ^(RM)-'    r     r(RM)-i    r    r(RMi-i    r    r(RM)-i 
mesh       r>   nTCM)-i   r'   r(TCM,-i   r"   r(TCM)-i   r<   nTCM)- )-i 

uk 1.50       1.04       1.38       1.25       1.25       1.06       1.23      0.91 
t60k        1.20       1.28       1.16       1.59       1.17       1.53       1.17       1.54 
dime20   1.30 1.37 1.31 1.57 1.27 1.79 1.23 1.89 
cs4         1.29 1.31 1.27 1.21 ■ 1.30 1.30 1.26 1.15 
mesh 100 1.31 1.24 1.29 1.24 1.31 1.19 1.32 1.15 
cyl3        1.25 1.19 1.25 1.19 1.26 1.15 1.27 1.22 
Average 1.24 1.34 1.34 1.31 

When it comes to comparing TCM with SM & SCM (Tables 4 & 5) there is actually 
very little difference; SM is about 3.5% worse and SCM only about 1.5%. This suggests 
that the multilevel strategy is relatively robust to the matching algorithm provided the 
AR is taken into account in some way. 

Table 4. Surface matching results compared with template cost matching  
P = 16 P = 32 P = 64 P = 128 

mesh r-     f(SM)-i     r     r(SM)-i     p     r(SM)-i     r     nSM)-i 
 '   TTrefcTPT  l<   rfTCM)-i   r'   r(TCM)-i   F<   ITJTfc 

uk            1.54 1.13 1.34 1.11 1.24 1.01 1.28 1.10 
t60k         1.14 0.87 1.11 1.05 1.12 1.10 1.12 1.08 
dime20   1.26 1.18 1.24 1.23 1.15 1.00 1.13 1.04 
cs4         1.22 0.97 1.24 1.08 1.24 1.04 1.23 1.00 
meshlOOl.20 0.78 1.24 1.03 1.27 1.04 1.26 0.94 
cy!3         1.19 0.93 1.21 1.02 1.24 1.05 1.24 1.08 
Average 0.98 1.08 L04 1.04 

Table 5. Surface cost matching results compared with template cost matching 
P = 16 P = 32 P = 64 P = 128 

mesh r    r'SCM)-i    r    r(SCM)-i    r    r(SCM)-i    r    r(SCM)-i 
mesh       r<   TTTüKTirT   r<   r(TCM)-i   Ft   nTCM)-i   F'   nTCM)-i 

1.14 1.25 0.98 
1.23 1.13 1.14 
0.93 1.13 1.02 
1.03 1.23 1.00 
0.99 1.27 0.97 
1.02 1.24 1.06 
 LOji 1.03 

We are not primarily concerned with partitioning times here, but for the record, RM 
was about 0.5% slower than TCM (although this is well within the limits of noise). This 
is because the optimisation stage took considerably longer (although the matching was 

uk            1.47 0.99       1 31 1.00 1.27 
t60k         1.11 0.69       1 10 0.99 1.14 
dime20    1.23 1.06       1 18 0.91 1.14 
cs4          1.23 1.04       1 23 1.04 1.24 
mesh 100 1.23 0.91        1 25 1.07 1.25 
cyl3         1.22 1.06        1 23 1.10 1.23 
Averace 0.96 1.02 
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much faster than TCM). SM & SCM were 3.3% & 1.8% faster respectively than TCM. 
Overall this suggests that TCM is the algorithm of choice although there is little benefit 
over SM & SCM. 

4   The Kernighan-Lin optimisation algorithm 

In this section we discuss the key features of an optimisation algorithm, fully described 
in [19] and then in §4.3 describe how it can bemodified to optimise for AR. It is a 
Kernighan-Lin (KL) type algorithm incorporating a hill-climbing mechanism to enable 
it to escape from local minima. The algorithm uses bucket sorting (§4.4), the linear time 
complexity improvement of Fiduccia & Mattheyses, [9], and is a partition optimisation 
formulation; in other words it optimises a partition of P subdomains rather than a bisec- 
tion. 

4.1    The gain function 

A key concept in the method is the idea of gain. The gain g(v. q) of a vertex v in sub- 
domain SP can be calculated for every other subdomain, Sq, q ^ p, and expresses how 
much the cost of a given partition would be improved were v to migrate to Sq. Thus, 
if K denotes the current partition and n' the partition if v migrates to Sq then for a cost 
function /\ the gain g(v, q) = r(ff') - r(7r). Assuming the migration oft' only affects 
the cost of SP and Sg (as is true for rt and T,) then we get 

g(v, q) = AR{Sg + v) - AR(Sq) + AR{SP - v) - AR(SP). (5) 

For Ft this gives an expression which cannot be further simplified, however, for rs, 
since 

AR(Sq + v) - AR(Sq) = — {tfiSq + v) - d'Sg} 
A" 

= ^-{diSg + dir-2\(S,,.v)\-diSq} 
Al 

= -L{ö'V-2|(S',.«)|} 
Al 

(where \(Sq, v)\ dem*c\ th* «.urn of edge weights between Sq and v), we get 

......  >,) = -^{\(SP,v)\-\(Sgiv)\) (6) 
Ai 

Noticeinparticularih.it v . . is the same as the cut-edge weight gain function and that it 
is entirely localised, u- ihc am of a vertex only depends on the length of its boundaries 
with a subdomain ;ind noi >n .my intrinsic qualities of the subdomain which could be 
changed by non-local mitrrjiion. 

4.2    The iterative optimisation algorithm 

The serial optimisation algorithm, as is typical for KL type algorithms, has inner and 
outer iterative loops with the outer loop terminating when no migration takes place dur- 
ing an inner loop. The optimisation uses two bucket sorting structures or bucket trees 
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(see below, §4.4) and is initialised by calculating the gain tor all border vertices and in- 
serting them into one of the bucket trees. These vertices will subsequently be referred to 
as candidate vertices and the tree containing them as the candidate tree. 

The inner loop proceeds by examining candidate vertices, highest gain first (by al- 
ways picking vertices from the highest ranked bucket), testing whether the vertex is ac- 
ceptable for migration and then transferring it to the other bucket tree (the tree of exam- 
ined vertices). This inner loop terminates when the candidate tree is empty although it 
may terminate early if the partition cost (i .e. the number of cut edges) rises too far above 
the cost of the best partition found so far. Once the inner loop has terminated any vertices 
remaining in the candidate tree are transferred to the examined tree and finally pointers 
to the two trees are swapped ready for the next pass through the inner loop. 

The algorithm also uses a KL type hill-climbing strategy; in other words vertex mi- 
gration from subdomain to subdomain can be accepted even if it degrades the parti- 
tion quality and later, based on the subsequent evolution of the partition, either rejected 
or confirmed. During each pass through the inner loop, a record of the optimal parti- 
tion achieved by migration within that loop is maintained together with a list of vertices 
which have migrated since that value was attained. If subsequent migration finds a 'bet- 
ter' partition then the migration is confirmed and the list is reset. Once the inner loop 
is terminated, any vertices remaining in the list (vertices whose migration has not been 
confirmed) are migrated back to the subdomains they came from when the optimal cost 
was attained. 

The algorithm, together with conditions for vertex migration acceptance and confir- 
mation is fully described in [19]. 

4.3    Incorporating aspect ratio: localisation 

One of the advantages of using cut-edge weight as a cost function is its localised nature. 
When a graph vertex migrates from one subdomain to another, only the gains'of adja- 
cent vertices are affected. In contrast, when using the graph to optimise AR, if a vertex v 
migrates from Sr to Sq, the volume and surface of both subdomains will change. This in 
turn means that, when using the template cost function (2), the gain of all border vertices 
both within and abutting subdomains Sp and Sq will change. Strictly speaking, all these 
gains should be adjusted with the huge disadvantage that this may involve thousands of 
floating point operations and hence be prohibitively expensive. As an alternative, there- 
fore, we propose two localised variants: 

Surface Gain/Surface Cost (SGSC). The simplest way to localise the updating of 
the gains is to make the assumption in §2.1 that the subdomains all have approximately 
equal volume and to use the surface cost function f, from (4). As mentioned in §2.2 the 
problem immediately reduces to the cut-edge weight problem, albeit with non-integer 
edge weights, and from (6) only the gains of the vertices adjacent to the migrating vertex 
will need updating. However, if this assumption is not true, it is not clear how well rt 

will optimise the AR and below we provide some experimental results. 
Surface Gain/Template Cost (SGTC). The second method we propose for localis- 

ing the updates of gain relies on the observation that the gain is simply used as a method 
of rating the elements so that the algorithm always visits those with highest gain first 
(using the bucket sort). It is not clear how crucial this rating is to the success of the al- 
gorithm and indeed Karypis & Kumar demonstrated that (at least when optimising for 
cut-edge weight) almost as good results can be achieved by simply visiting the vertices 
in random order, (14]. We therefore propose approximating the gain with the surface cost 
function rt from (4) to rate the elements and store them in the bucket tree structure, but 
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using the template cost function rt from (2) to assess the change in cost when actually 
migrating an element. This localises the gain function. 

4.4 Incorporating aspect ratio: bucket sorting with non-integer gains 

The bucket sort is an essential tool for the efficient and rapid sorting and adjustment of 
vertices by their gain. The concept was first suggested by Fiduccia & Mattheyses in [9] 
and the idea is that all vertices of a given gain g are placed together in a 'bucket' which 
is ranked g. Finding a vertex with maximum gain then simply consists of finding the 
(non-empty) bucket with the highest rank and picking a vertex from it. If the vertex is 
subsequently migrated from one subdomain to another then the gains of any affected 
vertices have to be adjusted and the list of vertices which are candidates for migration 
resorted by gain. Using a bucket sort for this operation simply requires recalculating the 
gains and transferring the affected vertices to the appropriate buckets. If a bucket sort 
were not used and, say, the vertices were simply stored in a list in gain order, then the 
entire list would require resorting (or at least merge-sorting with the sorted list of ad- 
justed vertices), an essentially 0{N) operation for every migration. 

The implementation of the bucket sort is fully described in [ 19]. It includes a ranking 
for prioritising vertices for migration which incorporates their weight as well as their 
gain. The non-empty buckets are stored in a binary-tree to save excessive memory use 
(since we do not know a priori how many buckets will be needed) and this structure is 
referred to above as a bucket tree. 

The only difficulty in adapting this procedure to AR optimisation is that with non- 
integer edge weight, the gains are also real non-integer numbers. This is not a major 
problem in itself as we can just give buckets an interval of gains rather than a single in- 
teger, i.e. the bucket ranked 1 could contain any vertex with gain in the interval [1.0,2.0). 
However, if using the surface gain function, the issue of scaling then arises since for a 
mesh entirely contained within the unit square/cube, all the vertices are likely to end up 
in one of two buckets (dependent only on whether they have positive or negative gains). 
Fortunately, if using T, as a gain function, as in SGSC and SGTC, we can easily calcu- 
late the maximum possible gain. This would occur if the vertex with the largest surface, 
v G SP say, were entirely surrounded by neighbours in Sq. The maximum possible gain 
is then 2 max„er dv (strictly speaking 2 max„6y d'v) and similarly the minimum gain 
is -2 max,,e v dv. This means we can easily choose the number of buckets and scale the 
gain accordingly. A problem still arises for meshes with a high grading because many 
of the elements will have an insignificant surface area compared to the maximum. How- 
ever the experiments carried out here all used a scaling which allowed a maximum of 
100 buckets and we have tested the algorithm with up to 10,000 buckets without signif- 
icant penalty in terms either memory or run-time. 

4.5 Results for different optimisation functions 

Table 6 compares SGSC against the SGTC results in Table 2. Both set of results use 
template cost matching (TCM). The table is in the same form as those in §3.3 and shows 
that there is on average only a tiny difference between the two (SGTC is 0.5% better than 
SGSC) and again, with the exception of the 'uk' mesh for P = 16 & 32, all results have 
an average AR of less than 1.30. This implication of this table is that the assumption 
made in §2.1, that all subdomains have approximately the same volume, is reasonably 
good. However this assumption is not necessarily true, because for example, for P = 
128, the 'dime20' mesh, with its high grading, has a ratio of maxi?Sr/ minfiSp = 
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2723. A possible explanation is that although the assumption is false globally, it is true 
locally, since the mesh density does not change too gradually (as should be the case with 
most meshes generated by adaptive refinement) and so the volume of each subdomain 
is approximately equal to that of its neighbours. 

Table 6. Surface gain/surface cost optimisation compared with surface gain/template cost 
P = 16 P = 32 P = 64 P = 128 

mesh r, n 
SGSC)-i - r, r 

n 
SGSC)-i 
SGTC)- • r, r 

r 
SGSC)-i 
SGTC)-! r, r(SGSC)-i 

r(SÜTC)-i 

uk 1.49 1.02 1.32 1.05 1.24 1.02 1.23 0.92 
t60k 1.15 0.95 1.10 0.96 1.12 1.07 1.12 1.11 
dime20 1.23 1.03 1.17 0.86 1.15 0.98 1.11 0.91 
cs4 1.20 0.90 1.23 1.05 1.24 1.03 1.22 0.97 
mesh 100 1.24 0.95 1.26 1.10 1.27 1.06 1.27 0.97 
cy!3 1.23 1.10 1.22 1.08 1.24 1.06 1.22 1.00 
Average 0.99 1.01 1.04 0.98 

Again we are not not primarily concerned with partitioning times, but it was surpris- 
ing to see that SGSC was an average 30% slower than SGTC. A possible explanation is 
that although the cost function F, is a good approximation, r, is a more global function 
and so the optimisation converges more quickly. 

5   Discussion 

5.1    Comparison with cut-edge weight partitioning 

In Table 7 we compare AR as produced by the edge cut partitioner (EC) described in 
[ 19] with the results in Table 2. On average AR partitioning produces results which are 
16% better than those of the edge cut partitioner (as could be expected). However, for 
the mesh 'cs4' EC partitioning is consistently better and this is a subject for further in- 
vestigation. 

Table 7. AR result-, tor the edec cut partitioner compared with the AR partitioner 
P = i. /' = 32 P = 64 P = 128 

mesh r    rEC - 
''   r.AR - 

,      r(EC)-i 
''   /.AR,-, ■ r, r(EC)-i 

r(AR)-i ■ r, 

1.28 

r(EC)-i 
r(ARi-i 

uk 1.52     Mi" ' "      1.07 1.26 1.09 1.14 
t60k 1.19      1 l» ■    «      1.76 1.17 1.47 1.17 1.55 
dime20 1.32      14« ■ >      1.34 1.25 1.65 1.21 1.72 
cs4 1.19     <)** ' :.      0.93 1.20 0.87 1.21 0.92 
mesh 100 1.22     0 v> i ;:    0.91 1.26 1.03 1.24 0.86 
cy!3 1.22      l.oi 1.09 1.23 1.00 1.23 1.02 
Average !.(>«> 1.18 1.19 1.20 

Meanwhile in Table K »t compare the edge cut produced by the EC partitioner with 
that of the AR partitioner Again as expected. EC partitioning produces the best results 
(about 11 % better than AR i In terms of time, the EC partitioner is about 26% faster than 
AR on average. Again this is no surprise since the AR partitioninginvol ves floating point 
operations (assessing cost and combining elements) while EC partitioning only requires 
integer operations. 
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Table 8. |£r| results for the edge cut partitioner compared with the AR partitioner 

P = 16 P = 32 P = 64 P = 1 28 

mesh \Ec\ |£ 
IE 

l(RM) 
-I(AR) \Ec\ 

|£cl(RM) 
|£cl(AR) \Ec\ 

|£cl(RM) 
|Ecl(AR) \E,:\ IE. 

|(RM) 
l(AR) 

uk 189 0.92 290 0.88 478 0.88 845 0.92 
t60k 974 0.97 1588 1.03 2440 1.00 3646 1.00 
dime20 1326 -0.82 2294 0.80 3637 0.83 5497 0.83 
cs4 2343 0.86 3351 0.90 4534 0.89 6101 0.90 
mesh 100 4577 0.77 7109 0.81 10740 0.86 14313 0.83 
cyl3 10458 0.94 14986 0.94 20765 0.93 27869 0.94 

Average 0.88 0.89 0.90 0.90 

5.2   Generic multilevel mesh partitioning 

In this paper we have adapted a mesh partitioning technique originally designed to solve 
the edge cut partitioning problem to a different cost function. The question then arises, 
is the multilevel strategy an appropriate technique for solving partitioning problems (or 
indeed other optimisation problems) with different cost functions? Clearly this is an im- 
possible question to answer in general but a few pertinent remarks can be made: 

- For the AR based cost functions at least, the method seems relatively sensitive to 
whether the cost is included in the matching. This suggests that, if possible, a generic 
multilevel partitioner should use the cost function to minimise the cost of the match- 
ings. Note, however, that this may not be possible as a cost function which, say, mea- 
sured the cost of a mapping onto a particular processor topology would be unable 
to function since at the matching stage no partition, and hence no mapping exists. 

- The optimisation relies, for efficiency at least, on having a local gain function in 
order that the migration of a vertex does not involve an 0(N) update. Here we were 
able to localise the cost function by making a simple approximation to give a local 
gain function, however, it is not clear that this is always possible. 

- The bucket sort is reasonably simple to convert to non-integer gains, however this 
relies on being able to estimate the maximum gain. If this is not possible it may not 
be easy to generate a good scaling which separates vertices of different gains into 
different buckets. 

5.3    Conclusion and future research 

We have shown that the multilevel strategy can be modified to optimise for aspect ra- 
tio. To fully validate the method, however, we need to demonstrate that the measure of 
aspect ratio used here does indeed provide the benefits for DD preconditioned that the 
theoretical results suggest. It is also desirable to measure the correlation between aspect 
ratio and convergence in the solver. 

Also, although parallel implementations of the multilevel strategy do exist, e.g. [20], 
it is not clear how well AR optimisation, with its more global cost function, will work in 
parallel and this is another direction for future research. Some related work already ex- 
ists in the context of a parallel dynamic adaptive mesh environment, [5,6,16], but these 
are not multilevel methods and it was necessary to use a combination of several com- 
plex cost functions in order to achieve reasonable results so the question arises whether 
multilevel techniques can help to overcome this. 
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Visualization of HPF data mappings and of their 
communication cost 

Christian Lefebvre * and Jean-Luc Dekeyser 

Laboratoire d'Informatique Fondamentale de Lille Universite des Sciences et 
Technologies de Lille, France 

Abstract. HPF-BuiLDER graphical environment provides an interac- 
tive and visual solution to edit and visualize HPF data mapping direc- 
tives. It frees the HPF programmers of edl the syntactic constraints. Gen- 
eral and detailled visualizations give complete information about data 
distribution along the grids of processors. 
Compare several mappings implies to evaluate some statistics about load 
distribution and communications. This paper introduces an evolution of 
HPF-BuiLDER which produces such statistics, and provides a graphical 
way to visualize them. 

1    Introduction 

With the emergence of parallel and massively parallel machines and of clusters 
of communicating computers, where the memory is physically distributed on a 
large number of processors, new parallel programming techniques have appeared. 

With data parallel model, the program is replicated over all the processors, 
and vectors or matrices are distributed across them, parallel operations being 
processed simultaneously by each processor. 

Data parallelism is well suited in the domain of scientific computing: algo- 
rithms have to manage with large regular data structures (vector, matrix), and 
the same treatment has to be achieved onto each item of the structures. 

The expression of parallelism at the data level has the advantage of main- 
taining a single control flow. A data parallel algorithm consists of a sequence of 
elementary instructions applied to scalar or parallel data. 

As FORTRAN is the standard language for scientific computing, FORTRAN 90, 
a data parallel extension, has been developed. It allows programmers to benefit 
of the data parallel model without having to rewrite their codes in a completly 
new language. 

FORTRAN 90 promotes arrays as global parallel entities. It supports array 
expressions and proposes restructuring operations onto them (gather, scatter, 
reductions ...). 

The compilation for distributed memory machines relies on the notion of 
data distribution by the use of mapping directives. These directives specify sets 
of elementary data that should be allocated on the same processor. HPF (High 

tel.: +33-3 20 43 47 30, fax.: +33-3 20 43 65 66, e-mail:lefebvreolifl.fr 
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Performance FORTRAN) [6,7] is an example of this approach and seems to be 
becoming the most popular language for data parallel scientific programming. 

A distributed data parallel algorithm designer usually starts from a FOR- 

TRAN 90 code and inserts HPF directives respecting the HPF syntactic rules. 
The FORTRAN 90 parts express the data parallel algorithm itself and the HPF 
directives ensure the mapping of the data without semantic contribution. The ef- 
fects of these directives are essential in balancing between the parallel processing 
and communications. The programmer has to insert by hand all these mapping 
directives. Therefore the scientific programmer must learn a third generation 
dialect of FORTRAN to take advantage of parallel machines. 

Furthermore, the programmer have to evaluate himself the accuracy of his 
mappings. 

Like FORTRAN 90, HPF supports regular data structures (multi-dimensional 
arrays). Furthermore, HPF provides a geometrical support to express the distri- 
bution of data among grids of abstract processors. 

The expression of parallelism at the data level allows the programmer to 
have a visual perception of the distribution of data in space (at least for 1, 2 
and 3-dimensional arrays and grids). Often programmers use papers and colour 
pencils to draw and improve their mapping before translating the drawing into 
HPF directives. 

The first goal of the HPF-BuiLDER project[5] is to provide a tool to help 
the programmer at this level. It proposes to replace the paper and pencils by a 
screen and a mouse. Then it automatically generates the HPF directives from 
the drawing. 

HPF-BUILDER graphical environment frees the programmer from all the 
syntactic constraints due to the data mapping. Furthermore, it verifies the co- 
herence of mappings and avoids errors (like shifts in indices) during the phase 
of translation from drawing to HPF code. 

HPF-BUILDER respects the hierarchical HPF programming model (arrays 
aligned together, or with templates, and distribution of them into virtual proces- 
sor grids). For each level, HPF-BuiLDER provides a graphical interactive editor. 
In a WYSIWYG way each editor is able to generate the appropriate directives 
according to the data manipulation of the programmer. 

2    The hierarchical HPF programming model 

A complete use of HPF directives respects a three level hierarchical approach 
(see figure 1). 

For each operation in the code involving data parallel handling, remote ac- 
cesses imply communications. In order to minimize this overcost, programmers 
need to specify how each part of arrays has to be placed relatively to other ones. 
HPF alignment directives implement these specifications. 

The second level is the template, with which arrays are aligned. 
The third level, the processors, defines multidimensionnal grids of abstract 

processors into which the templates are distributed. 
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Fig. 1. Hierarchical HPF programming model 

It is the compiler charge (eventually helped by compiler specific directives) 
to decide which physical computation node will correspond to a given processors 
item. 

This construction ensures a progressive refinement of the data mapping on 
the physical processors. In this way the programmer is able to group in the same 
template all the arrays that interact. It avoids a number of levels due to array 
with array alignments. 

This three level hierarchy is the more complete use of HPF directives. HPF 
directives as alignment between arrays, or distribution of arrays directly onto 
processors can bypass the template definition. 

All of these directives are supported by HPF-BuiLDER. 

3    Graphical interfaces and HPF 

To replace papers and pencils, a graphical editor has to provide several features: 

- a display of the source code and/or a summary of its syntactic architecture 
(modules, subroutines, array declarations ...), 

- a global view of the hierarchical HPF construction, 
- a general visualization of each directive, 
- a detailed visualization, with the possibility of tracing the mapping of each 

item of objects, 
- a WYSIWYG editing of mapping HPF directives, 
- a graphical tool to visualize and modify existing directives, 
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- the automatic generation of the HPF directives, 

- the interpretation of directives to help the programmer in evaluating the 
quality of mappings (array load balancing on virtual processors, evaluation 
of the redistribution and realignment cost in "term of communications ...). 

A few visual tools already exist to help the HPF programmers. Some of them 
are limited to visualization, they do not help with directive editing. 
It's the case of Annai/DDV[4], developped at CSSE/NEC, which allows to visu- 
alize distributed data. It is integrated into a debugger, which implies to execute 
the code. Its goal is more to look at data values than at their mappings. 

Often, such tools need to execute the code to process effectively the data 
mapping. 
For example, DAQV[11] or Prism[12], allows to trace communications at runtime, 
and to generate accurate statistics, but the user has to execute heavy codes with 
large amount of data, for each mapping he wants to test. 

We prefer to evaluate the mapping during the editing phase. 

Another limitation we want to avoid is to be dedicated to a particular com- 
piler, as GDDT[8] does into the Vienna Fortran environment. It is well suited to 
visualize mapping onto physical processors, and to generate real communication 
statistics, but it limits the user to a particular kind of targets. 

Lastly, our goal is to work only on mapping, and not on the code production. 
We don't wish a complete visual programming solution, like HELP-DRAW [1], 
where the user programs everything from scratch to get automatical}' a HPF 
code. 

4    HPF-Builder 

HPF-BuiLDER is built according to the HPF programming model. For each level 
of the data mapping hierarchical representation a graphical editor is defined to 
visualize and modify in a WYSIWYG way the corresponding HPF directives. This 
procures a step by step transformation from a FORTRAN 90 code towards an 
HPF version. The data parallel algorithm expressed in FORTRAN 90 is never 
modified. The HPF transformations concern exclusively the data mapping. 

For each level, we present the corresponding editor with its main specifica- 
tions. 

4.1    Example program 

This matrix/vector product example is used along this paper to describe the 
step by step transformation: 
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integer :: NCol, NLine 
parameter (NCol=20) 

subroutine MV(M,V,R, NLine) 
integer :: NLine 
real, dimension(NLine,NCol), intent(in):: H 
real, dimension(NCol), intent(in) :: V 
real, dimension(NLine), intent(out)   :: R 

R(l:NLine)= 0.0 
do k = l.NCol 
forall(i= 1:NLine) 

R(i)=R(i) + V(k)*M(i,k) 
end forall 

end do 
end subroutine 

To generate an efficient V(k)*M(i,k) product, we must align together the 
parts of M and V that interact. That means, each item V(k) must be aligned with 
M(i,k) for each i. So, V items must be replicated along columns of M. 

In the same way, the sum implies to replicate R along the lines of M. 
The processor grid used is a 2D mesh. The matrix M is arbitrarily distributed 

Cyclic, Block on this grid: Implicit communications will be produced by the 
compiler to update the R values replicated on the second dimension. 

Finally, we obtain this HPF code: 

subroutine MV(M,V,R, NLine) 
integer :: NLine 
real, dimension(NLine,NCol),  intent(in):: M 
real, dimension(NCol), intent(in) ::  V 
real, dimension(NLine), intent(out) :: R 

!HPF$ PROCESSORS MyProc(NUMBER_0F_PR0CESS0RS(l), & 
!HPF$      NUMBER.0F.PROCESS0RS(2)) 
!HPF$ DISTRIBUTE «(Cyclic,  Block) ONTO MyProc 

!HPF$ ALIGN V(:)  WITH H(*,:) 
!HPF$ ALIGN R(:)  WITH H(:,*) 

R(l:NLine)= 0 0 
do k = l.NCoi 

forall(i=  1  «LIB«) 

R(i)=R(i)  ♦  V<k)*M(i,k) 
end forall 

end do 
end subroutine 

399 



FEUP - Faculdade de Engenharia da Universidade do Porto 

4.2    Source editing and parsing 

The first phase of HPF-BuiLDER concerns the analysis of the source file. A 
modified version of Cocktail HPF parser[9] is used. It supports FORTRAN 90 
and almost all the data mapping directives of HPF. From both FORTRAN 90 
and HPF code, HPF-BUILDER is able to build the syntactic tree of array and 
HPF directive declarations and the hierarchical skeleton of the program. 

Stwssoi 
subroutine HV(M,V,K, NLlne) 

integer ::  m.ln« 
real, dimenslonHILlne.llCol),  lnt«nt(in) 
real, dlaenslon(NCol),   Intent (In) 
real, dinension(HLine),  lntent(out) 

RUiNUne)- 0.0 
do Ic - l.NCöl 

foralld- l:NLin«) 
R<i)-R(i)   ♦ V(k)«M(i,k) 

end forall 

l  III! = 
■■       -    '.'r 

(a) Source (b) Tree 

Fig. 2. Source and syntactic tree at begining 

™ttjbotriMlitonfl|HH=ft^tjri 

Fig. 3. skeleton 

At this step, HPF-BuiLDER presents: 

- A full screen editor opened in the source window 
(2(a)). The content of this editor is updated with 
any interactive graphical manipulation. Underlined 
pieces of text indicate selectable objects. 

- The syntactic tree summary, in the tree window 
(2(b)). 

- array and variable declarations, represented by icons 
in the skeleton window (3). 

The main window for visualization and edition is the 
skeleton. The other windows add informations in the syn- 
tactic structure of the program, and reflect automaticaly 
any modification made by the user. 

Clicking an entry anywhere selects it in the three win- 
dows. Several different objects can be opened at a time. 
This lets the user see details about several objects at a 
time. 

In the skeleton window, selection changes the icon in 
a subwindow (array M in figure 3) which presents some 
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details about the object: Its name, rank and size, and a wire representation in 
which directives will be displayed. 

We can see in the subwindow of array M that an interprocedural analysis is 
performed to find the value of the constant NCol. On the other hand, as NLine 
as an unknown value at parsing time, a default value of 10 (marked by a "?") is 
taken (the user can specify other values to test different cases). 

4.3    Processors and distributions 

In the skeleton, clicking on an subwindow opens a menu from which new direc- 
tives can be created. A drag'n drop to another icon specifies the second entry to 
set an alignment or distribution. A creation menu allows to create new templates 
and processors. 

HPF imposes some restrictions about alignments and distributions. For ex- 
ample, an already distributed object can't be realigned. 

To avoid the user to create such an invalid directive, the creation menu is 
adapted for each object. For a distributed object, the "realign" entry is disabled. 

Furthermore, HPF imposes 
that processors size matches the 
number of physical processors. 
The intrisic numberjof_proce- 
ssors returns this number. 

As HPF-BUILDER is not 
dedicated to a given target com- 
puter, a configuration option 
defines this value. Therefore, 
the parser is able to evaluate 
this function call as a constant 
value. 

Thus,    HPF-BUILDER   let 
the user create graphically the 
global   structure   of  its   HPF 
skeleton, and verifies their co- 

herency. 
Once the two dimensionnal processor mesh MyProc is created, a distribution 

directive can be setted between M and MyProc (figure 4). 
Into the editing window associated with this directive, a block, cyclic, or 

collapsed distribution can be specified for each dimension of the distributee. 
Then, into the wire representation of the processors, the projection of M is 

drawn. It shows cyclic distribution by an arrow ended by a small loop. A dashed 
line is added for cyclic(k) and block(k) specifications. 

Beside each distribution specification, a formula describe in detail the dis- 
tribution. In the example the expression (2 x 3) -I- (2 x 2) specifies that the 2 
first lines contains 3 lines of the template, and the 2 last contains 2 lines. This 
describes a cyclic distribution which does 2 loops and a half. 

.««fapg»     r vtth gp,,. 2 I CIO»« \ 

Fig. 4. Distribution specification 
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On the other dimension, the block distribution cuts the template in 4 blocks of 
5 columns. 

These two parts of the visualization let the user see a global draft of its 
distribution, and a more detailled aspect of the processor load. 

4.4    Alignments 

As for the distribution, a drag'n drop between V and M let specify an alignement 
directive (see the creation menu in figure 5(a)). 

Link..      r ««Align   1 

(a) 2D (b)3D 

Fig. 5. alignments visualization and edition 

In the same way, R will be replicated along the lines of M. 
By default, direct alignment is chosen, after what selecting the alignment 

icon allows to change its specifications: Here, we modify the direction where V 
must be aligned, and then we apply the replicate action in the other direction. 

These specification» »re displayed in the alignment selection (central selection 
of figure 5(a)) 

Now, in the w\v ^presentation of the array M, the image of V is drawn. It 
follows the column- >>( H and its replication is shown by a curve along the lines 
(right selection in ficur*- ii*i|. 

Collapsing is slmwn U a double arrow, and stepped alignment by a dashed 
line (figure 5(b)). 

This wire representation let the user see globally where its data are aligned. 
Replications and step* appear clearly, following the geometrical aspect of HPF. 

Visualization subwmdows can be resized and zoomed in or out, therefore, the 
size of the objects is not a limit. 
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4.5    Detailled visualization 

Once all of the directives are defined, one wants to know if data are really mapped 
as he was thinking. For that, HPF-BuiLDER uses a zoom effect to watch exactly 
what parts of data are mapped onto a given processor. 

The small compas under each edition subwindow, let the user move a cursor 
along the objects. Its projection into and from its upper and lower subwindows 
is drawn. Therefore, the user can see where a given item is projected and what 
parts of other objects are projected into it. Beside this compas, a label indicates 
exact coordinates of the cursor and of its projection. Thus, when data are very 
large, the draft gives a graphical information, and this label gives numeric values. 

In figure 6, V(10) (the cube in the upper left selection) is mapped onto all 
the 10th column of M (bar in the center selection), itself distributed into the 
second column of MYPROC (the column of the right hand selection). 

To see the processors load, the zoom effect can be used in the other sense: 
We can see that P(l,2) (upper left cube in right hand selection) contains lines 
1 to 3 and columns 2, 6 ... 18 of M (bars in the central selection), items 2, 6, 10 
... 18 of V, and items 1 to 3 of R 

So, when i = 1 and jfc = 10, the instruction R(1)=R(1)+V(10)*M(1,10) will 
find all its operands onto the same processor MYPROC(1,2). 

Fig. 6. Detailled visualization 

Now, the user can change distribution specifications. HPF-BuiLDER auto- 
matically update all the visual perception of this code. Programmer can con- 
cludes distribution don't change the locality of interacting items of M, V and 
R. 

After that, other experimentations using realignment directives could pro- 
duce less implicit communications due to replications. 
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This example shows how, even without execution and without knowing all 
variables values and physical distributions, HPF-BuiLDER can help the user in 
choosing a priori a better data mapping. 

5    Communication visual predictions 

Once the programmer created its mapping, efficiency have to be demonstrated. 
This is achieved by using tools to visualize data distribution load and commu- 
nication cost predictions. 

The following instruction, with cyclic or block distribution, is taken as an 
example: 

forall(i=2:size(A,l), j=2:size(a,2)) 
A(i,j)= B(i)+A(i-l,j-l) 

These predictions can be classified in several parts: 

- The amount of data stored on each virtual processor. In order to know the 
efficiency of data distribution, a simple histogram with a bar per processor 
is used (figure 7). Clicking one of these bars can display a list with details 
of data stored on it (like in the zoom effect described in 4.5). 

Airay A 

AirayB 

ArreyG 

Cyclic distribution Block distribution 

Fig. 7. load histogram example 

For a given instruction, the number of operations needed onto each virtual 
processor. This is equivalent to the number of LHS data onto each processor 
(assuming the owner computing rule). Thus, the visualization is the same. 
The number of data movements implied by an instruction, for a given pro- 
cessor, in input (respectively output). From the instruction to be executed 
onto a given processor, we can deduce which data have to be read (written). 
Then, we can obtain histograms showing where these data come from (go 
to). 
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Figure 8 shows data movements around processors (3,3). Movements come 
from white blocks and go to black ones. In the example, the processor reads 
data from (2,2) and (3,4) and sends other ones to (4,4). 

I Inputs 

ra outputs 

Cyclic distribution Block distribution 

Fig. 8. data movements from and to one processor 

The total number of movements implied by an instruction. This means to 
iterate the previous results in one graph for all the processors (figure 9). 
Here again, the user can click a bar to see details about data origins and 
destinations. 

Cyclic distribution Block distribution 

Fig. 9. global data movements 

The same visualization tool can be extended for a loop nest, or a block of 
instructions. The computation can be iterated for each instruction of a block, 
and then iterated for each loop of the nest. The CPU time could become huge 
according to the number of abstract processors. 
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Implementation 

All the informations needed to evaluate the distribution load are the same as 
the ones needed to accurately visualize the mappings. During the visualization, 
the user can specify default values for variables and runtime data. Thus, the 
load distribution is calculable at visualization time, without execution or even 
compilation of the program. 

Evaluation of communication costs uses the same methods than HPF com- 
pilers: for each processor, we have to identify which data has to been sent to 
(received from) every other processors. 

A solution currently studied in [2] consists in identify how communications 
are computed into the code generated by a compiler as Adaptor. 

For large data or grids of processors, the calculation time could become huge 
(too huge for interactive evaluation). 

Assuming the owner compute rule, any given instruction implies data move- 
ments for each remote access. Their number can be interpreted as an enumera- 
tion of common points between two sets of positions. These calculations may not 
need to enumerate all data movements. It is possible to eval them with symbolic 
methods, to obtain formulas depending of variables and runtime data. While the 
user sets this values, it is possible to visualize data movements without having 
to compute everything from scratch. Furthermore, this method is independent 
of the size of data. First results were obtained in [3] for a global communication 
cost evaluation. 

6    Conclusion 

Data parallel programming is still a difficult art. Scientific programmers have 
expended a lot of efforts in learning vector programming. Now they have to 
learn a third generation dialect of FORTRAN to map their data onto distributed 
memory machines. To succeed in this task, they need some tools to help them 
to manage their data distributions. HPF-BuiLDER is a first step in Computer 
Assisted High Performance Programming. The automatic insertion of HPF di- 
rectives in a FORTRAN 90 code frees the programmer from the new syntactic 
constraints. 

Optimization of both load distribution and communication overhead is a key 
element for parallel programming. The extension of HPF-BuiLDER presented in 
this paper gives more informations to guide the programmer during this devel- 
opment phase in HPF. 

Visualization of distribution and prediction of communication costs lead the 
user to refine his HPF directives during the editing phase. 

HPF-BuiLDER is a good plateform into which such tools can be plugged in. 
The user still decides if a solution is better than another one. Future works 

should include more complex evaluation methods to guide the user to better 
mappings. 
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More target specific informations like computation/communication overlap- 
ping, netword capabilities, cache effects ... may be taken into account in these 
methods. 

The last version of HPF-BUILDER is always available on the Web[10]. All 
are welcomed to use it and report all comments on improving the functionalities 
of this tool. 

References 

1. A. Benalia, J.-L. Dekeyser, and P. Marquet. HelpDraw graphical environment: A 
step beyond data parallel programming languages. In Fifth Int'l Conf. on Human- 
Computer Interaction, pages 591-596, Orlando, FL, Aug. 1993. Elsevier Science 
Publishers. 

2. P. Boulet, J.-L. Dekeyser, C. Lefebvre, and D. Ruckebusch. Communication pre- 
visualization. In HPF Second User Group Meeting, Porto, Portugal, June 1998. 

3. P. Boulet and X. Redon. communication pre-evaluation in HPF. In EuroPar'98, 
SouthHampton, UK, Sept. 1998. 

4. K. M. Decker and B. J. Wylie. Software tools for scalable multi-level applica- 
tion engineering. In Workshop on Environments and Tools For Parallel Scientific 
Computing, Aug. 1996. 

5. J.-L. Dekeyser and C. Lefebvre. Hpf-builder: A visual environment to transform 
fortran 90 codes to hpf. International Journal of Supercomputing Applications and 
High Performance Computing, 11(2):95-102, Summer 1997. 

6. H. P. F. Forum. High Performance Fortran language specification, version 1.0. 
Rice University, Houston, TX, May 1993. 

7. H. P. F. Forum. High Performance Fortran language specification, version 2.0. 
Rice University, Houston, TX, Jan. 1997. 

8. R. K. S. Grabner and J. Volkert. Graphical support for data distribution in spmd 
parallelization environments. In Proc. IEEE 2nd International Conference on Al- 
gorithms and Parallel Processing, Singapore, 1996. 

9. http://www.gmd.de/SCAI/lab/adaptor/cocktail.html. Cocktail compiler .toolbox. 
10. http://www.lifl.fr/west/hpf-builder. the hpf-builder web page. 
11. S. T.Hackstadt and A. D.Malony. Distributed array query and visualization for 

high performance fortran. In Proc of Euro-Par'96. Lyon. France. August 1996, 
Aout 1996. 

12. Thinking Machines Corporation. Prism User's Guide for the CM-5, Dec. 1991. 

407 



FEUP - Faculdade de Engenharia da Universidade do Porto 

408 



VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing 

Parallel and Distributed Computing 
in Education 

Peter H. Welch 

Computing Laboratory, University of Kent at Canterbury, CT2 7NF. 
P.H.Welch8ukc.ac.uk 

Abstract. The natural world is certainly not organised through a cen- 
tral thread of control. Things happen as the result of the actions and 
interactions of unimaginably large numbers of independent agents, oper- 
ating at all levels of scale from nuclear to astronomic. Computer systems 
aiming to be of real use in this real world need to model, at the appro- 
priate level of abstraction, that part of it for which it is to be of service. 
If that modelling can reflect the natural concurrency in the system, it 
ought to be much simpler 

Yet, traditionally, concurrent programming is considered to be an ad- 
vanced and difficult topic - certainly much harder than serial computing 
which, therefore, needs to be mastered first. But this tradition is wrong. 

This talk presents an intuitive, sound and practical model of parallel 
computing that can be mastered by undergraduate students in the first 
year of a computing (major) degree. It is based upon Hoare's mathe- 
matical theory of Communicating Sequential Processes (CSP), but does 
not require mathematical maturity from the students - that maturity is 
pre-engineered in the model. Fluency can be quickly developed in both 
message-passing and shared-memory concurrency, whilst learning to cope 
with key issues such as race hazards, deadlock, livelock, process starva- 
tion and the efficient use of resources. Practical work can be hosted on 
commodity PCs or UNIX workstations using either Java or the occam 
multiprocessing language. Armed with this maturity, students are well- 
prepared for coping with real problems on real parallel architectures that 
have, possibly, less robust mathematical foundations. 

1    Introduction 

At Kent, we have I**»-« learning parallel computing at the undergraduate level 
for the past ten yaus (>n«inally, this was presented to first-year students before 
they became too s«>t m tlw ways of serial logic. When this course was expanded 
into a full unit (aUmt Hi hours of teaching), timetable pressure moved it into 
the second year. Either way, the material is easy to absorb and, after only a 
few (around 5) hour* <»( teaching, students have no difficulty in grappling with 
the interactions of 2 j *a\ threads of control, appreciating and eliminating race 
hazards and deadlock 
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Parallel computing is still an immature discipline with many conflicting cul- 
tures. Our approach to educating people into successful exploitation of parallel 
mechanisms is based upon focusing on parallelism as a powerful tool for simpli- 
fying the description of systems, rather than simply as a means for improving 
their performance. We never start with an existing serial algorithm and say: 
'OK, let's parallelise that!'. And we work solely with a model of concurrency 
that has a semantics that is compositional - a fancy word for WYSIWYG - since, 
without that property, combinatorial explosions of complexity always get us as 
soon as we step away from simple examples. In our view, this rules out low-level 
concurrency mechanisms, such as spin-locks, mutexes and semaphores, as well 
as some of the higher-level ones (like monitors). 

Communicating Sequential Processes (CSP)[l-3] is a mathematical theory for 
specifying and verifying complex patterns of behaviour arising from interactions 
between concurrent objects. Developed by Tony Hoare in the light of earlier 
work on monitors, CSP has a compositional semantics that greatly simplifies 
the design and engineering of such systems - so much so, that parallel design 
often becomes easier to manage than its serial counterpart. CSP primitives have 
also proven to be extremely lightweight, with overheads in the order of a few 
hundred nanoseconds for channel synchronisation (including context-switch) on 
current microprocessors [4,5]. 

Recently, the CSP model has been introduced into the Java programming 
language [6-10]. Implemented as a library of packages [11,12], JavaPP[10] en- 
ables multithreaded systems to be designed, implemented and reasoned about 
entirely in terms of CSP synchronisation primitives (channels, events, etc.) and 
constructors (parallel, choice, etc.). This allows 20 years of theory, design pat- 
terns (with formally proven good properties - such as the absence of race hazards, 
deadlock, livelock and thread starvation), tools supporting those design patterns, 
education and experience to be deployed in support of Java-based multithreaded 
applications. 

2    Processes, Channels and Message Passing 

This section describes a simple and structured multiprocessing model derived 
from CSP. It is easy to teach and can describe arbitrarily complex systems. No 
formal mathematics need be presented - we rely on an intuitive understanding 
of how the world works. 

2.1    Processes 

A process is a component that encapsulates some data structures and algorithms 
for manipulating that data. Both its data and algorithms are private. The outside 
world can neither see that data nor execute those algorithms. Each process is 
alive, executing its own algorithms on its own data. Because those algorithms are 
executed by the component in its own thread (or threads) of control, they express 
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the behaviour of the component from its own point of view1. This considerably 
simplifies that expression. 

A sequential process is simply a process whose algorithms execute in a single 
thread of control. A network is a collection of processes (and is, itself, a process). 
Note that recursive hierarchies of structure are part of this model: a network is 
a collection of processes, each of which may be a sub-network or a sequential 
process. 

But how do the processes within a network interact to achieve the behaviour 
required from the network? They can't see each other's data nor execute each 
other's algorithms - at least, not if they abide by the rules. 

2.2    Synchronising Channels 

The simplest form of interaction is synchronised message-passing along channels. 
The simplest form of channel is zero-buffered and point-to-point. Such channels 
correspond very closely to our intuitive understanding of a wire connecting two 
(hardware) components. 

Fig. 1. A simple network 

In Figure 1, A and B are processes and c is a channel connecting them. A wire 
has no capacity to hold data and is only a medium for transmission. To avoid 
undetected loss of data, channel communication is synchronised. This means 
that if A transmits before B is ready to receive, then A will block. Similarly, if 
B tries to receive before A transmits, B will block. When both are ready, a data 
packet is transferred - directly from the state space of A into the state space of 
B. We have a synchronised distributed assignment. 

2.3    Legoland 

Much can be done just with this simple model - from the design of self-timed dig- 
ital logic (no global clock) through to the wide range of industrial multiprocessor 
embedded control for which occam[13-16] was orignally designed. 

Here are some simple examples to build up fluency. First we introduce some 
elementary components from our 'teaching' catalogue - see Figure 2. All pro- 
cesses are cyclic and all transmit and receive just numbers. The Id process cycles 

1 This is in contrast with simple 'objects' and their 'methods'. A method body nor- 
mally executes in the thread of control of the invoking object. Consequently, object 
behaviour is expressed from the point of view of its environment rather than the 
object itself. This is a slightly confusing property of traditional 'object-oriented' 
programming. 

If 
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through waiting for a number to arrive and, then, sending it on. Although in- 
serting an Id process in a wire will clearly not affect the data flowing through 
it, it does make a difference. A bare wire has no buffering capacity. A wire con- 
taining an Id process gives us a one-place FIFO. Connect 20 in series and we 
get a 20-place FIFO - sophisticated function from a trivial design. 

id  (in,  out) Succ   (in,   out) 

Delta (in, outO, outl) 

in out , 

Prefix  (n,   in,  out) Tail   (in,  out) 

Fig. 2. Extract from a component catalogue 

Succ is like Id, but increments each number as it flows through. The Plus 
component waits until a number arrives on each input line (accepting their arrival 
in either order) and outputs their sum. Delta waits for a number to arrive and, 
then, broadcasts it in parallel on its two output lines - both those outputs must 
complete (in either order) before it cycles round to accept further input. Prefix 
first outputs the number stamped on it and then behaves like Id. Tail swallows 
its first input without passing it on and then, also, behaves like Id. Prefix 
and Tail are so named because they perform, respectively, prefixing and tail 
operations on the streams of data flowing through them. 

It's essential to provide a practical environment in which students can develop 
executable versions of these components and play with them (by plugging them 
together and seeing what happens). This is easy to do in occam and now, with 
the JCSP libraryfll], in Java. Appendices A and B give some of the details. Here 
we only give some CSP pseudo-code for our catalogue (because that's shorter 
than the real code): 

Id  (in,  out)  = in ? x —> out   !   x —> Id  (in,  out) 

Succ   (in,  out)  = in ? x —> out   !   (x+1)  --> Succ  (in,  out) 
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Plus   (inO,   inl,   out) 
=  ((inO ? xO --> SKIP)   II   (inl ? xl  —> SKIP));    ' 

out   !   (xO + xl)  —> Plus  (inO,  inl,  out) 

Delta  (in,   outO,   outl) 
= in ? x —>  ((outO  !  x --> SKIP)   II   (outl   !  x --> SKIP)); 

Delta  (in,  outO,  outl) 

Prefix  (n,  in,  out)  = out   !  n —> Id  (in,  out) 

Tail  (in,  out)  = in ? x —> Id  (in,  out) 

[Notes: 'free' variables used in these pseudocodes are assumed to be locally 
declared and hidden from outside view. All these components are sequential pro- 
cesses. The process (in ? x —> P (...)) means: "wait until you can engage 
in the input event (in ? x) and, then, become the process P (...)". The input 
operator (?) and output operator (!) bind more tightly than the -->.] 

2.4    Plug and Play 

Plugging these components together and reasoning about the resulting behaviour 
is easy. Thanks to the rules on process privacy2, race hazards leading to unpre- 
dictable internal state do not arise. Thanks to the rules on channel synchronisa- 
tion, data loss or corruption during communication cannot occur3. What makes 
the reasoning simple is that the parallel constructor and channel primitives are 
deterministic. Non-determinism has to be explicitly designed into a process and 
coded - it can't sneak in by accident! 

Figure 3 shows a simple example of reasoning about network composition. 
Connect a Prefix and a Tail and we get two Ids: 

(Prefix   (in,   c)   II   Tail   (c,  out))     =    (Id  (in,   c)   |I   Id  (c,   out)) 

Equivalence means that no environment (i.e. external network in which they 
are placed) can tell them apart. In this case, both circuit fragments implement a 
2-place FIFO. The only place where anything different happens is on the internal 
wire and that's undetectable from outside. The formal proof is a one-liner from 
the definition of the parallel (II), communications (!, ?) and and-then-becomes 
(-->) operators in CSP. But the good thing about CSP is that the mathematics 
engineered into its design and semantics cleanly reflects an intuitive human feel 
for the model. We can see the equivalence at a glance and this quickly builds 
confidence both for us and our students. 
2 

3 

No external access to internal data. No external execution of internal algorithms 
(methods). 
Unreliable communications over a distributed network can be accommodated in this 
model - the unreliable network being another active process (or set of processes) 
that happens not to guarantee to pass things through correctly. 
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flft in ^y c out 

Fig. 3. A simple equivalence 

numbers   (out) 

Integrate   (in,   out) 

Pairs   (in,   out) 

Fig. 4. Some more interesting circuits 
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Figure 4 shows some more interesting circuits with the first two incorporating 
feedback. What do they do? Ask the students! Here are some CSP pseudo-codes 
for these circuits: 

Numbers   (out) 
= Prefix  (0,  c,  a)   II  Delta (a,  out,  b)   II  Succ  (b,  c) 

Integrate (in, out) 
= Plus (in, c, a) II Delta (a, out, b) II Prefix (0, b, c) 

Pairs (in, out) 
= Delta (in, a, b) II Tail (b, c) II Plus (a, c, out) 

Again, our rule for these pseudo-codes means that a, b and c are locally . 
declared channels (hidden, in the CSP sense, from the outside world). Appendices 
A and B list occam and Java executables - notice how closely they reflect the 
CSP. 

Back to what these circuits do: Numbers generates the sequence of natural 
numbers, Integrate computes running sums of its inputs and Pairs outputs 
the sum of its last two inputs. If we wish to be more formal, let c<i> represent 
the i'th element that passes through channel c - i.e. the first element through 
is c<l>. Then, for any i >= 1: 

numbers:   out<i> = i - 1 
integrate:  out<i> = Sum {in<j> I j = l..i} 
pairs:     out<i> = in<i> + in<i + 1> 

Be careful that the above only details part of the specification of these circuits: 
how the values in their output stream(s) relate to the values in their input 
stream (s). We also have to be aware of how flexible they are in synchronising 
with their environments, as they generate and consume those streams. The base 
level components Id, Succ, Plus and Delta each demand one input (or pair of 
inputs) before generating one output (or pair of outputs). Tail demands two 
inputs before its first output, but thereafter gives one output for each input. 
This effect carries over into Pairs, Integrate adds 2-place buffering between 
its input and output channels (ignoring the transformation in the actual values 
passed). Numbers will always deliver to anything trying to take input from it. 

If necessary, we can make these synchronisation properties mathematically 
precise. That is, after all, one of the reasons for which CSP was designed. 

2.5    Deadlock - First Contact 

Consider the circuit in Figure 5. A simple stream analysis would indicate that: 

Pairs2: a<i> = in<i> 
Pairs2: b<i> = in<i> 
Pairs2: c<i> = b<i + 1> = in<i + 1> 
Pairs2: d<i> = c<i + 1> = in<i + 2> 
Pairs2: out<i> = a<i> + d<i> = in<i> + in<i + 2> 
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Pair«2   (in,  out) 

Fig. 5. A dangerous circuit 

But this analysis only shows what would be generated if anything were gen- 
erated. In this case, nothing is generated since the system deadlocks. The two 
Tail processes demand three items from Delta before delivering anything to 
Plus. But Delta can't deliver a third item to the Tails until it's got rid of its 
second item to Plus. But Plus won't accept a second item from Delta until it's 
had its first item from the Tails. Deadlock! 

In this case, deadlock can be designed out by inserting an Id process on 
the upper (a) channel. Id processes (and FIFOs in general) have no impact on 
stream contents analysis but, by allowing a more decoupled synchronisation, can 
impact on whether streams actually flow. Beware, though, that adding buffering 
to channels is not a general cure for deadlock. 

So, there are always two questions to answer: what data flows through the 
channels, assuming data does flow, and are the circuits deadlock-free? Deadlock 
is a monster that must - and can - be vanquished. In CSP, deadlock only occurs 
from a cycle of committed attempts to communicate (input or output): each pro- 
cess in the cycle refusing its predecessor's call as it tries to contact its successor. 
Deadlock potential is very visible - we even have a deadlock primitive (STOP) to 
represent it, on the grounds that it is a good idea to know your enemy! 

In practice, there now exist a wealth of design rules that provide formally 
proven guarantees of deadlock freedom[17-22]. Design tools supporting these 
rules - both constructive and analytical - have been researched[23,24]. Deadlock, 
together with related problems such as livelock and starvation, need threaten us 
no longer - even in the most complex of parallel system. 

2.6    Structured Plug and Play 

Consider the circuits of Figure 6. They are similar to the previous circuits, 
but contain components other than those from our base catalogue - they use 
components we have just constructed. Here is the CSP: 

Fibonacci  (out) 
= prefix (0, d, a) II prefix (1, a, b) II 

delta (b, out, c) II pairs (c, d) 

Squares (out) 

= Numbers (a) I I Integrate (a, b) I I Pairs (b, out) 
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Demo   (out) 
= Numbers   (a)   I I   Fibonacci 

Tabulate3   (a,  b,   c,   out) 
(b)   II   Squares   (c)   II 

a    _ w&ik b        ( M out ni|^/ 

d\ /c 

Fibonacci   (out) 

Squaraa   (out) 

b         jj y.&jthgümcci,: \ 
*" .'         -•rr         **■  ■ 

T3fH|th"»iit'- 
c/^ 

out   " 

.-..^auai»«   ■ 

Darno  (out) 

Fig. 6. Circuits of circuits 

One of the powers of CSP is that its semantics obey simple composition rules. 
To understand the behaviour implemented by a network, we only need to know 
the behaviour of its nodes - not their implementations. 

For example, Fibonacci is a feedback loop of four components. At this level, 
we can remain happily ignorant of the fact that its Pairs node contains another 
three. We only need to know that it requires two numbers before it outputs 
anything and that, thereafter, it outputs once for every input. The two Prefixes 
initially inject two numbers (0 and 1) into the circuit. Both go into Pairs, 
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but only one (their sum) emerges. After this, the feedback loop just contains a 
single circulating packet of information (successive elements of the Fibonacci 
sequence). The Delta process taps this circuit to provide external output. 

Squares is a simple pipeline of three components. It's best not to think of 
the nine processes actually involved. Clearly, for i >= 1: 

Squares:       a<i> = i -  1 
Squares:       b<i> = Sum {j  -  1   I   j  =  1. .i} = Sum {j   |   j  = 0..(i  -  1)} 
Squares:   out<i> = Sum {j   I   j = 0..(i - 1)} + Sum {j   I   j = 0..i} = i * i 

So, Squares outputs the increasing sequence of squared natural numbers. It 
doesn't deadlock because Integrate and Pairs only add buffering properties 
and it's safe to connect buffers in series. 

Tabulate3 is from our base catalogue. Like the others, it is cyclic. In each 
cycle, it inputs in parallel one number from each of its three input channels and, 
then, generates a line of text on its output channel consisting of a tabulated 
(15-wide, in this example) decimal representation of those numbers. 

Tabulate3  (inO,  inl,  in2,  out) 
=  ((inO ? xO - SKIP)   II   (inl ? xl - SKIP)   ||   (in2 ? x2 - SKIP)); 

print  (xO,   15,  out);  print   (xl,   15,  out);  println  (x2,  15,  out); 
Tabulate3  (inO,  inl,  in2,  out) 

Connecting the output channel from Demo to a text window displays three 
columns of numbers: the natural numbers, the Fibonacci sequence and perfect 
squares. 

It's easy to understand all this - thanks to the structuring. In fact, Demo 
consists of 27 threads of control, 19 of them permanent with the other 8 being 
repeatedly created and destroyed by the low-level parallel inputs and outputs 
in the Delta, Plus and Tabulate3 components. If we tried to understand it on 
those terms, however, we would get nowhere. 

Please note that we are not advocating designing at such a fine level of gran- 
ularity as normal practice! These are only exercises and demonstrations to build 
up fluency and confidence in concurrent logic. Having said that, the process 
management overheads for the occam Demo executables are only around 30 mi- 
croseconds per output line of text (i.e. too low to see) and three milliseconds 
for the Java (still t<*> low to see). And, of course, if we are using these tech- 
niques for designing M-AJ hardware[25], we will be working at much finer levels 
of granularity than thi» 

2.7    Coping with th* Real World - Making Choices 

The model we have < .Ui»«i.-red so far - parallel processes communicating through 
dedicated (point-to-j« nut < hannels - is deterministic. If we input the same data 
in repeated runs, we »til always receive the same results. This is true regardless 
of how the processes <ue « heduled or distributed. This provides a very stable 
base from which to explore the real world, which doesn't always behave like this. 
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Any machine with externally operatable controls that influence its internal 
operation, but whose internal operations will continue to run in the absence of 
that external control, is not deterministic in the above sense. The scheduling of 
that external control will make a difference. Consider a car and its driver heading 
for a brick wall. Depending on when the driver applies the brakes, they will end 
up in very different states! 

CSP provides operators for internal and external choice. An external choice 
is when a process waits for its environment to engage in one of several events - 
what happens next is something the environment can determine (e.g. a driver 
can press the accelerator or brake pedal to make the car go faster or slower). 
An internal choice is when a process changes state for reasons its environment 
cannot determine (e.g. a self-clocked timeout or the car runs out of petrol). Note 
that for the combined (parallel) system of car-and-driver, the accelerating and 
braking become internal choices so far as the rest of the world is concerned. 

occam provides a constructor (ALT) that lets a process wait for one of many 
events. These events are restricted to channel input, timeouts and SKIP (a null 
event that has always happened). We can also set pre-conditions - run-time tests 
on internal state - that mask whether a listed event should be included in any 
particular execution of the ALT. This allows very flexible internal choice within a 
component as to whether it is prepared to accept an external communication4. 
The JavaPP libraries provide an exact analogue (Alternative. select) for these 
choice mechanisms. 

If several events are pending at an ALT, an internal choice is normally made 
between them. However, occam allows a PRI ALT which resolves the choice be- 
tween pending events in order of their listing. This returns control of the opera- 
tion to the environment, since the reaction of the PRI ALTing process to multiple 
communications is now predictable. This control is crucial for the provision of 
real-time guarantees in multi-process systems and for the design of hardware. 
Recently, extensions to CSP to provide a formal treatment of these mechanisms 
have been made[26,27]. 

tnJ»ot lindeot 

Replac«   ila.   wc.   inject) Seals   (in,   out,   indect) 

Fig. 7. Two control processes 

4 This is in contrast in ". r.,r,irs, whose methods cannot refuse an external call when 
they are unlocked <m<l i.^-- •• to wait on condition variables should their state prevent 
them from servicing t !.•• -iJl The close coupling necessary between sibling monitor 
methods to undo the r<->ui1111 g mess is not WYSIWYG[9]. 
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Figure 7 shows two simple components with this kind of control. Replace 
listens for incoming data on its in and inject lines. Most of the time, data 
arrives from in and is immediately copied to its out line. Occasionally, a signal 
from the inject line occurs. When this happens, the signal is copied out but, 
at the same time, the next input from in is waited for and discarded. In case 
both inject and in communications are on offer, priority is given to the (less 
frequently occurring) inject: 

Replace   (in,  inject,  out) 
=  (inject ? signal -->  ((in ? x —> SKIP)   ||   (out   !  signal --> SKIP)) 

[PRI] 
in ? x --> out   !  x —> SKIP 

); 
Replace   (in,  inject,  out) 

Replace is something that can be spliced into any channel. If we don't use 
the inject line, all it does is add a one-place buffer to the circuit. If we send 
something down the. inject line, it gets injected into the circuit - replacing the 
next piece of data that would have travelled through that channel. 

RNumbers   (out,   reset) 

RIntegrate   (in,   out,   reset) 

Fig. 8. Two controllable processes 
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Figure 8 shows RNumbers and RIntegrate, which are just Numbers and 
Integrate with an added Replace component. We now have components that 
are resettable by their environments. RNumbers can be reset at any time to 
continue its output sequence from any chosen value. RIntegrate can have its 
internal running sum redefined. 

Like Replace, Scale (figure 7) normally copies numbers straight through, 
but scales them by its factor m. An inject signal resets the scale factor: 

Scale  (m,  in,  inject,  out) 
=  (inject ? m --> SKIP 

[PRI] 
in ? x —> out   !  m*x --> SKIP 

); 
Scale  (m,  in,  inject,  out) 

Figure 9 shows RPairs, which is Pairs with the Scale control component 
added. If we send just +1 or -1 down the reset line of RPairs, we control whether 
it's adding or subtracting successive pairs of inputs. When it's subtracting, its 
behaviour changes to that of a differentiator - in the sense that it undoes the 
effect of Integrate. 

RPairs   (in,   out,   reset) 

Fig. 9. Sometimes Pairs, sometimes Differentiate 

This allows a nice control demonstration. Figure 10 shows a circuit whose 
core is a resettable version of the Squares pipeline. The Monitor process reacts 
to characters from the keyboard channel. Depending on its value, it outputs an 
appropriate signal down an appropriate reset channel: 

Monitor  (keyboard,  resetN,  resetl,  resetP) 
■  (keyboard ? ch —> 

CASE ch 
'N' 
*I' 
' + ' 

resetN ! 0 --> SKIP 
resetl ! 0 --> SKIP 
resetP ! +1 —> SKIP 
resetP ! -1 --> SKIP 

);■ 

Monitor (keyboard, resetN, resetl, resetP) 
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keyboard 

'' 
IP -w"~*S 

r VTJL? 

1 
" ' 1 ' 

nhobtri • ÜJSJffliKM^ji^--'..■■1  _ >a *t    * 1<P«lr» 

■ 

SpBs^ 1 

■creen 

Demo2   (keyboard,   screen) 

Fig. 10. A user controllable machine 

When Demo2 runs and we don't type anything, we see the inner workings of 
the Squares pipeline tabulated in three columns of output. Keying in an 'N', 
'I', '+' or '-' character allows the user some control over those workings5. Note 
that after a '-', the output from RPairs should be the same as that taken from 
RNumbers. 

2.8    A Nastier Deadlock 

One last exercise should be done. Modify the system so that output freezes if an 
'F' is typed and unfreezes following the next character. 

Two 'solutions' offer themselves and Figure 11 shows the wrong one (Demo3). 
This feeds the output from Tabulate3 back to a modified Monitor2 and then on 
to the screen. The Monitor2 process PRI ALTs between the keyboard channel 
and this feedback: 

Monitor2   (keyboard,  feedback,  resetN,  resetl,   resetP) 
=  (keyboard ? ch —> 

CASE ch 
...     deal with  'N\   'I',   ' + ',   '-'   as before 
'F':   keyboard ? ch —> SKIP 

[PRI] 
feedback ? x —>  screen   !   x    --> SKIP 

); 
Monitor2  (keyboard,  feedback,  resetN,  resetl,  resetP) 

In practice, we need to add another process after Tabulate3 to slow down the rate of 
output to around 10 lines per second. Otherwise, the user cannot properly appreciate 
the immediacy of control that has been obtained. 
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keyboard 

■ ".'jlfm^.^gH'j 

^Sobers 

feedback 

Demo3 (keyboard, screen) 

Fig. 11. A machine over which we may lose control 

Traffic will normally be flowing along the feedback-screen route, inter- 
rupted only when Monitor2 services the keyboard. The attraction is that if 
an 'F' arrives, Monitor2 simply waits for the next character (and discards it). 
As a side-effect of this waiting, the screen traffic is frozen. 

But if we implement this, we get some worrying behaviour. The freeze oper- 
ation works fine and so, probably, do the 'N' and 'I' resets. Sometimes, however, 
a '+' or '-' reset deadlocks the whole system - the screen freezes and all further 
keyboard events are refused! 

The problem is that one of the rules for deadlock-free design has been broken: 
any data-flow circuit must control the number of packets circulating! If this num- 
ber rises to the number of sequential (i.e. lowest level) processes in the circuit, 
deadlock always results. Each node will be trying to output to its successor and 
refusing input from its predecessor. 

The Numbers, RNumbers, Integrate, RIntegrate and Fibonacci networks 
all contain data-flow loops, but the number of packets concurrently in flight is 
kept at one6. 

In Demo3 however, packets are continually being generated within RNumbers, 
flowing through several paths to Monitor2 and, then, to the screen. Whenever 
Monitor2 feeds a reset back into the circuit, deadlock is possible - although not 
certain. It depends on the scheduling. RNumbers is always pressing new packets 
into the system, so the circuits are likely to be fairly full. If Monitor2 generates 
a reset when they are full, the system deadlocks. The shortest feedback loop is 
from Monitor2, RPairs. Tabulate3 and back to Monitor2 - hence, it is the '+' 
and '-' inputs from keyboard that are most likely to trigger the deadlock. 

Initially, Fibonacci has two packets, but they combine into one before the end of 
their first circuit. 
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I keyboard 

HDiafaara 

Damol (keyboard, »green) 

Fig. 12. A machine over which we will not lose control 

The design is simply fixed by removing that feedback at this level - see Demo4 
in Figure 12. We have abstracted the freezing operation into its own component 
(and catalogued it). It's never a good idea to try and do too many functions in 
one sequential process. That needlessly constrains the synchronisation freedom 
of the network and heightens the risk of deadlock. Note that the idea being 
pushed here is that, unless there are special circumstances, parallel design is 
safer and simpler than its serial counterpart! 

Demo4 obeys another golden rule: every device should be driven from its own 
separate process. The keyboard and screen channels interface to separate de- 
vices and should be operated concurrently (in Demo3, both were driven from one 
sequential process - Monitor2). Here are the driver processes from Demo4: 

Freeze   (in,  freeze,   out) 
=   (freeze ? x --> freeze  ? x —> SKIP 

[PRI] 
(in ? x --> out   !   x —> SKIP 

); 
Freeze (in, freeze, out) 

Monitor3 (keyboard, resetN, resetl, resetP, freeze) 
= (keyboard ? ch —> 

CASE ch 

... deal with 'N\ 'I', ' + ', '-' as before 

'F': freeze ! ch —> keyboard ? ch —> freeze ! ch —> SKIP 

); 
Monitor3 (keyboard, resetN, resetl, resetP, freeze) 
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A channel structure is just a record (or object) holding two or more CSP 
channels. Usually, there would be just two channels - one for each direction of 
communication. The channel structure is used to conduct a two-way conversation 
between two processes. To avoid deadlock, of course, they will have to understand 
protocols for using the channel structure - such as who speaks first and when the 
conversation finishes. We call the process that opens the conversation a client 
and the process that listens for that call a server8. 

Fig. 13. A many-many shared channel 

The CSP model is extended by allowing multiple clients and servers to share 
the same channel (or channel structure) - see Figure 13. Sanity is preserved 
by ensuring that only one client and one server use the shared object at any 
one time. Clients wishing to use the channel queue up first on a client-queue 
(associated with the shared channel) - servers on a server-queue (also associated 
with the shared channel). A client only completes its actions on the shared 
channel when it gets to the front of its queue, finds a server (for which it may 
have to wait if business is good) and completes its transaction. A server only 
completes when it reaches the front of its queue, finds a client (for which it may 
have to wait in times of recession) and completes its transaction. 

Note that shared channels - like the choice operator between multiple events 
- introduce scheduling dependent non-determinism. The order in which processes 
are granted access to the shared channel depends on the order in which they join 
the queues. 

Shared channels provide a very efficient mechanism for a common form of 
choice. Any server that offers a non-discriminatory service9 to multiple clients 
should use a shared channel, rather than ALTing between individual channels 
from those clients. The shared channel has a constant time overhead - ALTing 
is linear on the number of clients. However, if the server needs to discriminate 
between its clients (e.g. to refuse service to some, depending upon its internal 
state), ALTing gives us that flexibility. The mechanisms can be efficiently com- 
bined. Clients can be grouped into equal-treatment partitions, with each group 
clustered on its own shared channel and the server ALTing between them. 

In fact, the client/server relationship is with respect to the channel structure. A 
process may be both a server on one interface and a client on another. 
Examples for such servers include window managers for multiple animation processes, 
data loggers for recording traces from multiple components from some machine, etc. 
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2.9    Buffered and Asynchronous Communications 

We have seen how fixed capacity FIFO buffers can be added as active processes 
to CSP channels. For the occam binding, the overheads for such extra processes 
are negligible. 

With the JavaPP libraries, the same technique may be used, but the channel 
objects can be directly configured to support buffered communications - which 
saves a couple of context switches. The user may supply objects supporting any 
buffering strategy for channel configuration, including normal blocking buffers, 
overwrite-when-full buffers, infinite buffers and black-hole buffers (channels that 
can be written to but not read from - useful for masking off unwanted outputs 
from components that, otherwise, we wish to reuse intact). However, the user 
had better stay aware of the semantics of the channels thus created! 

Asynchronous communication is commonly found in libraries supporting inter- 
processor message-passing (such as PVM and MPI). However, the concurrency 
model usually supported is one for which there is only one thread of control on 
each processor. Asynchronous communication lets that thread of control launch 
an external communication and continue with its computation. At some point, 
that computation may need to block until that communication has completed. 

These mechanisms are easy to obtain from the concurrency model we are 
teaching (and which we claim to be general). We don't need anything new. 
Asynchronous sends are what happen when we output to a buffer (or buffered 
channel). If we are worried about being blocked when the buffer is full or if we 
need to block at some later point (should the communication still be unfinished), 
we can simply spawn off another process7 to do the send: 

(out   !  packet --> SKIP   IPRII   SomeMoreComputation   (...)); 
Continue  (...) 

The Continue process only starts when both the packet has been sent 
and SomeMoreComputation has finished. SomeMoreComputation and sending the 
packet proceed concurrently. We have used the priority version of the parallel 
operator (IPRII, which gives priority to its left operand), to ensure that the send- 
ing process initiates the transfer before the SomeMoreComputation is scheduled. 
Asynchronous receives are implemented in the same way: 

(in ? packet —> SKIP   IPRII   SomeMoreComputation   (...)); 
Continue  (...) 

2.10    Shared Channels 

CSP channels are strictly point-to-point. occam3[28] introduced the notion of 
(securely) shared channels and channel structures. These are further extended 
in the KRoC occam[29] and JavaPP libraries and are included in the teaching 
model. 

The occam overheads for doing this are less than half a microsecond. 
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For deadlock freedom, each server must guarantee to respond to a client call 
within some bounded time. During its transaction with the client, it must follow 
the protocols for communication defined for the channel structure and it may 
engage in separate client transactions with other servers. A client may open a 
transaction at any time but may not interleave its communications with the 
server with any other synchronisation (e.g. with another server). These rules 
have been formalised as CSP specifications[21]. Client-server networks may have 
plenty of data-flow feedback but, so long as no cycle of client-server relations 
exist, [21] gives formal proof that the system is deadlock, livelock and starvation 
free. 

Shared channel structures may be stretched across distributed memory (e.g. 
networked) multiprocessors^]. Channels may carry all kinds of object - includ- 
ing channels and processes themselves. A shared channel is an excellent means for 
a client and server to find each other, pass over a private channel and communi- 
cate independently of the shared one. Processes will drag pre-attached channels 
with them as they are moved and can have local channels dynamically (and 
temporarily) attached when they arrive. See David May's work on Icarus[30,31] 
for a consistent, simple and practical realisation of this model for distributed 
and mobile computing. 

3    Events and Shared Memory 

Shared memory concurrency is often described as being 'easier' than message 
passing. But great care must be taken to synchronise concurrent access to shared 
data, else we will be plagued with race hazards and our systems will be useless. 
CSP primitives provide a sharp set of tools for exercising this control. 

3.1 Symmetric Multi-Processing (SMP) 

The private memory/algorithm principles of the underlying model - and the 
security guarantees that go with them - are a powerful way of programming 
shared memory multiprocessors. Processes can be automatically and dynami- 
cally scheduled between available processors (one object code fits all). So long 
as there is an excess of (runnable) processes over processors and the scheduling 
overheads are sufficiently low, high multiprocessor efficiency can be achieved - 
with guaranteed no race hazards. With the design methods we have been de- 
scribing, it's very easy to generate lots of processes with most of them runnable 
most of the time. 

3.2 Token Passing and Dynamic CREW 

Taking advantage of shared memory to communicate between processes is an 
extension to this model and must be synchronised. The shared data does not 
belong to any of the sharing processes, but must be globally visible to them - 
either on the stack (for occam) or heap (for Java). 
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The JavaPP channels in previous examples were only used to send data values 
between processes - but they can also be used to send objects. This steps outside 
the automatic guarantees against race hazard since, unconstrained, it allows 
parallel access to the same data. One common and useful constraint is only to 
send immutable objects. Another design pattern treats the sent object as a token 
conferring permission to use it - the sending process losing the token as a side- 
effect of the communication. The trick is to ensure that only one copy of the 
token ever exists for each sharable object. 

Dynamic CREW (Concurrent Read Exclusive Write) operations are also pos- 
sible with shared memory. Shared channels give us an efficient, elegant and easily 
provable way to construct an active guardian process with which application pro- 
cesses synchronise to effect CREW access to the shared data. Guarantees against 
starvation of writers by readers - and vice-versa - are made. Details will appear 
in a later report (available from [32]). 

3.3    Structured Barrier Synchronisation and SPMD 

Point-to-point channels are just a specialised form of the general CSP multi- 
process synchronising event. The CSP parallel operator binds processes together 
with events. When one process synchronises on an event, all processes registered 
for that event must synchronise on it before that first process may continue. 
Events give us structured multiway barrier synchronisation[29]. 

bO b2        bO bl bO b2 bO bl 

Fig. 14. Multiple barriers to three processes 

We can have mam ewnt barriers in a system, with different (and not neces- 
sarily disjoint) suhs#>t« ..f processes registered for each barrier. Figure 14 shows 
the execution trao-s f.* three processes (P, M and D) with time flowing horizon- 
tally. They do not .til pfgress at the same - or even constant - speed. From 
time to time, tha f.iM.-i .n#~, will have to wait for their slower partners to reach 
an agreed barrier l»-f. *#• <<il of them can proceed. We can wrap up the system in 
typical SPMD form .t.» 

II   <i = 0 FOR 3> 
S   (i,   ...,  bO,   bl.   b2) 
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where bO, bl and b2 are events. The replicated parallel operator runs 3 instances 
of S in parallel (with i taking the values 0, 1 and 2 respectively in the different 
instances). The S process simply switches into the required form: 

S  (i bO,  bl,  b2) 
= CASE i 

0 :   P  (...,  bO,  bl) 
1 :  M (...,  bO, bl,  b2) 
2 :  D  (...,  bl,  b2) 

and where P, M and D are registered only for the events in their parameters. The 
code for P has the form: 

P (..., bO, bl) 
= someWork (...); bO --> SKIP; 
moreWork (...); bO --> SKIP; 
lastBitOfWork (...); bl --> SKIP; 
P (..., bO, bl) 

3.4    Non-Blocking Barrier Synchronisation 

In the same way that asynchronous communications can be expressed (section 
2.9), we can also achieve the somewhat contradictory sounding, but potentially 
useful, non-blocking barrier synchronisation. 

In terms of serial programming, this is a two-phase commitment to the bar- 
rier. The first phase declares that we have done everything we need to do this 
side of the barrier, but does not block us. We can then continue for a while, doing 
things that do not disturb what we have set up for our partners in the barrier 
and do not need whatever it is that they have to set. When we need their work, 
we enter the second phase of our synchronisation on the barrier. This blocks us 
only if there is one, or more, of our partners who has not reached the first phase 
of their synchronisation. With luck, this window on the barrier will enable most 
processes most of the time to pass through without blocking: 

doOurWorkNeededByOth«rs (...); 
barrier.firstPh«»« (); 
privateWork (.  ); 
barrier.secondPfcu« (); 
useSharedResourc««Prot«ctedByTheBarrier (...); 

With our lightwfinht C'SP processes, we do not need these special phases to 
get the same effert 

do0urWorkNeedadByOtk«rt (...); 
(barrier --> SKIP ; Mil I privateWork (...)); 
useSharedResourc«tProt»ctedByTheBarrier (...); 

The explanation a.» to why this works is just the same as for the asynchronous 
sends and receives. 
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3.5    Bucket Synchronisation 

Although CSP allows choice over general events, the occam and Java bindings 
do not. The reasons are practical - a concern for run-time overheads10. So, 
synchronising on an event commits a process to wait until everyone registered for 
the event has synchronised. These multi-way events, therefore, do not introduce 
non-determinism into a system and provide a stable platform for much scientific 
and engineering modelling. 

Buckets[15] provide a non-deterministic version of events that are useful for 
when the system being modelled is irregular and dynamic (e.g. motor vehicle 
traffic[33]). Buckets have just two operations: jump and kick. There is no limit 
to the number of processes that can jump into a bucket - where they all block. 
Usually, there will only be one process with responsibility for kicking over the 
bucket. This can be done at any time of its own (internal) choosing - hence the 
non-determinism. The result of kicking over a bucket is the unblocking of all the 
processes that had jumped into it11. 

4    Conclusions 

A simple model for parallel computing has been presented that is easy to learn, 
teach and use. Based upon the mathematically sound framework of Hoare's CSP, 
it has a compositional semantics that corresponds well with out intuition about 
how the world is constructed. The basic model encompasses object-oriented de- 
sign with active processes (i.e. objects whose methods are exclusively under their 
own thread of control) communicating via passive, but synchronising, wires. Sys- 
tems can be composed through natural layers of communicating components so 
that an understanding of each layer does not depend on an understanding of the 
inner ones. In this way, systems with arbitrarily complex behaviour can be safely 
constructed - free from race hazard, deadlock, livelock and process starvation. 

A small extension to the model addresses fundamental issues and paradigms 
for shared memory concurrency (such as token passing, CREW dynamics and 
bulk synchronisation). We can explore with equal fluency serial, message-passing 
and shared-memory logic and strike whatever balance between them is appro- 
priate for the problem under study. Applications include hardware design (e.g. 
FFGAs and ASICs), realtime control systems, animation, GUIs, regular and 
irregular modelling, distributed and mobile computing. 

occam and Java bindings for the model are available to support practical 
work on commodity PCs and workstations. Currently, the occam bindings are 

Synchronising on an event in occam has a unit time overhead, regardless of the num- 
ber of processes registered. This includes being the last process to synchronise, when 
all blocked processes are released. These overheads are well below a microsecond for 
modern microprocessors. 
As for events, the jump and kick operations have constant time overhead, regardless 
of the number of processes involved. The bucket overheads are slightly lower than 
those for events. 
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the fastest (context-switch times under 300 nano-seconds), lightest (in terms 
of memory demands), most secure (in terms of guaranteed thread safety) and 
quickest to learn. But Java has the libraries (e.g. for GUIs and graphics) and 
will get faster. Java thread safety depends on following the CSP design patterns, 
but these are easy to acquire12. 

The JavaPP JCSP library[ll] also includes an extension to the Java AWT 
package that drops channel interfaces on all GUI components13. Each item (e.g. 
a Button) is a process with a configure and action channel interface. These are 
connected to separate internal handler processes. To change the text or colour 
of a Button, an application process outputs to its configure channel. If some- 
one presses the Button, it outputs down its action channel to an application 
process (which can accept or refuse the communication as it chooses). Exam- 
ple demonstrations of the use of this package may be found at [11]. Whether 
GUI programming through the process-channel design pattern is simpler than 
the listener-callback pattern offered by the underlying AWT, we leave for the 
interested reader to experiment and decide. 

All the primitives described in this paper are available for KRoC occam and 
Java. Multiprocessor versions of the KRoC kernel targeting NOWs and SMPs 
will be available later this year. SMP versions of the JCSP[11] and CJT[12] 
libraries are automatic if your JVM supports SMP threads. Hooks are provided 
in the channel libraries to allow user-defined network drivers to be installed. 
Research is continuing on portable/faster kernels and language/tool design for 
enforcing higher level aspects of CSP design patterns (e.g. for shared memory 
safety and deadlock freedom) that currently rely on self-discipline. 

Finally, we stress that this is undergraduate material. The concepts are ma- 
ture and fundamental - not advanced - and the earlier they are introduced the 
better. For developing fluency in concurrent design and implementation, no spe- 
cial hardware is needed. Students can graduate to real parallel systems once they 
have mastered this fluency. The CSP model is neutral with respect to parallel 
architecture so that coping with a change in language or paradigm is straight- 
forward. However, even for uni-processor applications, the ability to do safe and 
lightweight multithreading is becoming crucial both to improve response times 
and simplify their design. 

The experience at Kent is that students absorb these ideas very quickly and 
become very creative14. Now that they can apply them in the context of Java, 
they are smiling indeed. 
12 Java active object (i.e. processes) do not invoke each other's methods and commu- 

nicate only through shared passive objects with carefully designed synchronisation 
properties (e.g. channels and events). Shared use of user-defined passive objects will 
be automatically thread-safe so long as the shared memory usage patterns are kept. 
We do not need to get involved with the monitor model within Java. 

13 We believe that the new Swing GUI libraries from Sun (that will replace the AWT) 
can also be extended through a channel interface for secure use in parallel designs - 
despite the warnings concerning the use of Swing and multithreading[34]. 

14 The JCSP libraries used in Appendix B were produced by Paul Austin, an under- 
graduate student at Kent. 
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Appendix A: occam Executables 

Space only permits a sample of the examples to be shown here. This first group are 
from the 'Legoland' catalogue (Section 2.3): 

PROC  Id  (CHAN OF INT in,  out) 
WHILE TRUE 

INT x: 
SEQ 

in ? x 
out   !  x 

PROC Succ   (CHAN OF INT in,  out) 
WHILE TRUE 

INT x: 
SEQ 

in ? x 
out   !  x PLUS 1 

PROC Plus   (CHAN OF INT inO,  inl,  out) 
WHILE TRUE 

INT xO,  xl: 
SEQ 

PAR 
inO ? xO 
inl ? xl 

out   !  xO PLUS xl 

PROC Prefix  (VAL INT n,  CHAN OF INT in,  out) 
SEQ 

out   !  n 
Id  (in,  out) 

Next come four two of the 'Plug and Play' examples from Sections 2.4 and 2.6: 

PROC Numbers (CHAN OF INT out) 
CHAN OF INT a, b, c: 
PAR 

Prefix (0, c, a) 
Delta (a, out, b) 
Succ (b, c) 

PROC Integrate (CHAN OF INT in, out) 
CHAN OF INT a, b, c: 
PAR 

Plus (in, c, a) 
Delta (a, out, b) 
Prefix (0, b, c) 

PROC Pairs (CHAN OF INT in, out)  PROC Squares (CHAN OF INT out) 
CHAN OF INT a, b, c: CHAN OF INT a, b: 
PAR PAR 

Delta (in, a, b) Numbers (a) 
Tail (b, c) Integrate (a, b) 
Plus (a, c, out) Pairs (b, out) 
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Here is one of the controllers from Section 2.7: 

PROC Replace (CHAN OF INT in, inject, out) 
WHILE TRUE 

PRI ALT 
INT x: 
inject ? x 
PAR 

INT discard: 
in ? discard 

out ! x 
INT x: 
in ? x 

out ! x 

Asynchronous receive from Section 2.9: 

SEQ 
PRI PAR 

in ? packet 
SomeMoreComputation (...) 

Continue (...) 

Barrier synchronisation from Section 3.3: 

PROC P (..., EVENT bO, b2) 
local state declarations 

SEQ 
initialise local state 

WHILE TRUE 
SEQ 

someWork (...) 
synchronise.event (bO) 
moreWork (...) 
synchronise.event (bO) 
lastBitOfWork (...) 
synchronise.event (bl) 

Finally, non-blocking barrier synchronisation from Section 3.4: 

SEQ 
doOurWorkNeededByOthers (...) 
PRI PAR 

synchronise.event (barrier) 
privateWork (...) 

useSharedResourcesProtectedByTheBarrier (...) 
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Appendix B: Java Executables 

These examples use the JCSP library for processes and channels[ll]. A process is an 
instance of a class that implements the CSProcess interface. This is similar to, but 
different from, the standard Runable interface: 

package jcsp.lang; 

public interface CSProcess { 
public abstract void run  (); 

} 

For example, from the 'Legoland' catalogue (Section 2.3): 

import  jcsp.lang.*; 

class Succ implements CSProcess { 

private Channellnputlnt in; 

private ChannelOutputlnt out; 

public Succ(Channellnputlnt in, ChannelOutputlnt out) { 
this.in = in; 
this.out = out; 

} 

public void run() { 
while (true) { 

int x = in.read (); 
out.write (x + 1); 

} 
} 

} 

class Prefix implements CSProcess { 

private int n; 

private Channellnputlnt in; 
private ChannelOutputlnt out; 

public Prefix(int n, Channellnputlnt in, ChannelOutputlnt out) { 
this.n = n; 
this.in = in; 
this.out = out; 

} 

public void run() { 
out.write (n); 
new Id (in, out).run (); 

} 
} 
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JCSP provides a Parallel class that combines an array of CSProcesses into a CSProcess. 
It's execution is the parallel composition of that array. For example, here are two of 
the 'Plug and Play' examples from Sections 2.4 and 2.6: 

class Numbers implements CSProcess { 

private ChannelOutputlnt out; 

public Numbers (ChannelOutputlnt out) { 
this.out = out; 

} 

public void run() { 
0ne20neChannelInt a - new 0ne20neChannelInt 0 
Dne20neChannelInt b - nev 0ne20neChannelInt 0 
0ne20neChannellnt c - new 0ne20neChannelInt 0 
nev Parallel ( 

new CSProcess [] { 
new Delta (a, out, b), 
new Succ (b, c), 
new Prefix (0, c, a), 

} 
) .runO; 

class Squares implements CSProcess { 

private ChannelOutputlnt out; 

public Squares (ChannelOutputlnt out) { 
this.out = out; 

} 

public void runO { 
0ne20neChannelInt a = new 0ne20neChannelInt 0; 
Dne20neChannelInt b = new 0ne20neChannelInt 0; 
nev Parallel ( 

new CSProcess [] { 
new Numbers (a), 
new Integrate (a, b), 
new Pairs (b, out), 

} 
).run(); 

} 
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Here is one of the controllers from Section 2.7. The processes Readlnt and Writelnt 
just read and write a single integer (from and to a public value field): 

class Replace implements CSProcess { 

private AltingChannellnputlnt in; 
private AltingChannellnputlnt inject; 
private ChannelOutputlnt out; 

public Replace (AltingChannellnputlnt in, 

AltingChannellnputlnt inject, 
ChannelOutputlnt out) { 

this, in = in; 
this.inject = inject; 
this.out = out; 

} 

public void run() { 

Alternative alt = new Alternative(); 

AltingChannellnputlnt[] altChans = {inject, in}; 

CSProcess writelnt = new Writelnt (out); 
CSProcess readlnt = new Readlnt (in); 

CSProcess parlO = new Parallel (new CSProcess[] {readlnt, writelnt}); 

while (true) { 

switch (alt.select (altChans)) { 
case 0: 

writelnt.value = inject.read (); 
parlO.run (); 

break; 
case 1: 

out.write (in.read ()); 
break; 

} 
} 

} 
} 

JCSP also has channel for sending and receiving arbitrary Objects. Here is an asyn- 
chronous receive (from S*-» tion 2.9) of an expected Packet: 

// set up proc«i»«g one« (before we start looping ...) 

CSProcess readObj • a«v ReadObj (in); 

CSProcess som«Hort • »•• SomeHoreComputation (...); 
CSProcess async • «•« PriParallel (new CSProcess[] {readObj, someMore}); 

while (looping) { 
async.run (); 

Packet packet •  P«c««t) readObj.object 
Continue (...). 

} 
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Abstract. This paper presents a comparison between superscalar and vector 
processors. First, we start with a detailed ISA analysis of the vector machine, 
including data related to masked execution, vector length and vector first fa- 
cilities. Then we present a comparison of the two models at the instruction set 
architecture (ISA) level that shows that the vector model has several advan- 
tages: executes fewer instructions, fewer overall operations, and generally exe- 
cutes fewer memory accesses. We then analyse both models in terms of specu- 
lative execution, each one in its context. Results show that superscalar proces- 
sors make an extensive use of speculation and that there is a large ammount of 
misspeculated instructions. In the vector model, speculation is achieved using 
vector masks and, in general, fewer operations are misspeculated. 

1 Introduction 

Traditionally, there have been different approaches aimed at improving microproces- 
sor performance. One of them has been the exploitation of data level parallelism 
(DLP). The DLP paradigm uses vectorization techniques to discover data level paral- 
lelism in a sequentialK specified program and expresses this parallelism using vector 
instructions[l][2][3] A single vector instruction specifies a series of operations to be 
performed on a stream ol d*u Each operation performed on each individual element 
is independent of all others «HJ. therefore, a vector instruction is easily pipelineable 
and highly parallel[4|l< '.;*' Another approach aimed at reaching high performance in 
a program's execution iv the exploitation of instruction level parallelism (ILP). Cur- 
rent state-of-the-art mut.ifn>>».cssors all include 4-wide fetch engines coupled with 
sophisticated branch prcdi«.i<*\. large reorder buffers to dynamically schedule in- 
structions and non-blocking .*.hes to allow multiple outstanding misses. All these 
techniques focus on a single goal: executing several instructions that are known to be 
independent, in parallel!11 T"hc larger the number of instructions that can be launched 
on each cycle, the better the performance achieved. 
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There are two very important advantages in using vector instructions to express 
data-level parallelism. First, the total number of instructions that have to be executed 
to complete a program is reduced because each vector instruction has more semantic 
content that the corresponding scalar instructions. Second, the fact that the individual 
operations in a single vector instruction are independent allows a more efficient exe- 
cution: once a vector instruction is issued to a functional unit, it will use it with useful 
work for many cycles. During those cycles, the processor can look for other vector 
instructions to be launched to the same or other functional units. It is very likely that, 
by the time a vector instruction completes all its work, there is already another vector 
instruction ready to occupy the functional unit. Meanwhile, in a scalar processor, 
when an instruction is launched to a functional unit, another instruction is required at 
the very next cycle to keep the functional unit busy. Unfortunately, many hazards can 
get in the way of this requirement: true data dependencies, cache misses, branch mis- 
speculation, etc. 

The combination of these two effects has many related advantages. First, the pres- 
sure on the fetch unit is greatly reduced. By specifying many operations with a single 
instruction, the total number of different instructions that have to be fetched is re- 
duced. Many branches disappear embedded in the semantics of vector instructions. A 
second advantage is the simplicity of the control unit. With relatively few control 
effort, a vector architecture can control the execution of many different functional 
units, since most of them work in parallel in a fully synchronous way. A third advan- 
tage is related to the way the memory system is accessed: a single vector instruction 
can exactly specify a long sequence of memory addresses. Consequently, the hard- 
ware has considerable advance knowledge regarding memory references, can sched- 
ule these accesses in an efficient way[8], and needs to access no more data than is 
actually needed. In addition, a vector memory operation is able to amortize start-up 
latencies over a potentially long stream of vector elements. 

In this paper we make a comparison between vector and superscalar processors by 
analysing the behaviour of a Mips R10000[9] superscalar processor and a Convex 
C4[10] vector processor. This study is carried out from different points of view. First 
of all we introduce an initial analysis of the Convex C4 vector processor. This in- 
cludes an overview of several intrinsic characteristics of vector processing: we will 
analyze the effect of execution under mask and execution using the vector first facil- 
ity. Then we will compare the superscalar and vector approaches from the ISA point 
of view. We will present data about the number of instructions and operations exe- 
cuted in both processors. Finally, we will present a comparison about speculative 
execution in the two approaches. 

2 Convex C4 Analysis 

We will start by analyzing the vector length and vector mask facilities of vector proc- 
essors. We will also present the vector first facility which is specific of the Convex 
C4 machine. Then we will compare the number of instructions, operations and mem- 
ory traffic of vector processors and superscalars. 
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This study will be carried out using the six more vectorizable programs from 
Specfp92. We have measured the vectorization percentage using the Dixie tool[l 1]. 
We have generated the execution traces of the Specfp92 programs when running on a 
Convex C4 machine, and then we have used the Jinks simulator to measure the 
amount of vector and scalar operations carried out by the programs. The vectorization 
percentage has been calculated as the ratio between vector operations and the addition 
of vector and scalar operations. 

2.1 Operation Distribution 

Table 1 presents the basic operation distribution for the five more vectorizable pro- 
grams of the Specfp92. First column shows the total number of basic blocks (in mil- 
lions) executed for each program. Next two columns present the total number of in- 
structions broken down into scalar and vector instructions. We will distinguish be- 
tween instructions and operations. A scalar instruction performs only one operation, 
while a vector instruction performs several operations, depending on the value of the 
vector length (VL) register. Fifth column is the percentage of vectorization for each 
program, defined as the ratio between the number of vector operations and the total 
number of operations performed. Finally column sixth presents the average vector 
length used in vector instructions. An interesting point from this table is the average 
vector length observed in the programs, which is not heavily related to the percentage 
of vectorization. 

Table 1. Operation distribution 

Program # basic # instructions # vector % Avg. 
blocks Scalar Vector operations Vect VL 

Swm256 2.57 27.46 74.82 8127.98 99.7 93 

Hydro2d 4.74 38.85 35.43 3684.89 99.0 101 

Nasa7 16.79 139.80 55.98 3885.02 96.5 62 

Su2cor 22.53 143.95 24.08 3066.07 95.5 125 

Tomcatv 19.95 126.66 6.37 644.41 83.6 99 

Wave5 48.99 579.77 35.88 1615.04 73.6 43 

2.2 Vector Length Distributions 

Vector execution is based on executing a certain operation specified in one instruction 
over a large amount of independent data. The amount of data specified in each in- 
struction is dinamically specified with the value of the Vector Length register 
(VL).The latency of the operation being carried out is then amortized across all VL 
elements. Therefore, the larger the VL, the better the performance. Fig. 1 presents the 
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Fig. 1. VL Distribution tor Specfp92 programs 

VL distribution for the six more vectorizable Specfp92 benchmarks. As we can see, 
the vector length distributions follow several patterns. Swim256, Tomcatv and Su2cor 
have the majority of their vector lengths clustered around 128. Hydrold has a single 
dominant vector length which is the number of grid points used in the z-direction of 
the problem. Nasa7 and WaveS have a distribution that follows a staircase, having 
several dominant vector lengths. AH this data suggest that even among vectorizable 
programs the utilisation of the vector registers varies a lot. 

2.3 Vector First Capability 

A new capability in the Convex C4 processor is the Vector First facility which allows 
specifying the first element in the vector register on which the instruction will be 
executed. That is, an instruction executes VL operations starting at element VF. This 
facility avoids having to reload data in the cases of recurrences as those presented in 
Fig. 2(a). In these cases, instead of executing two load instructions for matrix B (for 
position I and 1+1, as presented in Fig. 2(b)), only one load instruction is executed. 
Fig. 2(b) shows the assembly code without vector first. Every add instruction involves 
two vector load instructions, which is redundant. In Fig. 2(c), using vector first, the 
same data can be reused in the loop body just using the appropriate vector first value, 
so just one vector load is needed for each add instruction. [Note that the notation 
'Av0* means execution under vector first]. 
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DO  J  =   1,   N 

DO   I   =   1,   N 

A(. .,1, ..) =   B(. ,1 + 1, .)   +   B(. .,1,••) 

ENDDO 

ENDDO 

(a) 

- 

mov N  ->  vl 

LI: . . . 
load   (B),   vO 

load   (B+4),   vl 

add vl,   vO   -> v2 

mov N ->  a4 

add #l,a4  ->  a5 

mov #1  -> vf 

LI: . . . 
mov a5   ->  vl 

load   (B),   vO 

mov a4   ->  vl 

add "vO,   vO  -> vl 

(b) (c) 

Fig. 2. Typical vector loop at Hydro2d benchmark, (a) Source code for a vector loop with a 
recurrence of distance 1. (b) Assembly code without using vector first facility, with add in- 
volving two load instructions, (c) Assembly code using vector first so that every data must be 
loaded just once 

Table 2 presents the distribution of the vector first values for the same Specfp92 
benchmarks as Fig. 1. This table shows the total number of operations carried out 
under vector first and the respective percentages of operations that have been exe- 
cuted with vector first equal to 1, 2 or other values. The compiler is not able to use 
the vector first neither in benchmark Nasa7 nor in Su2cor. Moreover, these programs 
only present low order recurrences (with distance lor 2). 

Table 2. Vector First distribution for Specfp92 programs 

Program # Ops under VF Value rin percentages) 

VF (x 10f>) 
1 2 Other 

Swm256 2.841 76 24 0 

Hydro2d 11.060 100 0 0 

Nasa7 - - - - 

Su2cor - - - ~ 

Tomcatv 1.124 50 50 0 

Wave5 1.449 97 3    ■ 0 
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2.4 Vector Mask Execution 

The Convex C4 vector processor allows the execution of instructions under a calcu- 
lated mask stored in the Vector Mask (VM) register. The VL operations will be car- 
ried out, but only those that have the correct value stored in the ith position of the 
mask will be finally stored in the destination register of the instruction. We have 
made an analysis of the masks used during the execution of the benchmarks so to test 
the effectiveness of masked execution. Table 3 shows the total ammount of instruc- 
tions executed under mask and the percentage of instructions with respect to the total 
ammount of instructions. This data shows a relatively small use of the execution un- 
der mask in the C4 vector processor. However, taking into account that each vector 
instruction implies the execution of VL operations, table 3 also shows the total am- 
mount of operations executed under mask and the percentage of operations referred to 
the total ammount of operations. From this table we can see that the most intensive 
use of the masked execution is made by the Hydrold benchmark with more than 15% 
of their operations executed under mask. Programs Su2cor and Wave5 execute 3.95% 
and 3.64% of their operations under mask, respectively. The remaining programs 
execute either very few operations under mask (Swm256 and NasaT) or none at all 
(Tomcatv). 

The execution of operations under mask can be considered as speculative execu- 
tion, as all VL operations are carried out but only those that correspond to the right 
value in the mask are used. We can think of the extra operations as misspeculative 
execution. The analysis of the masks, as we will show, has allowed us to measure the 
amount of speculative work carried out by the vector processor. 

Table 3. Instructions and operations executed under vector mask 

Program Instructions executed under 
vector mask 

Operations executed under 
vector mask 

Total Number 
(x 106) 

% over total 
instructions 

Total Number 
(x 10") 

% over total 
operations 

Swm256 0.01 0.015 0.13 0.016 

Hydro2d 5.75 7.75 582.91 15.65 

Nasa7 0.07 0.036 8.02 0.20 

Su2cor 1.06 0.63 130.75 3.95 

Tomcatv 0.00 0.00 0.00 0.00 

WaveS 5.17 0.84 80.00 3.64 

3 Scalar and Vector ISA's Comparison 

In this section we present a comparison between superscalar and vector processors at 
the instruction set architecture level. We will look at three different issues that are 
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determined by the instruction set being used and by the compiler: number of instruc- 
tions executed, number of operations executed and memory traffic generated, the 
distinction between instructions and operations is necessary because in.the vector 
architecture, a vector instruction executes several operations (between 1 and 128 in 
our case). 

3.1 Instructions Executed 

As already mentioned, vector instructions contain a high semantic content in terms of 
operations specified. The result is that, to perform a given task, a vector program 
executes many fewer instructions than a scalar program, since the scalar program has 
to specify more address calculations, loop counter increments and branch computa- 
tions that are typically implicit in vector instructions. The net effect of vector instruc- 
tions is that, in order to specify all the computations required for a certain program, 
much less instructions are needed. Fig. 3(a) presents the total number of instructions 
executed in the Mips R10000 (using Mips IV Instruction Set [12]) and the Convex C4 
machines for the six benchmark programs. In the Mips R10000 case, we use the val- 
ues of graduated instructions gathered using the hardware performance counters. In 
the Convex C4 case we use the traces provided by Dixie[12]. As it can be seen, the 
differences are huge. Obviously, as vectorization degree decreases, this gap is dimin- 
ished. Although several compiler optimizations (loop unrolling, for example) can be 
used to lower the overhead of typical loop control instructions in superscalar code, 
vector instructions are inherently more expressive. Having vector instructions allows 
a loop to do a task in fewer iterations. This implies fewer computations for address 
calculations and loop control, as well as less instructions dispatched to execute the 
loop body itself. As a direct consequence of executing less instructions, the instruc- 
tion fetch bandwidth required, the pressure on the fetch engine and the negative im- 
pact of branches are all three reduced in comparison to a superscalar processor. Also, 
relatively simple control unit is enough to dispatch a large number of operations in a 
single go, whereas the superscalar processor devotes an always increasing part of its 
area to manage out-of-order execution and multiple issue. This simple control, in 
turn, can potentially yield a faster clocking of the whole datapath. It is interesting to 
note that the ratio of number of instructions can be larger than 128. Consider, for 
example, Swm256. In vector mode, it requires 102.28 million instructions while in 
superscalar mode requires 11466 million instructions. If, on average, each vector 
instruction performs 93 iterations then all these vector instructions would be roughly 
equivalent to 102.28*93 = 9512 million superscalar instructions. The difference be- 
tween 9512 and 11466 is the extra overhead that the supercalar machine has to pay 
due to the larger number of loop iterations it performs. 

3.2 Operations Executed 

Although the comparison in terms of instructions is important from the point of view 
of the pressure on the fetch engine, a more accurate comparison between the super- 
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scalar and vector model comes from looking at the total number of operations per- 
formed. As already mentioned in the previous section, the reduction of overhead due 
to the semantic content of vector instructions should translate into an smaller number 
of operations executed in the vector model. Fig. 3(b) plots the total number of opera- 
tions executed on each platform for each program. These data has been gathered from 
the internal performance counters of the Mips R1000 processor, and from the traces 
obtained with Dixie. As expected, the total number of operations in the superscalar 
platform is greater than in the vector machine, for all programs. The ratio of super- 
scalar operations to vector operations can be favourable to the vector model by 
factors that go from 1.24 up to 1.88. 

J—U L. ^ ^ L 

■ Convex C4      <» 
a MipsRIOUXI .£ 

S.   40 

I Oiinvcx C4 

1 Mips RKKXX) 

(a) (b) 

Fig. 3. Vector - Superscalar ISA comparison, (a) Instructions executed, (b) Operations exe- 
cuted 

3.3 Memory Traffic 

Another analysis that we have carried out is the study of memory traffic both in vec- 
tor and superscalar processors. Superescalar processors have a memory hierarchy in 
which data is moved up and down in terms of cache lines. Some of this data is thrown 
away from the cache before it is used so there is an amount of traffic that is not 
strictly useful. In vector processors, every data item that is brought from main mem- 
ory is used, so there is no useless traffic in vector processors. Moreover, depending 
on the data size of the program there will be different behaviours in superscalar proc- 
essors. If data fits in LI, there will be almost no traffic between the LI and the L2 
caches. However, if data doesn't fit in LI but fits in L2, there will be a lot of traffic 
between the LI and L2 caches because of conflicts. If data doesn't fit in the L2 cache, 
traffic will increase a lot between the two memory hierarchy levels. These behaviours 
can be seen if Fig. 4. 
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■ Convex C4 
■ RHXXXHRqi-LI) 
0 R1(XXX)(LI-L2> 
O RI(XXH)(L2-Mcm) 

S\v\\s 
Fig. 4. Vector - Superscalar Memory traffic comparison 

4 Speculative Execution in Superscalar and Vector Processors 

In this section we will make a study about speculative execution in superscalar and 
vector processors. Each architecture is able to speculatively execute instructions, 
although each one in its particular way. Superscalar processors execute speculatively 
instructions based upon predictions of conditional branches. Vector processors exe- 
cute instructions under vector masks and only those that have the correct value in the 
mask are definitely stored. This section is intended to study the effectiveness of the 
speculative execution in both architectures. 

4.1 Speculation in Superscalar Processors 

The increase'in SS processors aggressiveness regarding issue width and out of order 
execution has made branch prediction and speculative execution essential techniques 
in taking advantage of processor capabilities. When a branch is reached, and the re- 
sult of the condition evaluation is not known, a speculation of the final result of the 
branch is made, so that the execution continues along the speculated direction. When 
the actual result of the branch condition is obtained, the executed instructions are 
validated if the prediction was correct, and rejected if not. 

The amount of misspeculative instructions in the SS processor is presented in Fig. 
5. This data has been gathered using the Mips R10000 performance internal counters. 
This speculative work includes all types of instructions. As we can see in Fig.5(a) the 
misspeculated execution of instructions (referred to the total number of issued in- 
structions) for the six programs goes from 14% to 25%. 

Among the misspeculative work, the load/store misspeculation is specially impor- 
tant because it wastes non-blocking cache resources, bandwidth, and can pollute the 
cache (and memory hierarchy in general) by making data movements between differ- 
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ent levels that won't be used in the future. Fig. 5(b) shows the load/store misspecula- 
tion degree for the benchmarks with respect to the total number of load/store instruc- 
tions. In some of them, the misspeculation percentage is as large as 40%, although the 
mean value is about 15%. 

30 

©   20 

s u 
a 

4-        J) % *>-„ 

% 

40 

30 

s 
u   20 

s o 

■ 

■ 

■ 1 
1 4 

% *J- 

(a) (b) 

4).. \. 
X 

Fig. 5. (a) Misspeculative execution in superscalar processors, (b) Load misspeculation in 
superscalar processors 

4.2 Speculation in Vector Processors 

Vector processors are also able to speculatively execute instructions, but in a different 
way than superscalar processors. It is based on the execution under vector mask. 
When an instruction is executed under vector mask, all the operations are carried out, 
but only those having the correct value in the itn position of the vector mask is defi- 
nitely stored in the destination register. We have previously presented the values of 
masked executions referred i<> the total number of instructions and operations carried 
out by the programs However, as masked execution is only carried out in vector 
mode, a more precise mcasurr about the use of masked execution is presented in table 
4. Measures in table 4 »h.'» that the behaviour differs from one program to another. 
Program Hydro2d executes a considerable ammount of operations under mask (16%). 
Swm256 and Nasa7 makr almost no use of the execution under mask and finally, 
Sulcor and Wave5 execute ■»;»<* and 4.95% of their operations under mask. 

An interesting anal\sis m.k-pendent from the use of masked execution, is the ef- 
fectiveness of masked caution. All these instructions executed under mask, are 
properly speculated or n.-r ■Vn operation is speculated "right" if after the operation 
has been carried out the result is effectively stored in its destination. All those opera- 
tion that were carried out but not stored are misspeculated work. Fig. 6(a) shows the 
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distribution of right and wrong speculated operations in the five programs (recall that 
program Tomcatv does not execute instructions speculatively). Three of the programs 
{Nasa7, Su2cor and Wave5) have good values of right prediction: Nasa7 and Wave5 
are above 63% of right speculation and Sulcor is more than 56%. The other two 
programs (Swm256 and Hydro2d) have low values of right speculation, with 
Swim256 being the program with the worst behaviour (only 2.58% of right specula- 
tion). 

Table 4. Instructions and operations executed under vector mask 

Program Instructions executed under 
vector mask 

Operations executed under 
vector mask 

Total Number 
(x 106) 

% over total 
vector in- 
structions 

Total Number 
(x 106) 

% over total 
vector opera- 

tions 
Swm256 0.01 0.002 0.13 0.016 

Hydro2d 5.75 16.25 582.91 16.00 

Nasa7 0.07 0.12 8.02 0.20 

Su2cor 1.06 4.41 130.75 4.23 

Wave5 5.17 14.40 80.00 4.95 

Another interesting consideration that we have studied regards the distribution of 
operations executed under mask among the different instruction types. This study has 
allowed us to establish the ammount of instructions executed under mask for each 
type of instructions. We have considered six types of instructions: add-like, mul-like, 
div, diadic, load and store. 
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Fig. 6. (a) Distribution ot Ri^hi \* rong speculation operation, (b) Distribution of instruction 
executed under vector mask amon^ the different instruction types 
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The first consideration comes from the fact that none of the programs execute load 
instructions under mask, which may be explained because of the possibility of gather 
instructions. Fig 6(b) shows the breakdown of instructions executed under mask 
among the different instruction types. Division and add-like instructions are the most 
used instructions for execution under mask. 

Finally, we have also studied the effectiveness of execution under mask among the 
different types of instructions. Results in Fig. 7 show that, in general, there is not a 
clear correlation between the instruction type and the misspeculation rate. Division 
instructions are an exception. For divisions the misspeculation rates are higher than 
for the rest of instruction in all cases. This result is not unreasonable since division 
instructions are typically executed in statements such as the following, 

if A(i)<>   0  then B(i)=B(i)/A(i) 

In such a case, misspeculation is determined by the value stored in A(i). In our programs, the 
A(i) vector is sparsely populated and causes large numbers of misspeculations. 
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5 Conclusions 

We have outlined a comparison between superscalar and vector processors from sev- 
eral points of view. Vector processors have different possibilities that allow them to 
decrease the memory traffic and branch impact in a program's execution. Their SIMD 
model is especially interesting because the initial latency of the operations is amor- 
tized across the VL operations that each instruction executes. 

We have studied the behaviour at the ISA level of the superscalar and vector proc- 
essors. We looked at total number of instructions executed, number of operations 
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executed and memory traffic. The vector processor executes much less instructions 
than the superscalar machine due to the higher semantic content of its instructions. 
This translates into a lower pressure on the fetch engine and the branch unit. Moreo- 
ver, the vector model executes less operations than the superscalar machine. The 
analysis of memory traffic reveals that, in general, and ignoring spill code effects, the 
vector machine performs less data movements than the superscalar machine. 

We have also studied the speculative execution behaviour of superscalar and vec- 
tor processors. Superscalar processors make an extensive use of speculative execution 
and the misspeculation rates are important. On the other hand, vector processors exe- 
cute speculatively by using the vector mask. Vector processors make a lower use of 
execution under mask and the misspeculation rates are also important, although many 
of them are produced because of prediction in div instructions. 
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Abstract This paper presents JWarp, a Java library that implements an 
optimistic model of discrete-event parallel simulation: the Time-Warp model. 
Java fits well in the field of simulation and offers some important advantages 
over other languages: modularity, flexibility, robustness, support for 
multithreading and exception handling. The paper presents the main features of 
the library, the programming interface and some of its implementation details. 
JWarp is one of the first libraries to implement Time-Warp in Java. 

1. Introduction 

There are several areas like engineering, computer science, economics and military 
that are particularly interested in using simulation to study the behaviour of complex 
models. The execution of some of those simulation models can be a very time 
consuming task. For statistical reasons it might be necessary to simulate a model for 
quite a long time, or to perform the same simulation several times with different 
parameter values. 

A possible solution to reduce the execution times of long-running simulations is by 
using multiple processors operating in parallel [Fujimoto90]. A typical simulation 
model involves several components or entities. By exploiting this inherent model of 
parallelism it would be possible to speed up the performance of the simulations by 
decomposing these components through several processors. 

Every simulation model is a specification of the corresponding physical model and 
is composed by a set of states and events. In a discrete event simulation the state of 
the system only changes at discrete points in simulated time. 

A natural decomposition strategy can result in an object-oriented system design, 
where an object corresponds to some component of the real system and is represented 
by a computational task that is assigned to a processor for execution. In this way, a 
logical process (LP) simulates every component of the model. A discrete-event 
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simulation requires the existence of multiple LP entities, a time-ordered event list 
holding timestamped events to be processed in the future, a global discrete clock that 
indicates the current simulation time and a set of state variables that define the state of 
the simulation. 

The most simple way for managing the event-list would be based on a centralized 
strategy: the list of events is managed by a single process (master), and there would 
be a pool of slave processes running on the parallel system that would execute those 
events in a concurrent way. However, the existence of a centralized queue of events 
would represent a bottleneck to the simulation thereby clearly reducing the potential 
for parallelism. 

The most permissive way of conducting parallel simulations is to eliminate the 
globally shared-event list and use a completely distributed list of events. Each LP will 
be assigned to a processor that maintains its own local simulation clock, a local event 
list and a set of state variables. Events are modeled as timestamped messages, which 
are exchanged between the physical objects of the application (LP). 

However, the schemes that follow a distributed strategy would require some 
synchronization protocols to make sure the events are processed in a consistent order 
by all the LP entities. These synchronization protocols may increase the costs of 
communication between processors. Nevertheless, they have been deserved a 
considerable attention by the parallel simulation research community [Lin95]. 

In order to understand the main issue behind the use of distributed event-lists lets 
take a look at Figure 1. It represents the temporal execution of two logical processes 
^ k _ (LP1 and LP2). The LP1 entity is processing event alpha 

while LP2 is processing event beta. The execution of 
         event alpha generates a new event {Gama) that is sent to 

ZT^         LP2. This Gama event has a lower timestamp than event 
beta, and thus should have been consumed before that 
one. Due to the asynchrony of the LP entities it was not 
possible to assure a consistent order in the processing of 

LP2 event list events> thereby resulting in a causality error 
[Fujimoto90]. 

LP1 time 

--\.PI{ alPna 

current 
time 

--LP2' 
current 

LP1 event list 

^Tgamaj 

Fig. 1. The causality problem 

The synchronization protocols have been broadly classified as Conservative or 
Optimistic [Reynolds88]. Both schemes are based on the sending of messages 
carrying some causality information. 

The Conservative approach [Chandy79] strictly avoids the possibility of any 
causality error ever occurring. This is achieved by stopping each process until the 
system is sure that no other event will be scheduled by any other LP with a timestamp 
smaller than the one in the top of the local list of events. This method introduces some 
blocking on the execution of processes and restricts the potential for parallelism. 
Besides it is prone to the occurrence of deadlock and thus requires a deadlock 
detection and recovery scheme. 

The Optimistic approach tries to exploit all the potential parallelism available in 
the simulations. The Time Warp mechanism is a well known optimistic approach 
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based upon the Virtual Time paradigm [Jefferson85]. It relies upon a scheme for 
causality error detection and a recovery scheme based on a rollback technique. An 
optimistic LP progresses simulation and advances its local virtual time as far as 
simulation is possible without occurring any causality error. 

If an event is scheduled in some LP with a timestamp in the local past relative to 
the local virtual clock, i.e. out of chronological order (straggler message), then the LP 
entity is forced to roll back to the most recently saved state in the simulation history 
consistent with the arrival of that event message and restarts the simulation at that 
point thereby correcting the causality error. 

In order to allow this rollback operation every LP entity is forced to save its 
simulation state from time to time. All the messages that were sent previously after 
that instant of time should be undone. This is achieved by sending .some sort of anti- 
messages to annihilate the original messages. If these ones were already consumed by 
the destination processes they will be force to roll back as well to a previous saved 
state. It was proved by [Jefferson85] that the protocol will not roll back until the 
beginning of the simulation and always assures some forward progress for the 
computation. 

Anti-messages (also called negative messages) are exact copies of normal 
(positive) messages with a single difference: they have the sign field with a 
different value. When a process sends an anti-message it passes part of its 
responsibility of rollback to the other process. The other may or may not rollback 
depending of its internal state: if the message corresponding to the anti-message was 
already consumed then it must rollback. 

The major drawback of the Time Warp approach is the need to save each process 
state periodically [Jefferson87]. To free up some of the used memory the simulation 
system calculates a time limit, called Global Virtual Time (GVT) [Belenot90] beyond 
which no process is required to roll back and thereby the system can perform some 
garbage collection scheme. Alternative solutions are also required to optimize the 
rollback operation [Gafni88] and to achieve load-balanced simulations [Das94]. 

Time Warp is a relatively complex simulation protocol but it has been proved to be 
a very effective technique for running complex asynchronous simulations 
[Wieland89][Presley89]. We foresee that with an implementation in Java the use of 
Time Warp could become more widespread for use by the research community as 
well as for educational purposes. 

2. The Importance of Java 

In the past few years, Java as received a great deal of attention from several fields of 
computing including network and distributed programming. 

A comprehensive list of computing platforms has been enhanced with the support 
of Java Virtual Machine (JVM)[Oasisj. Since Java programs are entirely portable 
across the systems that have a JVM we will be able to execute parallel simulations in 
heterogeneous systems, comprising networks of personal computers running a 
Microsoft Windows operating system or clusters of workstation machines running 
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some flavor of Unix. All this will be possible with a simulation tool like JWarp. 
Programmers are not required to change any line of code of their simulations since 
Java provides the necessary support to deal with the heterogeneity. 

The main handicap of Java is still its poor performance. However, recent studies, 
have proved that the use of JIT, Java as enhanced its performance to the C++ level 
[Mangione98]. With the foreseed improvement in the JVMs available, Java will close 
the performance gap even more in the near future. 

3. JWarp Internal Architecture 

OB 
Output Buffer 

IQ 
Input Queue 

OQ 
Output Queue 

Figure 2 represents the JWarp 
internal architecture. In this 
Figure, the ovals represent 
threads, the rectangles represent 
data buffers and full lines 
represent data transfers. In this 
first approach, only positive 
messages (thin lines) and state 
saving and restoring (thick lines) 
are represented. It will be shown 
latter all the other kinds of 
message flows. 

Events arrive to every LP by 
being first received in cs2ib, 
placed in IB, received in ib2iq 
and placed in IQ. Outgoing 
events are placed in OQ by LP, 
received by oq2ob, placed in OB, 
received by ob2cs and sent into 
the network. 

Fig. 2. JWarp architecture 

LP state variables (defined by the programmer) are saved from time to time in the 
State Stack (ss). 

The threads cs2ib, oq2ob and ob2cs are just running an infinite cycle fetchina 
data from one side and placing it in the other. Thread ob2cs analyses one field of the 
messages to know where to send them over the network. 

Thread ib2iq detects the messages out-of-order and causality errors. It will 
command the state restoring, anti-message sending, and will process GVT calculation 
requests. 

If there were no straggler messages the JWarp internal behaviour would be the 
following: 

1. The message arrives at cs2ib from the network through TCP/IP. 
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2. The message is placed in IB in arriving order. 
3. It is fetched by ib2iq. 
4. A corresponding acknowledge message is put in OB by ib2iq. 
5. The acknowledge message is sent by ob2cs. 
6. ib2iq puts the received message in IQ ordered by the simulation time. 
7. Depending on the checkpoint frequency, the LP'S state is saved in ss. 
8. Just after the state saving the message finally arrives to LP. LVT is updated to a 

new value that corresponds 
to the incoming message 
processing time. 

9. LP consumes the message 
and responds by sending 
none, one or more messages, 
to one or more recipients, 
that are placed in the 
Output Queue in arriving 
order. 

lO.The messages are then 
fetched from OQ and placed 
in OB by oq2ob. 

11.They are finally sent over 
the network if they are 
remote events or placed in 
IQ if they are local events. 

Fig. 3. Buffer behaviour 

' ' ' 
evl ev3 ev2 evl 

3 4 5 7 

* * * 
IQ 

Input Queue 

1 1 

ev4 •v6 evl tv2 

4 5 8 9 

* * * * 

/ 
OQ 

Output Queue 

3.1. Buffers 

In JWarp, when a buffer is asked to retrieve the next event it can do one of two things: 
i) retrieve, return and delete the message or ii) just retrieve and return. Buffers IB 
and OB delete retrieved messages while IQ and OQ do not. Events are kept and not 
deleted in IQ and OQ because when there is a rollback operation those events must 
be consumed again. Likewise, the events that were sent must be maintained because 
there could be a potential need to send anti-messages. Fetching an event in IQ or OQ 
only means to retrieve a copy of it and move LVT pointer forward. 

Although the pointers are called LVT and GVT they do not store LVT and GVT 
time values. They are just a reference in the array buffers. Buffers IB and OB do not 
need to keep any of its messages. All the information needed for a rollback is stored 
in IQ, OQ and ss between the GVT and LVT pointers. 

IQ - Input Queue 
In IQ, the events after GVT pointer are the ones that have simulation time bigger than 
GVT time. Events after LVT  pointer are the ones that have simulation time bigger 
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than LVT time. Thus events after LVT pointer have not been processed yet and the 
ones between LVT and GVT pointers have been processed but can not be discarded 
because they might be needed in a rollback situation. 

Events in IQ are placed in increasing simulation time order. The fetched event is 
always the one with (LVT pointer)+1. 

OQ - Output Queue 
In OQ, the events after LVT pointer have not been sent already, and the ones between 
GVT and LVT pointers have been sent but can not be deleted because they might be 
needed for anti-messaging. Note that IQ'S LVT pointer is directly related with LVT 

value: it defines a frontier splitting events with simulation time smaller than LVT 
from those with simulation time bigger than LVT. However, in OQ, there is no such 
relationship. LVT pointer is just a frontier splitting sent and unsent events. This 
means that events in OQ are sent as soon as possible even if they have simulation 
times much bigger than LVT. Events in OQ are placed and retrieved in FIFO order. 

SS - State Stack 
States are saved from time to time and placed in ss in FIFO order. There are no state 
records above LVT pointer or below GVT pointer as it can be seen in Figure 3. 

IB - Input Buffer & OB - Output Buffer 
Events are put and get in FIFO order. When an event is get from IB or OB it is 
removed from there. 

3.2. Threads 

After the initial synchronization phase there will be the following threads: cs2ib, 
ib2iq, LP, oq2ob,  ob2cs and GVTmaster. 

cs2ib - From Communication System to Input Buffer 
It is only listening for incoming messages. It will receive every kind of message 
(normal events, acknowledge messages, GVT start request and GVT broadcasts) 
and will treat them all »nh the ume procedure: place incoming message in IB. 

oq2ob - From Output Own« to Output Buffer 
Runs an infinite loop fen. hut? trom OQ and putting in OB. This operation, updates 
automatically OQ'S LVT p»»w« 

ob2cs - From Output Buffer to Communication System 
This thread fetches messages Irom OB and if the message is normal message or it is 
an anti-message, an acknowledge message, or a GVT report  message, it will peek 
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into its receiver ID field and send it there. If the message is a GVT start or GVT 

broadcast message it will send the message to every possible LP over the network. 

ib2iq - From Input Buffer to Input Queue 
Upon receiving a message it acts as follows: 

A. If it receives a normal message the message is placed in IB in simulation order, 
ready for being processed by LP. A corresponding acknowledge message is 
immediately sent to OB. 
A. 1. If when trying to place the message it realizes there was a causality error, it 

initiates the rollback operation. The message is still placed in IB   in 
simulation order regardless of the rollback. 

A.2. If there was a negative counterpart in queue then both messages are 
annihilated and no rollback will happen even if the negative message had 
past simulation time. 

B. If is an anti-message: 
B.I. With a corresponding positive (normal) message in IB it annihilates both. 

B. 1.1. If the positive message was already consumed then it starts the 
rollback operation. 

B.2. Without a corresponding positive counterpart then it is just placed in IQ. 

C. If it is an acknowledge message it will search for the corresponding 
unacknowledged message in OQ and will set its status to acknowledged. 

D. If it is a GVT start message it will start GVT calculation algorithm which 
finishes by sending a GVT report message to OQ and from there to the 
initiation GVT calculation process. 

E. If it is a GVT broadcast message, the new GVT will be updated accordingly 
and the garbage collection will take place. 

LP - Logical Process 
The programmer's thread is completely unaware 
of negative and positive message differences, 
GVT start, GVT report, GVT broadcast 
and acknowledge messages. All messages 
received by LP are positive and therefore are 
treated in the same way. They are fetched from 
IQ and the rest is up to the programmer. When 
processing the event, none, one or more events 
may be produced and then placed in OQ. 

Fig. 4. Thread layers 

GVT Master 
This thread only exists in one process. From time to time it wakes up and initiates the 
GVT calculation mechanism by sending a GVT  start message into buffer OB. On 
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the other side of the buffer, thread ob2cs will fetch the message; it will see that it is 
a message to broadcast and does so. 

Layer Relations Between Threads 
All JWarp threads and its communication channels (buffers) are represented in Figure 
4. 

In the Time Warp model every message has at least four fields: Sender ID, 

Receiver ID, Sender LVT, Receiver LVT. Receiver LVT is also called 
simulation time, since the message will be simulated at that particular time. 

3.3. Types of Messages 

Positive Events lr^«aw State Saving (activated by positive events) 

Negative Events Ov~—^ Rollback Actions (due out-of-order or negative event) 

GVT start and report Y^     jf GVT internal calculation phase (due to GVT start message) 

GVT broadcast  «. Garbage Coleclion (due to GVT broadcast] 

> Acknowledgements D""*"  «•£* Set message status to acknowledge (due to ack. message) 

Fig. 5. Message flows - represents every kind of possible message and its consequences. 
Messages are represented with full lines and actions with dotted lines. Message and action 
arrows of the same style are cause and consequence. 

Positive Messages 
As it can be seen, only positive messages arrive to the LP. Just before arriving, the 
LP's state is saved in ss, as it can be seen in Figure 5 by the dotted State Saving line. 
After arriving to the LP, this message is processed and eventually some more 
messages are produced and sent to the network. However, if a positive message is 
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timestamped in the past, a rollback will happen. In a rollback operation, the state 
variables are restored from ss, the LVT pointer in IQ is adjusted to this state and the 
LVT pointer in OQ is also adjusted. In OQ the messages that where to the left of LVT 
pointer and are now to the right must be unsent. For every message in these 
conditions, a correspondent anti-message is created and is sent while the original to 
unsent message is deleted. All messages to the right of LVT pointer before adjustment 
are just deleted. 

Negative Messages 
If the incoming message is negative it will never get to the LP. Two things may 
happen: it creates a rollback or it does not produce a rollback. Other Time Warp 
models allow for a negative message to arrive before its positive part if the underlying 
communication system allows for out-of-order messages. JWarp uses TCP sockets 
thus this is guaranteed never to happen. However, if it is possible for a negative 
message to arrive before the positive, then what is needed to do is simply to place it in 
IQ and do not allow LP to fetch it. Whenever the positive message arrived both 
would be annihilated in the buffers. 

Acknowledge Messages 
When a positive message arrives to ib2iq an acknowledge message is produced and 
placed in OB. When an acknowledge message arrives, ib2iq will look for its 
corresponding message in OQ and change its status to "acknowledged". 

GVT Start and GVT Report Messages 
When a GVT start message arrives, OQ is consulted (GVT Internal Calculation 
Phase line) in order to obtain the proper values to respond with a GVT report 
message. That message is then sent to back to the master. 

GVT Broadcast 
Finally, when a GVT broadcast message arrives with a new GVT an operation of 
garbage collection is started which involves removing some data from IQ, OQ and ss. 

4. JWarp Interface 

Like many simulation languages and environments, the JWarp library offers a event 
list and functions to fetch and schedule events. Applications built with JWarp should 
typically run in a cycle fetching one event at a time from the event list and processing 
that event. The event processing operations may produce zero, one or more events 
either to be handled by the local processor or by a remote one. 

To allow rollback operations, the state variables need to be saved periodically. 
JWarp offers special classes where the programmer is allowed to define which 
variables (or objects) make part of the application state and, therefore, which 
variables have their values restored after a rollback. 
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At the programming stage, the developer is asked to define the event types that is, 
the messages to be exchanged between processors at run-time. The programmer must 
also define which machines and ports will be used in the distributed simulation. The 
pool of processors is therefore static; removing, adding or changing any of these 
entries implies a new compilation of the package. 

The interface used by the application consists in only a few functions to retrieve 
events and to schedule events. Network communications, location of other process, 
the operations of rollback, state saving and state restoring are completely invisible to 
the application. 

4.1. JWarp Programming Example 

Let us see through a small example of a Ping-Pong application how to program a 
JWarp simulation. This example is quite simple: one process sends an event message 
and the other replies with another event. Figure 6 presents the main Java file 
(PingPong. Java) that specifies the LP entities and indicates the mapping of events 
to the corresponding LPs. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

package pingpong; 
import  jwarp.*; 

class PingPong{ 

static JwarpManager sim = new JwarpManager(); 

public static void main (String args[]){ 

Ping pPing = new PingC'l process ping events") 
Pong pPong = new Pong("I process pong events") 

sim.mapsEvent2LP("ping", pPing); 
sim.mapsEvent2LP("pong", pPong); 

sim.JWInit(args); 
} 

} 

Fig. 6. The main class that starts the whole simulation (PingPong.java) 

The things that are required to do are: 

1. First, create a class with a public  static main method. In this example, this 
file is PingPong. java. 

2. Define an JwarpManager object that will be responsible by the control of the 
simulation (line 5). 

3. Declare our LP entities: Ping and Pong (lines 9 and 10). 
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4. Declare which events are handled by the Logical Processes by using the method 
mapsEvent2LP (lines 12 and 13). 

5. Start everything with JWinit(args) (line 15). 

The main () class and the help of a configuration class are used by the JWarp 
package to know which processes should run on which processors, which LPs should 
be executed and what is the mapping of events to LP entities. 

Figure 7 shows the code of one the LP entities (Ping). The other one (Pong) is not 
shown since it is quite similar. Mainly there are two things that are required for a 
programmer to do: 

1. Define the LP entities which will make part of the simulation. In this particular 
case they are defined in Ping. Java and Pong. Java. These classes are extensions 
to a JWarp abstract class: Jwarp_LP. Since this class implements Runnable the 
programmer must define its code inside the run method. These classes are the ones 
which define the model to be simulated; 

2. Receiving and sending messages is accomplished with the getEvent and 
putEvent methods. 

package pingpong; 
import     jwarp.*; 

public  class  Ping extends Jwarp_LP{ 
public void run(){ 

ppMessage pingOut; 
pingOut  = new ppMessage(   2,   5,   "ping",   "pong",   "Hi   from 

Ping! ") ; 
putEvent(pingOut); 
System.out.println("Ping sent message:   "   + pingOut); 
ppMessage pongln =   (ppMessage)   getEvent(); 
System.out.println("Pong received message:   "   + pongln); 

} 

public  PingtString name)   {   super(name);} 
} 

Fig. 7. The code of one LP entity that sends a ping event and receives a pong (Pong. j ava) 

Finally Figure 8 presents the definition of an event message. The programmer is 
basically required to: 
1. Define the message types necessary to the simulation. In this case we define a 

single one that must extend the class Message, a class belonging to the JWarp 
package; 

2. To print the message contents the programmer may define the toString method. 
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package pingpong; 
import jwarp.*; 

public class ppMessage extends Message { 
String sentence; 

public ppMessage( long sendingTime, long receivingTime, 
String sender   , String receiver, 
String sentence){ 

super(sendingTime, receivingTime, sender, receiver); 
this.sentence = sentence; 

} 

public  String toString(){ 

return ("ppMessage " + this.getSendingTime() + 
"—>"       + this. getReceivingTime () + 
". From: "  + this.getSender() + 
" To: "     + this.getReceiverO ) ; 

} 
} 

Fig. 8. Definition of an event message (ppMessage. j ava) 

5. Related Work 

Several work about the Time Warp model has been presented in the literature 
[Jefferson85][Fujimoto90][Lin95][Ferscha95]. It was firstly implemented as an 
operating system - TWOS - in the Jet Propulsion Laboratory [Jefferson87]. Later on, 
it was ported to several other systems [Fujimoto89][Turner94][Belenot92]. 

Several parallel simulation languages have also appeared in the last decade: OLPS 
[Abrams88], Maisie [Bagrodia90], ModSim [West88], SCE [GÜ189], Sim++ 
[Baezer94] and YADDES [Preiss89]. 

Other approach has been followed by other researchers that chose to implement the 
parallel simulation system as a run-time library written in C++: examples include 
WARPED [Martin94], SPEEDES [Steinman91] and HASE++ [Howell97]. 

Until recently, there only two simulation libraries that were implemented in Java: 
SimJava [SimJava] and SimKit [SimKit]. However, these libraries only support 
sequential simulations. This year parallel discrete-event simulation Java libraries 
appeared: JTED [Cowie98] following the conservative approach and Formax 
[Halderen98] following a web-based optimistic approach. 
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6. Conclusions 

This paper reports an implementation of the Time Warp model in Java. The library 
implements all the internal synchronization mechanisms included in that model and 
provides a very easy-to-use programming interface. 

With JWarp it can be possible to execute parallel applications on clusters of 
workstations and personal computers that have the support of a Java Virtual Machine. 
Java assures the portability of the programs, solves the problems of heterogeneity and 
provides a quite flexible programming environment. 

It can be used to execute long-running complex simulation models. With the 
appropriate visualization tools it can also be adopted in the class rooms for the 
teaching of parallel simulation techniques and concurrent programming. 
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Abstract. The PHAROS project, funded by the European Unions ESPRIT pro- 
gram for research and development in information technology, aimed to assess 
High Performance Fortran (HPF) as a paradigm for porting large FORTRAN 77 
scientific applications to distributed memory architectures, in comparison to 
message-passing programming. The AEROLOG computational fluid dynamic- 
software developed by MATRA was one of these applications that has been 
ported to HPF. It is devoted to the study of compressible fluid flows around 
complex geometries. This paper describes the port of the AEROLOG code to- 
HPF based on the decomposition of subdomains. It outlines the parallelization 
strategy, the changes of the data structures and the tuning of the boundary con- 
ditions for the subdomains. Performance results for industrial test cases with 
different HPF compilers are given and compared with the results of the mes- 
sage-passing version. 

1.   Introduction 

High Performance Fortran (HPF) [7,8] is a data parallel, high level programming 
language for parallel computing that is expected to be more convenient in terms of 
portability and maintainability than explicit message passing and to allow higher pro- 
ductivity in software development. But the porting of key commercial applications to 
HPF is still of critical importance for the continuing development and acceptance of 
HPF as a standard and for the improvement of HPF compilers. 

The ESPRIT project "Open HPF Programming Environments" (PHAROS) aimed 
to assess HPF as a paradigm for porting large FORTRAN 77 scientific applications to 
shared and distributed memory architectures, in comparison to message-passing pro- 
gramming. The PHAROS project was funded by the European Union's ESPRIT pro- 

467 



FEUP - Faculdade de Engenharia da Universidade do Porto 

gram for research and development in information technology. It was a two years 
project, running from January 1996 until December 1997. 

To this end, four major commercial FORTRAN 77 application codes have been 
successfully ported to HPF (structural analysis, CFD and electromagnetism applica- 
tion codes). These codes already had message-passing parallel versions. The compari- 
son of HPF to message-passing considered factors such as: 

• the porting effort; 
• the performance of the resulting code; 
• the portability and maintainability of the resulting code. 

One of the PHAROS applications was the AEROLOG computational fluid dynam- 
ics software of MATRA BAe Dynamics [1,5]. The AEROLOG code is a proprietary 
CFD software devoted to the study of compressible fluid flows around complex 
geometries. For many years, it has been systematically applied during the aeronautical 
development programs MISTRAL, MICA, and APACHE, reducing the experimental 
studies and consequently cutting down costs and delays. 

Together with HPF experts and HPF tool providers, the version AEROLOG-v3.2e 
(e for Euler inviscid fluid model) has been ported to HPF. It is an industry relevant 
subset of the latest release AEROLOG-v3.2 which includes all the functionalities used 
in today's applications. This full release AEROLOG-v3.2 is composed of 102 subrou- 
tines with about 19000 lines of source code written in standard FORTRAN 77. The 
reduced code AEROLOG V3.2e is composed of 55 subroutines with about 11500 lines 
of source code. It is equivalent to the content of the message passing version of the 
AEROLOG code. 

In accordance to the workplan of the PHAROS project, the rest of this paper is or- 
ganized as follows. Section 2 describes the AEROLOG software and section 3 out- 
lines the initial port to HPF. The code review in section 4 identified the problems of 
the initial version and resulted in the code tuning presented in section 5. We discuss 
our expectations for the next generation of HPF compilers in section 6 to overcome 
the still existing problems Finally, we compare in section 7 the results of the HPF 
versions with the MP! version and conclude in section 8. 

2.   Description of th* AEROLOG Software and the Test Cases 

2.1 The AEROLOG CFD Code 

The AEROLOG-v3 2 code allows the simulation of steady or unsteady inviscid and 
compressible fluid flows over three-dimensional geometries by solving the Euler sys- 
tem of partial differential equations. It utilizes an explicit time integration scheme of 
Lax-Wendroff type. It is second order accurate in time and allows steady flow simula- 
tion with the local time-stepping technique or unsteady simulation with a uniform time 
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step limited by the so-called CFD stability condition. Another functionality is the 
finite volume space integration scheme. It is a three-dimensional extension of the cell 
vertex Ni scheme [4] which is second order accurate in space on a Cartesian grid. The 
formulation is fully conservative so that shock and expansion waves are automatically 
captured. 

The data layout is based on a multidomain meshing strategy. The global mesh is 
composed of an assembly of locally structured three-dimensional mesh blocks (I, J, K, 
families of mesh lines). All types of degenerations are allowed on the mesh bounda- 
ries, like mesh plans degenerating into a mesh line or a point. This is very useful for 
the meshing of complex geometries, but it requires the implementation of the conven- 
ient matching conditions. 

The most time consuming part of the code is the subroutine that computes the time 
increments for the physical variables at each time step. It is composed of a succession 
of calls to subroutines that can be sorted into two groups: 

• The "local" routines are called independently over subdomains. This group uses 
typically up to 90% of the total CPU time within the FORTRAN 77 code. 

• The "boundary" routines perform the boundary conditions: flow conditions (in- 
flow, outflow, walls, etc.) and numerical matching conditions (interfaces be- 
tween subdomains). These routines make an intensive use of indirect addressing 
and involve dependencies between data belonging to different subdomains. 

2.2 CFD Test Cases 

Three meshes of increasing sizes (see Table 1) have been build around the same 
geometry of blunt body. The free flow conditions are: Mach number equal to 2.96 and 
angle of attack equal to lOo. With these conditions, the fluid flow over the blunt body 
shows strong shock and expansion waves: characteristic of MATRA industrial appli- 
cations. 

Test Case         Si/c\ and Number 
Name                .f Subdomains 

Total Mesh 
Points 

Processing 
Nodes 

Small              t * « Hx9)x8 154440 1-8 
Medium             ^(I^K9)X8 304200 2-16 

Large            , : > » *< x 9) x 8 603720 4-64   ■ 

Table 1. Industrial Test Cases. 

Due to the coarse grain pjjjJIelization strategy over subdomains (see next section), 
the number of HPF process is limited by the number of subdomains. In order to run 
a number of HPF tasks higher than the initial number of subdomains, a pre-processor 
can be applied [6]. This preprocessor takes as input a mesh file with its associated 
lopological description and generates automatically a new mesh data set with respect 
to the three following constraints: 
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• generate the given number of mesh blocks, 
• optimize the load balancing (i.e. homogeneous mesh block sizes), 
• minimize the size of blocks interfaces. 

3.   Initial Port to HPF 

3.1 Porting to Fortran 90 

Initially, the code was ported from FORTRAN 77 to Fortran 90. Apart from in- 
serting F90 syntax, e.g. array syntax and interface blocks, we replaced the old one 
dimensional "work-array" with dynamic arrays. Some of the arrays became allocat- 
able arrays, other ones, especially for local data, became automatic arrays. These 
changes made the code more flexible as the static size of the workspace is no longer 
given. But they were also absolutely necessary to allow the HPF distribution of the 
mesh data in a useful way. 

The porting to Fortran 90 was supported by the Foresys (FORtran Engineering 
SYStem) tool from SIMULOG [11] that is a reverse-engineering, migration and de- 
velopment support system for Fortran. It was especially useful to generate interface 
blocks with intentions for the dummy arguments, and to take advantage of new syntax 
and new language features. 

3.2 Coarse Grain Parallelization Strategy 

For the HPF parallelization we have chosen the following strategy: 

• The loops over the different subdomains calling the local routines provide coarse 
grain parallelism without communication. The HPF mapping directives have to 
guarantee that all data belonging to one subdomain is completely mapped to the 
same processor. 

• The matching conditions of the interfaces of adjacent subdomains are difficult to 
handle. The initial strategy was the replication of the data and computations in- 
volved in the boundary conditions. 

In the AEROLOG code, the data of the two- or three-dimensional subdomains is 
linearized and stored in a one-dimensional array. For using the coarse grain parallel- 
ism, it is essential that we can distribute the data in the program in such a way that one 
subdomain is completely owned by the processor that will work on this data. As the 
subgrids have different sizes, it would be necessary that HPF supports generalized 
block distributions where the user can pass to the compiler the corresponding block 

470 



VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing 

sizes for each processor. Unfortunately, none of the commercial HPF compilers sup- 
ported this feature already during the project time. For this reason, we had to reorgan- 
ize the one-dimensional mesh data arrays to two-dimensional ones. The second di- 
mension corresponds to the subdomains numbering and will be distributed by BLOCK 
(see Fig. 1). This imposed significant changes to the code, not only for the arrays 
containing mesh data, but also for all integer arrays used for indirect addressing of 
mesh data. 

real, dimension (NTOT) ::X 

mm o 

real, dimension (NMAX,NSDTOT) :: X 

!hpf$ distribute (*,BLOCK) :: X 

V ' - 

Fig. 1. New data structures for the mesh data and their distribution. 

3.3 Coarse Grain HPF Implementation 

With the help of the INDEPENDENT directive, we enabled the parallelization of 
the loops over the subdomains. The local routines are defined as PURE routines to 
allow their parallel execution for the different subdomains (see Fig. 2). Furthermore, 
the local routines have not to be parallelized at all and do not need any HPF directive. 

The AEROLOG code takes advantage of sequence association. The subdomains are 
implicitly reshaped within the local subroutines. Within one subroutine, one subdo- 
main is always considered as a three-dimensional rectangular grid. Though the HPF 
standard does not allow sequence association for mapped arguments, we could rely on 
it as long as it is only used for a single subdomain that is completely mapped to one 
processor. 

For the boundary routines, the values of the boundary nodes of the different sub- 
domains are gathered from the distributed mesh data. For the initial HPF port, the data 
and computations are replicated on all nodes and every processor updates the values of 
its boundary mesh nodes. The gathering of the distributed data is realized by replica- 
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tion of the whole mesh data. As the mesh data is not distributed within the boundary 
routine, implicit remapping at subroutine boundaries is utilized (see Fig. 3). 

integer  :: NSDTOT   ! total number of subdomains 

integer  :_: NMAX     ! maximal size of one subdomain 

real, dimension (NMAX,NSDTOT) :: F !  mesh data, e.g. force 

!hpf$ distribute F (*,block) !  distribute the subdomains 

integer, dimension(NSDTOT) :: IM, JM, KM ! sizes 

!hpf$ independent 

do NSD = 1, NSDTOT 

call LOCAL_ROUTINE (F(1,NSD),IM(NSD),JM(NSD),KM(NSD), ...) 
end do 

call BOUNDARY (F, NMAX, NSDTOT, ...) 

pure subroutine LOCAL_ROUTINE (F,IM,JM,KM,...) 

integer, intent(in) :: IM, JM, KM 

real, dimension(IM,JM,KM), intent(inout) :: F 

end subroutine LOCAL_ROUTINE 

Fig. 2. Outline of the initial HPF AEROLOG Code. 

subroutine BOUNDARY (F, NMAX, NSDTOT, ISD_B, IJK_B, NB) 

integer, intent (in)    :: NMAX, NSDTOT, NB 

integer, dimension (2, NB), intent (in)  :: ISD_B, IJK_B 

real, dimension (NMAX, NSDTOT), intent (inout) :: F 

!hpf$ distribute F(*,*) ! replicated mesh data 
real    :: XI, X2, X 

integer :: IB, IJK1, ISD1, IJK2, ISD2 
do IB=1,NB 

IJK2 = IJK_B(2,IB); ISD2 = ISD_B(2,IB) 

IJK1 = IJK_B(1,IB); ISD1 = ISD_B(1,IB) 

X = (FdJKl, ISD1) + F(IJK2,ISD2) ) * 0.5 

F (IJK1.ISD1) = X; F(IJK2,ISD2) = X 

end do 

end subroutine 

Fig. 3. Computation of boundary conditions in the AEROLOG code. 
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4.  Code Review 

We tested the initial HPF port with the following compilers: 

• NAS HPFPlus by NA Software Liverpool, Release 2.01, a commercial HPF com- 
piler that was also the target compiler for all HPF codes in the PHAROS project; 

• PG HPF by Portland Inc., Oregon [9], AIX Rel. 2.2-1, another commercial HPF 
compiler; 

• ADAPTOR HPF compiler, version 5.1 (Oct. 1997) [3], developed at SCAI in 
GMD, a research compiler that is available as public domain. 

All results have been measured on the IBM SP2 at the GMD. We give the execu- 
tion times in seconds for 5 iterations on the 'small' test case that works on 8 subdo- 
mains, every subdomain contains 65 x33 x9 mesh points (see also Table 1). 

0 5 10 15 20 25 30 

Fig. 4. Execution times (in seconds) of initial HPF version. 

Fig. 4 shows the execution times of the initial HPF version, compiled by the native 
Fortran 90 compiler (xlf) and by the different HPF compilers running on 1,2, 4, and 8 
processors. The HPF version (considered as a Fortran 90 version without directives) 
has nearly the same performance as the original FORTRAN 77 version. The execution 
times, separated for the local and boundary routines, show that the local routines are 
parallelized perfectly. They scale well and the HPF parallelization causes no overhead. 
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But all boundary routines do not scale. In contrary, the execution time increases with 
the number of processors. This is due to the replication of distributed data that in- 
volves an all-to-all communication. Furthermore, it shows that the compilers have 
already different 'support for this kind of structured communication that follows a 
fixed communication pattern where every processor knows which data has to be sent 
and to be received. 

DNAS BPGI BADP DNAS BPG1 BADP 

NP=I      NP=2     NP=4     NP=8    NP=16 

(a) Replication of 16 kBytes 

NP=1      NP=2     NP=4     NP=8    NP=I6 

(b) Replication of 128 kBytes 

Fig. 5. Replication of distributed data. 

In order to estimate the cost of replications, we benchmarked a sample code that 
performs only data replications of arrays with varying sizes. Fig. 5 shows how much 
time (in milliseconds) the replication of distributed data needs for the different com- 
pilers and'for the different number of processors. Array sizes of 16 Kbytes and 128 
Kbytes are considered. The time for replicating distributed data increases with the size 
of the array and with the number of processors. The ADAPTOR runtime system is 
able to recognize at runtime that the replication of distributed data on a single proces- 
sor does not require any copying at all. 

5.   Tuning of the HPF Code 

As the results of the initial HPF port show, only the tuning of the boundary routines 
is necessary. We considered two strategies: 

• We let the mesh arrays distributed for the boundary routines and relied on the capa- 
bilities of the HPF compiler to deal with unstructured communication. Unfortu- 
nately, all HPF compilers failed to generate more efficient code than for the initial 
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HPF version. Especially the NAS HPFPlus compiler provided absolutely no effi- 
cient support for indirect addressing. 
Instead of replicating the whole array containing the mesh data, we compressed the 
full mesh data to the boundary data before replicating it. This solution needed new 
data structures for packing and unpacking of boundary data (see Fig. 6). The pack- 
ing of the data can be done independently for all subdomains. This approach re- 
quired only HPF features that were supported by all HPF compilers. 

2 3 NB 

\ <^' 
V 

Fig. 6. Packing of boundary data. 

By the packing of the boundary data, much less data has to be replicated between 
the different processors. Only the boundary data and not the whole mesh data is ex- 
changed between the processors. The results shown in Fig. 7 verify the effectiveness 
of the chosen approach. Compared to the sequential version, speedups from 4 to 5 on 8 
processors are achieved. 

6.  Expectations for the Next Generation of HPF Compilers 

The current tuned HPF version is still not fully portable between the different HPF 
compilers as the calling of local subroutines within an independent loop is supported 
differently. The NAS HPFPlus compiler did not act at all upon the INDEPENDENT 
directive, but scheduled the local computations, defined as HPF_SERIAL routines 
and not as PURE routines, on the processors owning the subdomain. The need for the 
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slightly different versions of the HPF code should become redundant with the next 
releases of the HPF compilers. 

Considering HPF 2.0 [8], we expect support for general block distributions. This 
would avoid the additional dimension for the subdomains and there would be no more 
wasting of memory in case of different subdomain sizes (see also Fig. 1). This feature 
is absolutely necessary to combine the evolution of the serial and the HPF version of 
the AEROLOG code. 

■ i      1 1  
F90 

1 III" 
NAS 1 

: 

- 1 III" 
PGI I 

1 1             1 
ADP ] m 

1                 1 
NAS 2 l#&4 ,               ,     WW 

PGI 2 m 
1          1 

ADP 2 
1 

NAS 4 hn*»J 

1 
PGI 4 ,. -m 

- 1 Dlocal ■boundary ADP 4 

NAS 8 mm&x-l 

•A PGI 8 
- 

ADP 8 II 

0 * 10 IS 20 25 30 

Fig. 7. hiciutmn times (in seconds) of tuned HPF version. 

35 

The Amdahl limn fc struts the maximum speed-up as long as the boundary compu- 
tations are not parallelized But then unstructured communication has to be supported. 
Therefore the compiler h.4» in build a schedule required for accessing remote items of 
distributed arrays and )■* vmrnunication optimization. Unfortunately, schedules can- 
not be worked out ai o-mpiU: time, but only at run-time, when the values of the indi- 
rection arrays are know n TV code design which first builds the schedule, then uses it 
to carry out the actual communication and computation, has been coined as the in- 
spector/executor scheme 110). The PGI and ADAPTOR compiler followed this de- 
sign, but only the latest release of ADAPTOR tool provided sufficient support for 
reusing communication schedules by an additional directive [2]. 

476 



VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing 

Fig. 8 presents results for the 'medium' test case (100 iterations), for the local rou- 
tines (local) and for different implementations of the boundary routines. The replica- 
tion strategy of the initial and tuned HPF version does not scale. The unstructured 
communication (unstr.) for the parallelized boundary computations scales, but pro- 
duces an unacceptable overhead due to the high costs for building the communication 
schedule. If the communication schedule can be reused, e.g. by tracing modifications 
of the indirection array as described in [2], the unstructured communication produces 
good results (traced). 

□ local ■ initial ■ tuned ■ unstr. H traced 

P=2 P=4 P=8 P=16 

Fig. 8. Different tuning strategies of the boundary computations (ADAPTOR). 

7.  Benchmarking and Comparison with Message Passing 

The porting of the AEROLOG code to HPF required important code changes as 
well as the message passing port, but it could be done step by step, always having a 
running version. This porting included useful code cleaning and modernized memory 
management. The replacement of the super-array technique in favor of Fortran 90 
dynamic allocation of the local arrays brings simplification and flexibility to the code. 
But many code changes were only required due to the limited capabilities of the HPF 
compilers. 

The HPF and the message passing version achieve nearly the same performance for 
smaller number of processors. But the message passing version of the AEROLOG 
code scales better (see Fig. 9). It parallelizes also the boundary routines and takes 
advantage of reusing explicitly communication schedules. But with an HPF compiler 
that supports unstructured communication and reuses schedules the scalability of the 
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MPI version can be nearly achieved as the results with the ADAPTOR compilation 
system verify. 

From the code development and maintenance point of view, it is possible to replace 
smoothly the FORTRAN 77 reference code in favor of the Fortran 90/HPF code. The 
benefits of this migration will be the merging of the sequential/parallel 
shared/distributed memory versions of AEROLOG, which have reached very different 
levels of development at the moment. The migration of the complete AEROLOG code 
(implicit solver, Navier-Stokes solver, etc.) is eased by the choice of the coarse grain 
parallelization strategy based on the multidomain approach. In particular, it is not 
necessary to rewrite the local algorithms which can remain FORTRAN 77, saving a 
lot of porting efforts and bug risks. Experimental results with the ADAPTOR compiler 
have also shown that the HPF version is well suited for shared memory architectures 
by translating the HPF directives into parallelization directives for the native compiler. 
Due to the shared memory, runtime support for unstructured communication is not 
necessary. 

In any case, we have seen from the PHAROS final benchmarks that it is not possi- 
ble at the moment to get rid of the message-passing version of the code, which is the 
only one able to run efficiently enough on massively parallel computers. Enhance- 
ments of the HPF compiler technology are still required to a complete migration to 
HPF. 

DNAS (tuned) iPGI(tuned) IADP (tuned) E ADP (traced) I MPI 

NP=1 NP=2 NP=4 NP=8 NP=16 NP=32 

Fig. 9. Speedups on industrial test cases. 
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8.   Conclusions 

With the end of the PHAROS project, we have an HPF version of the AEROLOG 
code that runs with at least three HPF compilers and produces acceptable results for a 
limited number of processors. The porting effort was higher than expected because 
code restructuring was required in order to achieve the HPF implementation of the 
coarse grain parallel strategy. As HPF concepts, are rather complicated for non spe- 
cialists, the know-how transfer from tool providers and experts to the end-user was 
very important and might be considered as a major benefit of the PHAROS project. 

At this time, the code is not fully portable as different language features are used 
for the two commercial HPF compilers. This is not only due to the missing support in 
the compilers, but also due to fact that the HPF standard was not not rigid enough, so 
that HPF directives led to various interpretations. With future releases of the HPF 
compilers, these problems will disappear. The tuning of the boundary conditions re- 
quired a lot of effort. This effort might be less with advanced HPF compilers where 
unstructured communication is better supported. 

The HPF version can directly be compiled for a serial machine achieving the same 
performance than the original code. While the independent computations over the 
subdomains scale well, the boundary conditions remain the critical part, even in the 
tuned version. Replication of mesh data is rather expensive, unstructured communica- 
tion is not well supported. Due to the replication of the boundary computations, the 
scalability of this version is limited in any case. 

Nevertheless, experimental results with the research compilation, system ADAP- 
TOR verify that a scalable and efficient HPF parallelization of the AERLOG software 
is possible if general block distributions and unstructured communication are suffi- 
ciently supported. 

In conclusion of this project, we can state that HPF is a useful paradigm for porting 
large FORTRAN 77 applications to parallel architectures and in the long run the better 
alternative. But an ctfi«.ient and portable parallelization and a higher productivity in 
software developmcm >. an only be achieved if HPF compilers improve substantially. 
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Abstract. Actual behaviour of parallel programs is of capital 
importance for the development of an application. Programs will. 
be considered matured applications when their performance is 
under acceptable limits. Traditional parallel programming 
forces the programmer to understand the enormous amount of 
performance information obtained from the execution of a 
program. In this paper, we propose an automatic analysis tool 
that lets the programmers of applications avoid this difficult 
task. This automatic performance analysis tool main objective is 
to find poor designed structures in the application. It considers 
the trace file obtained from the execution of the application in 
order to locate the most important behaviour problems of the 
application. Then, the tool relates them with the corresponding 
application code and scans the code looking for any design 
decision which could be changed to improve the behaviour 

1. Introduction: 

The performance of a parallel program is one of the main reasons for designing 
and building a parallel program [1]. When facing the problem of analysing the 
performance of a parallel program, programmers, designers or occasional parallel 
systems users must acquire the necessary knowledge to become performance analysis 
experts. 

Traditional parallel program performance analysis has been based on the 
visualization of several execution graphical views [2, 3, 4. 5], These high level 
graphical views represent an abstract description of the execution data obtained from 
many possible sources and even different executions of the same program [6]. 

This work has been supported by the C1CYT under contract TIC 95-0868 
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The amount of data to be visualized and analyzed, together with the huge number 
of sources of information (parallel processors and interconnecting network states, 
messages between processes, etc.) make this task of becoming a performance expert 
difficult. Programmers need a high level of experience to be able to derive any 
conclusions about the program behaviour using these visualisation tools. Moreover, 
they also need to have a deep knowledge of the parallel system because the analysis 
of many performance features must consider architectural aspects like the topology of 
the system and the interconnection network. 

In this paper we describe a Knowledge-based Automatic Parallel Program 
Analyser for Performance Improvement (KAPPA-PI tool) that eases the performance 
analysis of a parallel program. Analysis experts look for special configurations of the 
graphical representations of the execution which refer to problems at the execution of 
the application. Our purpose is to substitute the expert with an automatic analysis tool 
which, based on a certain knowledge of what the most important performance 
problems of the parallel applications are, detects the critical execution problems of 
the application and shows them to the application programmer, together with source 
code references of the problem found, and indications on how to overcome the 
problem. 

We can find other automatic performance analysis tools: 

-Paradyn [7] focuses on minimising the monitoring overhead. The 
Paradyn tool performs the analysis "on the fly", not having to generate a 
trace file to analyse the behaviour of the application. It also has a list of 
hypotheses of execution problems that drive the dynamic monitoring. 

- AIMS tool [8], is a similar approach to the problem of performance 
analysis. The tool builds a hierarchical account of program execution time 
spent on different operations, analyzing in detail the communications 
performed between the processes. 

-Another approach to addressing the problem of analysing parallel 
program performance is carried out by [9] and [10]. The solution proposed is 
to build an abstract representation of the program with the help of an 
assumed programming model of the parallel system. This abstract 
representation of the program is analysed to predict some future aspects of 
the program behaviour. The main problem of this approach is that, if the 
program is modelled from a high level view, some important aspects of its 
performance may not be considered, as they will be hidden under the 
abstract representation. 

- Performance of a program can also be measured by a pre-compiler, like 
Fortran approaches (P3T [11], this approach is not applicable to all parallel 
programs, especially those where the programmer expresses dynamic 
unstructured behaviour. 
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Our KAPPA-PI tool is currently implemented (in Perl language [12]) to analyse 
applications programmed under the PVM [13] programming model. The KAPPA-PI 
tool bases the search for performance problems on its knowledge of their causes. The 
analysis tool makes a "pattern matching" between those execution intervals which 
degrade performance and the "knowledge base" of causes of the problems. This is a 
process of identification of problems and creation of recommendations for their 
solution. This working model allows the "performance problem data base" to adapt to 
new possibilities of analysis with the incorporation of new problems (new knowledge 
data) derived from- the experimentation with programs and new types of 
programming models. 

In section 2, we describe the analysis methodology briefly, explaining the basis of 
its operations and the processing steps to detect a performance problem. Section 3 
presents the actual analysis of a performance problem detected in an example 
application. Finally, section 4 exposes the conclusions and future work on the tool 
development. 

2.- Automatic analysis overview. 

The objective of the automatic performance analysis of parallel programs is to 
provide information regarding the behaviour of the user's application code. 

This information may be obtained analysing statically the code of the parallel 
program. However, due to the dynamic behaviour of the processes that form the 
program and the parallel system features, this static analysis may not be sufficient. 

Then, execution information is needed to effectively draw any conclusion about 
the behaviour of the program. This execution information can be collected in a trace 
file that includes all the events related to the execution of the parallel program. 
However, the information included in the trace file is not significant to the user who 
is only concerned with the code of the application. 

The automatic performance analysis tool concentrates on analysing the behaviour 
of the parallel application expressed in the trace file in order to detect the most 
important performance problems. Nonetheless, the analysis process can not stop there 
and must relate the problems found with the actual code of the application. In this 
way, user receives meaningful information about the application behaviour. 

In figure 1, we represent the basic analysis cycle followed by the tool to analyse 
the behaviour of a parallel application. 
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Problem 
Detection 

Problem 
Determination 

KappaPi Tool 

Fig. 1. Schema of the analysis of a parallel application 

The analysis first considers the study of the trace file in order to locate the most 
important performance problems occurring at the execution. Once those problematic 
execution intervals have been found, they are studied individually to determinate the 
type of performance problem for each execution interval. 

When the problem is classified under a specific category, the analysis tool scans 
the segment of application source code related to the execution data previously 
studied. This analysis of the code brings out any design problem that may have 
produced the performance problem. Finally, the analysis tool produces an explanation 
of the problems found at this application design level and recommends what should 
be changed in the application code to improve its execution behaviour. 

In the following points, the operations performed by the analysis tool are explained 
in detail. 

484 



VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing 

2.1. Problem Detection 

The first part of the analysis is the study of the trace file obtained from the 
execution of the application. In this phase, the analysis tool scans the trace file, 
obtained with the use of TapePVM [14], with the purpose of following the evolution 
of the efficiency of the application. The application efficiency is basically found by 
measuring the number of processors that are executing the application during a 
certain time. 

The analysis tool collects those execution time intervals when the efficiency is 
minimum. These intervals represent those situations where the application is not 
using all the capabilities of the parallel machine. They could be evidence of an 
application design fault. In order to analyse these intervals further, the analysis tool 
selects the most important inefficiencies found at the trace file. More importance is 
given to those inefficiency intervals that affect the most number of processors for the 
longest time. 

2.2. Problem Determination 

Once the most important inefficiencies are found, the analysis tool proceeds to 
classify the performance with the help of a "knowledge base" of performance 
problems. This classification is implemented in the form of a problem tree, as seen in 
figure 2. 

Inneficiency patterns 

Lack of ready tasks Mapping Problems 
CAUSES 

Communication Program Structure 
related related 

blocked sender   slowcomm.      multiple output master/slave    Lack of parallelism   barrier problems 

Fig. 2. Classification of the performance problems of an application 

Each inefficiency interval at the trace is exhaustively studied in order to find which 
branches in the tree describe the problem in a more accurate way. When the 
classification of the problem arrives at the lowest level of the tree, the tool can 
proceed to the next stage, the source code analysis 
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2.3. Application of the source code analysis. 

At this stage of the program evaluation, the analysis tool has found a performance 
problem in the execution trace file and has classified it under one category. 

The aim of the analysis tool at this point is to point out any relationship between 
the application structure and the performance problem found. This detailed analysis 
differ from one performance problem to another, but basically consists of the 
application of several techniques of pattern recognition to the code of the application. 

First of all, the analysis tool must select those portions of source code of the 
application that generated the performance problem when executed. In order to 
establish a relationship between the executed processes and the program code, the 
analysis tool builds up a table of process identificators and their corresponding code 
modules names. 

With the help of the trace file, the tool is able to relate the execution events of 
certain operations, like sending or receiving a message, to a certain line number in the 
program code. Therefore, the analysis tool is able to find which instructions in the 
source code generated a certain behaviour at execution time. Each pattern-matching 
technique tries to test a certain condition of the source code related to the problem 
found. For each of the matches obtained in this phase, the analysis tool will generate 
some explanations of the problem found, the bounds of the problem and what 
possible alternatives there are to alleviate the problem. 

The list of performance problems, as well as their implications of the source code 
of the application is shown at table I. A more exhaustive description of the 
classification can be found at [ 15]. 
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NAME DESCRIPTION TRACE 
INFORMATION 

SOURCE CODE 
IMPLICATIONS 

Ma p p i n g   Problems 
Mapping 
problem 

There       are       idle 
processors and ready- 
to-execute   processes 
in busy processors 

Processes assignments 
to    busy    processors, 
number     of     ready 
processors 

Solutions affect 
the process- 
processor mapping 

Lack  of  Ready  Tasks   Problems 
Communication Related 
Blocked 
Sender 

A blocked process is 
waiting for a message 
from another process 
that       is       already 
blocked for reception. 

Waiting receive times 
of       the       blocked 
processes.        Process 
identifiers      of      the 
sender partner of each 
receive. 

Study      of      the 
dependencies 
between            the 
processes            to 
eliminate waiting. 

Multiple 
Output 

Serialization    of   the 
output messages of a 
process. 

Identification   of   the 
sender process and the 
messages sent by this 
process. 

Study      of      the 
dependencies 
between             the 
messages   sent   to 
all            receiving 
processes. 

Long 
Communic 
ation 

Long communications 
block the execution of 
parts of the program. 

Time spent waiting. 
Operations   performed 
by the sender at that 
time. 

Study of the size of 
data      transmitted 
and delays of the 
interconnection 
network. 

Program Structure Related 
Master/ 
Slave 
problems 

The       number      of 
masters                 and 
collaborating slaves is 
not optimum. 

Synchronization  times 
of    the    slaves    and 
master processes. 

Modications of the 
number of 
slaves/masters. 

Barrier 
problems 

Barrier         primitive 
blocks the execution 
for too much time. 

Identification            of 
barrier  processes   and 
time spent waiting for 
barrier end. 

Study of the latest 
processes to arrive 
at the barrier. 

Lack       of 
parallelism 

Application      design 
does     not     produce 
enough   processes   to 
fill all processors 

Analysis       of       the 
dependences    of    the 
next     processes      to 
execute. 

Possibilities        of 
increasing 
parallelism         by 
dividing processes 

Table 1. Performance problems detected by the analysis tool. 

In the next section, we illustrate the process of analysing a parallel application with 
the use of an example. 
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3. Example: analysis of an application. 

In this example we analyse a tree-like application with important amount of 
communications between processes. The application is executed mapping each 
process to a different processor. From the execution of the application we obtain a 
trace file, which is shown as a time-space diagram, together with the application 
structure, in figure 3. 

j Blocked processor 

'^W^j Exeaiting processor 

* Comunicationbe rween processors 

Processor i 

Fig. 3. Application trace file space-time diagram 

In the next points we follow the operations carried out by the tool when analysing 
the behaviour of the parallel application. 

3.1. Problem Detection 

First of all, the trace is scanned to look for low efficiency intervals. The analysis 
tool finds an interval of low efficiency when processors P2 and P3 are idle due to the 
blocking of the processes "Mini" and "MaxO". Then, the execution interval (tl,t2) is 
considered for further study. 

3.2. Problem Determination 

The analysis tool tries to classify this problem found under one of the categories. 
To do so, it studies the number of ready-to-execute processes in the interval. As there 
are no such kind of processes, it classifies the problem as "lack of ready processes'". 
The analysis tool also finds that the processors are not just idle, but waiting for a 
message to arrive, so the problem is classified as a communication related. 

Then, the analysis tool must find out what the appropriate communication problem 
is. It starts analyzing the last process (MaxO) which is waiting for a message from 
Mini process. When the tool tries to study what the Mini process was doing at that 
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time, it finds that Mini was already waiting for a message from Max2, so the analysis 
tool classifies this problem as a blocked sender problem, sorting the process 
sequence: Max2 sends a message to Min 1 and Mini sends a message to MaxO. 

3.3. Analysis of the source code. 

In this phase of the analysis, the analysis tool wants to analyse the data 
dependencies between the messages sent by processes Max2, Mini and MaxO (see 
figure 3). 

First of all, the analysis tool builds up a table of the process identifiers and each 
source C program name of the processes. 

When the program names are known, the analysis tool opens the source code file 
of process Mini and scans it looking for the send and the receive operations 
performed. From there, it collects the name of the variables which are actually used to 
send and receive the messages. This part of the code is expressed on figure 4. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

pvm_recv(-1,-1); 

pvm_upkf1(&calc, 1,1) ; 

calcl = min(calc,1); 

for(i=0;i<sons ; i + +) 
{ 

pvm_initsend(PvmData iDe fault); 

11 
1 T 

pvm_pkf1(icalcl,1,1) ; 

13 
14 } 

pvm_send'tid_son[i] , 1) / 

Fi*. 4.   Win l.c " relevant portion of source code 

When the variable*, arc f.'und ("calc" and "calcl" at the example) , the analysis 
tool starts searching (he s->urce code of process "Mini" to find all possible 
relationships between N^h enables. As these variables define the communication 
dependence of the pnKo^ ihe results of these tests will describe the designed 
relationship between the- r*.«. esses. 

In this example, the dependency test is found true due to the instruction found at 
line 5. which relates "cuL I » nh the value of "calc". This dependency means that the 
message sent to process "MaxO" depends on the message received from process 
"Max2". 
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The recommendation produced to the user explains this situation of dependency 
found. The analysis tool suggests the modification of the design of the parallel 
application in order to distribute part of the code of process "Mini" (the instructions 
that modify the variable to send) to process "MaxO", and then send the same message 
to "Mini" and to "MaxO". This message shown to the user is expressed in figure 5. 

Analysing MaxMin. 

A Blocked Sender situation has been  found in 
execution. 

the 

Processes involved are: 
MaxO, Mini, Max2 
Recommendation: A dependency between Max2 and MaxO has 

been found. 
The design of the application should be revised. 
Line 25 of Mini process should be distributed to MaxO. 

Fig. 5. Output of the analysis tool 

The line referred in the recommendations of the tool (Line 5 of Mini Process) 
should be executed in the process MaxO, so variable "calc" must be sent to MaxO to 
solve the expression. Then, the codes of the processes may be changed as follows in 
figure 6. 

pvm_recv(-1,-1) ; 
pvm_upkfl(fccalc,1,1) 
calcl = min(calc,1); 

Process MaxO 

pvm_recv(-1,-1); 
pvm_upkf1(&calc,1,1) 
calcl  = min (calcl); 

Process Min 1 

calc = min(old,myvalue); 
pvm_initsend(PvmDataDefault) ,- 
pvm_pkfl(&calcl,1,1) 
pvm_send(tid_Minl,1) 
pvm_send(t id_Max2,1) 

Process Max2 

Fig. 6. New process code 

In the new processes code, ihe dependencies between Mini and Max2 processes 
have been eliminated. From the execution of these processes we obtain a new trace 
file, shown in figure 7. In the figure, the process MaxO does not have to wait so long 
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until the message arrives. As a consequence, the execution time of this part of the 
application has been reduced. 

Pi 

P2 

P3 

Fig. 7. Space-state diagram of the new execution of the application 

4. Conclusions 

This automatic analysis tool is designed for programmers of parallel applications 
that want to improve the behaviour of their applications. The application 
programmers' view of the tool is quite simple: the application is brought to the 
analysis tool as input and, after the analysis, the programmer receives a list of 
suggestions to improve the performance of the program. Those suggestions explain, 
at programmer level, which problems have been found in the execution of the 
application and how to solve them changing the program code. 

Nonetheless, when applying the suggested changes to the application code, other 
new performance problems could appear. Programmers must be aware of the 
behaviour side-effects of introducing changes in the applications. Hence, once the 
application code is rebuilt, new analysis should be considered. This new analysis 
must be tested to find a set of representative input data in order to analyse the 
execution of the application comprehensively with a trace file. 

Moreover, some problems may be produced by more than one cause. Sometimes it 
is difficult to separate the different causes of the problems and propose the most 
adequate solution. This process of progressive analysis of problems with multiple 
causes is one of the future fields of tool development. 

Future work on the tool will consider the increment and refinement of the causes 
of performance problems, the "knowledge base". The programming model of the 
analysed applications must also be extended from the currently used (PVM) to other 
parallel programming paradigms. 
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Due to the general use of a few parallel execution trace formats [16, 4] and 
programming libraries, it is possible to have similar kind of performance data of 
many different applications running on different parallel systems. Although we have 
found that additional trace information (which is not easily obtained) can alleviate the 
analysis task to a high degree. 

But far greater efforts must be focused on the optimisation of the search phases of 
the program. The search for problems in the trace file and the analysis of causes for a 
certain problem must be optimised to operate on very large trace files. The 
computational cost of analysing the trace file to derive these results is not irrelevant, 
although the tool is built not to generate much more overhead than the visual 
processing of a trace file. 

The tree-structure of the problems helps to eliminate the testing of some 
hypotheses, but may complicate the analysis when considering problems with 
multiple causes (at different levels of the tree). 
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Abstract. In this work we have studied the influence of the vector reg- 
ister size over two different concepts of vector architectures. We have 
observed that, long vector registers play an important role in a conven- 
tional vector architecture. However, we observed that even using highly 
vectorizable codes, only a small fraction of that large vector registers is 
used. Nevertheless, we have observed that, reducing vector register size on 
a conventional vector architecture, result in a severe performance degra- 
dation, providing slowdowns in the range of 1.8 to 3.8. When we includ- 
ing an out-of-order execution on a vector architecture, the necessity of 
long vector registers, is reduced. We have used a trace driven approach 
to simulate a selection of the Perfect Club and Specfp92 programs. The 
results of the simulations show that, the register size reduction on an out- 
of-order vector architecture is less negative than in a conventional vector 
machine, providing slowdowns in the range of 1.04 to 1.9. Even when 
reducing the registers size to 1/4 the original size on an out-of-order ma- 
chine, the slowdown provided is in the range of 1.04 to 1.5, but it still 
is better than a conventional vector machine. Finally, when comparing 
both architectures, using the same register file size, (8kb), we can see that 
the performance gained by using out-of-order execution is in the range of 
1.13 to I.40. 

1    Introduction 

Numerical applications have been the area where vector architectures have proved 

their efficiency. This vector architectures have used in-order execution, limited 

form of ILP techniques and large latencies memory systems. In order to achieve 

good performance and to be able to tolerate the large latencies, this kind of 

processors have exploited the data level parallelism embedded in each vector 

instruction and have allowed the overlapping of vector and scalar instructions 

* On leave from the Centro de Investigaciön en Computo, Instituto Politecnico Na- 
cional - Mexico D.F. This work was supported by the Instituto de Cooperaciön 
Iberoamericana (ICI), Consejo Nacional de Ciencia y Tecnologia (CONACYT). 

** This work was supported by the Ministry of Education of Spain under contract 
0429/95, and by the CEPBA. 
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when possible. Conventional vector architectures have used large vector registers 
as one of the principals resources to hide latency. When a vector instruction is 
started, it pays for some initial (potentially long) latency, but then it works on a 
long stream of elements end effectively amortizes this latency across all elements. 

Taking into account this point of view, we can understand why that vector 
machines have been designed with vector registers as large as possible. Unfortu- 
nately large registers have several disadvantages : 

• When the application can not make full use of the vector register size, a 
precious hardware resource is being wasted [1, 2]. 

• Large registers means, big number of transistors and expensive cost; this 
implies that only a few of them can be implemented on the design. 

• If the number of registers that the compiler sees is small, then the amount 
of spill code introduced to support all live variables is considerably [5]. 

Reducing the vector registers length is certainly a solution to the problems 
just outlined. If most applications can not fully use all elements present in each 
vector register then, reducing the vector register length will reduce cost and 
increase the fraction of usage of registers. The drawback of register length re- 
duction is the associated performance penalty. Each time a vector instruction 
is executed, its associated latencies are amortized over a smaller number of ele- 
ments. This can have a significant negative impact on performance, especially for 
memory accesses. Moreover, more instructions have to be executed each with a 
shorter effective length, and, therefore, the number of times that latencies must 
be payed is larger. 

Unless some extra latency tolerance mechanism is introduced in a vector 
architecture, vector length can not be reduced without a severe performance 
penalty. While many techniques have been developed to tolerate memory latency 
in superscalar processors, only a few studies have considered the same problem 
in the context of vector architectures [3, 4, 5]. 

In this paper will study the influence of the vector register size over two 
different concepts of vector architectures, on a conventional" vector architecture 
and on an out-of-order vector machine. We will present data, confirming that 
we can not reduce the vector register size on a conventional vector architecture 
without suffernii; a -^vere performance penalty. We will show that combining 
an out-of-ordrr fx»vution and short registers, the performance degradation is 
quite small than ilie observed on a conventional vector machine. We have ob- 
served thai i hi» <■'.int.mation allows not only the vector register reduction with 
a good perform/UK»- hut also when comparing the performance between both 
architectures id.- r-rformance of the new out-of-order vector machine is much 
better. 
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Fig. 1. Percentage of full stripes for different vector register sizes 

2    Vector Registers Usage 

In this section we will investigate the relationship between the next two param- 
eters : 

• Vector Register Size (VRZ). 
• Benchmark Programs. 

High memory latencies are common in vector architectures. In order to hide 
that, latency, large vector registers have been a norm in the design of this kind of 
architectures. This point of view is correct, but unfortunately, with large vector 
registers not everything is positive : 

• Large registers mean large hardware space and more cost. The Designer, 
normally, includes just few of them (eg. 8 or 16 with 128 element each). 

• Having few registers, it is a drawback for the compiler because the quality 
of the code that it can generate is quite poor. 

We have seen [1] that, when a machine has large registers, programs do not 
make use of their hardware. Many people are researching over new algorithms in 
order to execute their calculus as fast as possible, physics, chemistry, mathemat- 
ics, and so on, field where this kind of architectures still excel. The algorithms 
characteristic are quite varied and the different architectures are trying to apply 
all their capacity, but some times the data structures from the applications are 
like a barrier. 
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In order to know how a set of applications make use of the register file on 
a vector architecture, we have done the following. Having a set of registers, 
where each register has as a maximum VL elements, we have executed our set of 
programs, using four possible values for the vector register size: 16, 32, 64 and 
128 elements. 

Figure 1 presents the percentage of full stripes of a program set. If we have 
an architecture where the VL maxim could be 128, and the structure of the 
programs permit, the entire use of this available hardware, we will say that in 
this case we have a full stripe. 

Now, if we consider a maximal vector register size of 64 elements and the 
program allows the use of bigger registers, then instructions would "translate" 
into two instructions that could operate on 64 elements each one. For example, 
the figure 1 shows how in most cases less than 50% of all executed vector instruc- 
tions, used a vector register of size 128. When the vector register size was 16 
elements, almost 85% of all executed vector instructions used full stripes except 
the program dyfesm. 

As we have expected, there is a strong dependence between the whole per- 
formance and the program executed to get it. We have observed, that, if an 
architecture have a long register, it does not mean that the applications will 
make total use of its resource. In most cases (for our applications) we will have 
better register usage when the vector registers are smaller. 

We know, from [6], that a reduction of the vector registers on a conventional 
vector architecture must, be enclosed by a technique which could hide that re- 
duction, in order to keep or in the best of the cases improve, the performance. 

3    Reducing Vector Registers Length 

The architecture and compiler are reflected in the characteristics of the code that 
these could generate from an application. If these are an intelligent pair, it could 
be easy to obtain programs which use different vector register sizes; sections of 
a register, where each section could be considerate a independent register. The 
Fujitsu VPP500 [7] is an example of that kind of architectures. The VPP500 
has a vector register file organized as 256 registers and each register has 64 
elements (8 bytes each). Different register file configurations can be possible. 
from 256 registers of 64 elements each until 8 registers of 2048 elements each. 
For our purposes, this lower limit size (64 elements) is not enough, because we 
want to study shorter vector register, in order to have better register usage (see 
section 2). 

Unfortunately, most of vector architectures does not have the VPP500 vector 
register reorganization. Our reference architecture falls into this category. 

The procedure that we have followed, in order to obtain a set of binaries 
(from benchmarks) assuming different vector register lengths, is the following: 

• For each program, we searched all the highly vectorized loops, with the help 
of the compiler information. 
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D0 4(IJ=2JL DO 4(1 J=2JL 
DO m 1=2.IL DO 4() STRIPV=2,1L,VLZ 

DW(IJ.1) = DW(IJ,1) +FW(U,D CSDIR MAX TRIPS(32) 
DWIUJ) = DW(IJ.2) +FW(IJ,1) DO 4« 1=STRIPV.MIN(IL,STRIPV+VLZ) 
DW(1 J.3) = DW(1 J.3) +FW(IJ,3) DW(IJ,1) = DW(IJ,1) +FW(U.D 
DW(I.J.4) = DW(IJ,4) +FW(1J,4) DW(IJ,2) = DW(IJ.2) +FW(IJ,2) 

4(1 CONTINUE DW(IJ.I) = DW(1 J,3) +FW0J..1) 
DW(IJ,4) = DW(I J,4) +FW(1J,4) 

4(1 CONTINUE 

(a) (b) 

Fig. 2. (a) Flo52 loop without Strip-Mining, (b) Adding Strip-mining. 

• First, we manually modified the benchmark sources and then, we manually 
added strip-mined loop (see figure 2) performing steps of desired length VLZ 
(vector length size). 

• In this way, we constructed four different configurations for each source pro- 
gram using VLS=16, 32, 64 and 128 elements by register. 

After applying this technique, we can notice that, the architecture sees more 
scalar and vector instructions. The vectorizable loop, will need more iterations to 
complete the same number of vector operations and due to the scalar operations 
are inside the loop, these are executed more times. 

In the next section, we will describe the vector architectures examined in this 
study and then; we will show the performance reached by each one. 

4    Vector Architectures and Simulations Tools 

In this section, we describe the main characteristics of the architectures evaluated 
in this work. First, we will show the reference vector architecture used as a 
baseline. Second, we will introduce the out-of-order vector architecture used. 
Finally, we will describe the tools used to generate traces and for simulating 
each architecture. 

4.1     The Baseline Architecture 

We have used a marhni»- loosely based on a Convex C3400 [8], as a baseline 
vector architecture   F.v.-n tdough this machine is a multiprocessor architecture. 
our work assumes a unipr>M **ssor vector machine. 

Figure 3 show a I>*«.K  !<-•.<-ription of a C3400. 

Scalar Unit 
- The scalar unit 

and S register*' 
integer convert» 

- The scalar unit 
registers. 

'•v <!'-» all instructions that involve scalar registers (A 
i.i i« »ubtracts compares, shifts, logical operations and 
An I   »n issues a maximum of one instruction per cycle. 

i <- -1tht 32 bits address registers and eight 64 bit scalar 

This unit has a 1'• Kt   lata cache, with 32 bytes line size. 
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Fig. 3. The reference vector architecture. 

Vector Unit 

- The vector unit consists of two computation units (FU1 and FU2) and 
one memory accessing unit. The FU2 unit, is a general purpose arith- 
metic unit capable of executing all vector instructions. The FU1 unit, is 
a restricted functional unit that executes all vector instructions except 
multiplication, division and square root. 

- The vector unit has 8 vector registers, grouped in pairs. Each register 
holds up to 128 elements of 64 bits each. Each group share two read 
ports and a write port, that link them to the functional units. 

Requesting memory is done through only one data bus (Loads and Stores). 
The reference machine implements vector chaining, from functional units to 
other functional units and to store unit. Memory load does not chain with 
any functional unit. 

4.2    The Out-of-order Vector Architecture 

For our simulations we used the out-of-order vector architecture introduced 
in [5]. The out-of-order and renaming version of the reference architecture is 
shown in figure A. It has the same computing capacity as the reference machine 
but it is extended to use a renaming technique very similar to that found in 
the R10000 [9]. We will refer to this architecture as '000'. Instructions flow 
in-order through the Fetch and Decode/Rename stages and then go to one of 
the four queues present in the architecture based on instruction type. At. the 
rename stage, a mapping table translates each virtual register into a physical 
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EMORY 

Fig. 4. The Out-of-Order vector architecture studied in this paper. 

register. There are 4 independent mapping tables, one for each type of register: 
A. S, V and mask registers. Each mapping table has its own associated list of 
free registers. When instructions are accepted into the decode stage, a slot in the 
reorder buffer is also allocated. Instructions enter and exit the reorder buffer in 
strict program order. When an instruction defines a new logical register, a phys- 
ical register is taken from the free list, the mapping table entry is updated with 
the new physical register number and the old mapping is stored in the reorder 
buffer slot allocated to the instruction. When the instruction commits the old 
physical register is returned to the free list. 

The A, S and V queues monitor the ready status of all instructions held in 
the queue and as soon as one instruction is ready, it is sent to the appropriate 
functional unit for execution. All instruction queues can hold up to 16 instruc- 
tions. The machine has a 64 entry BTB, where each entry has a 2-bit saturating 
counter for predicting the outcome of branches. Both scalar register files (A and 
S) have 64 physicals registers each. The mask register file has 8 physical registers. 
The fetch stage, the decode stage and all four queues only process a maximum 
of 1 instruction per cycle. Committing instructions proceeds at a faster rate, and 
up to 4 instructions may commit per cycle. The functional unit latencies of the 
architecture are very similar to the R10000 ones. See [5] for further details of the 
architecture. 

The most important aspect of the architecture when considering final perfor- 
mance is the number of physical vector registers available for renaming vector 
instructions. In [5] it is shown that 16 physical vector registers is the optimum 
point that maximizes performance at a reasonable cost. Unless otherwise stated, 
we will use 16 physical vector registers for our simulations. In section 5, we will 
vary the number of physical vector registers from 16 to 32 and to 64 to study 
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how the number of physical registers interacts with the length of each register. 
As we did for the traditional machine, we define four different versions of 

the 000 architecture, each having a different vector register length. The four 
versions will be referred to as the 000128, 00064, 00032 and 00016 archi- 
tectures and will have a vector length of 128, 64, 32 and iff elements respectively. 

4.3     Simulations Tools 

For our simulations, we have used a trace-driven simulations to generate all the 
data, that we will show. 

We have used a pixie-like tool called Dixie [10] that is able to produce a trace 
of basic blocks executed as well as a trace of the values contained in the vector 
length (vl) register and Jinks [11] a parameterizable simulator that implements 
the reference architecture model before described. The ability to trace the value 
of the vector length register is critical to have a detailed simulation of the program 
execution. 

5    Performance 

Using the binaries gathered (see section 3), we will study different variations 
of our vector architectures. For each binary (program), we have eight differ- 
ent configurations. The difference among each program is the maximal vector 
register size allow to use. The eight models under study, will be referred to as 
the REF128, REF64, REF32, REF16, 000128, 00064, 00032 and 00016. 
where 128, 64, 32 and 16, are the vector register size used by each model. 

Both architectures have the same number of logical registers, that means 
that the same code was introduced in both architectures. But, because the o-o-o 
architecture implements renaming, it uses a total of 16 physical registers, which 
are invisible for the compiler and for the user. 

We will cover two points in this section. For three different latencies of 1, 50 
and 100 cycles, we will show: 

• How each architecture tolerates the vector register reduction plus memory 
latencies effect. 

• The performance of each architecture, using different vector register sizes 
(Speed-Up). 

5.1     Reference Architecture 

In Figure 5, we can see the effect of reducing vector register sizes on the reference 
vector architecture. 

In this figure, we have selected the REF128 as a baseline in order to study 
the register reduction effect. Using one cycle latency and register sizes of 128 
and 64, the behavior seems to be constant, an ideal vector architecture behavior. 
When we reduce the register size and we use a more real memory latencv. of 50 
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Fig. 5. Effects of memory latency and vector register size on a Conventional 
Vector Architecture. X-axis is memory latency 

and 100 cycles, the effect is clearly negative. It is most remarkable when the 
memory latency is bigger and the vector registers are shorter. 

Even though, the architecture uses large registers (REF128), the performance 
degradation is quite important. The slowdown degradation can take values from 
1.1-1.7. This is an important point to emphasize because large registers on vector 
architectures have been once of the best tools used to attack memory latency, 
but we can see that it is not sufficient. 

If we compare the REF128, with the other configurations, REF64, REF32 
and REF16 the slowdown can reach up to 3.5. 

This behavior is not a surprise, and as we expected, reducing the vector 
register size on a conventional vector architecture can be a quite negative factor. 

5.2    OOO Vector Architecture 

Figure 6, shows the vector register reduction effect but now on the out-of-order 
vector architecture. Again, the baseline is the best configuration, in this case 
is 000128. Clearly we can observe that, this architecture has better vector 
reduction tolerance. Reducing the vector register size up to 1/4 (from 128 to 
32), line 00032, the execution time is degraded by an factor of 1.0-1.5. 

When we evaluated the memory latency effect, we saw that, the 000128, 
00064 and 00032, in most cases (programs swm256, hydro2d. arc2d. nasa 7, 
tomcatv, bdna) have a very good memory latency tolerance, with slowdown in the 
range 1.0-1.3. Other programs, such as flow52, trfd, dyfesm. and su2cor, do not 
have good behavior using short registers, but it is still better than the tolerance 
showed by the reference architecture, with slowdowns in the range 1.22-1.98. 
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Fig. 6. Effects of memory latency and vector register length on a Out-of-order 
Vector Architecture. X-axis is memory latency. 

Until this point we can conclude that if an architecture uses advanced ILP 
techniques like an out-of-order, it will be able to tolerate the vector register 
reduction better, even across large latency range. 

5.3    Performance Comparison 

In this section we will present a comparison performance between both archi- 
tectures. We will make this comparison using the same or less, register file size. 
That is REF128 versus 00016, 00032 and 00064. 

Figure 7, plots the simulated performance using three different memory laten- 
cies. For each program, each configuration and each value of memory latency, we 
compute the speedup relative to the performance of the REF128 configuration 
at latency 1. 

We can observe in Figure 7 that, using the same register file size, 8Kb. 
REF128 and 00064 lines, the performance over the REF128 is much bet- 
ter for all the programs and all the memory latencies, with speedups in the 
range of 1.09-1.4- 

Even reducing the register file size (on 00064) up to 1/2, line 00032, it is 
still better than the reference machine with large registers, for all programs and 
all memory latencies, with speedups in the range of 1.04-1.34. 

Nevertheless, when reducing the size up to 1/4 on 00064, (00016 line), the 
performance of the o-o-o machine is not always better than the REF128. The 
programs hydro2d, flo52, tomcatv, bdna and trfd, show better performance than 
the reference machine with speedups in the range of 1.03-1.1. Four programs, 
namely swm256. arc2d and nasal, have performance that is slightly better or 
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Fig. 7. Performance comparison of the 000 architecture and the Reference 
Architecture using the same or less, register file size. X-axis is memory latency 
in cycles and Y-axis represent SpeedUp. 

slightly worse than the REF128, but the difference is typically around the 89c. 
And finally, the worse case was the performance of the program su2cor, with a 
slowdown around 40%>- 

6    Summary 

In this paper we have studied, the influence of reducing the vector register size, 
over two different concepts of vector architectures. 

The in order execution, traditionally used on vector architectures, and the 
long latencies payed on a memory request, have been always used with the use 
of long vector registers in order to hide and amortize, this latency and this strict 
program order. Nevertheless, we have showed that long registers were rarely fully- 
used for a set of highly vectorizable programs. Less than ^0% of all the registers 
being used are completely filled with 128 elements of data. 

As expected, reducing the vector register length on a traditional vector ma- 
chine results in a remarkable loss of performance. The cost savings is clearly 
out-weighted by the execution time degradation. Halving the vector length yields 
slowdowns in the range of 1.1-3.5. Unless some latency tolerance technique is 
added to a traditional vector machine, vector register length should be kept as 
long as possible. 

We have used an ILP technique, out-of-order execution, in order to reduce the 
need for very large vector registers without a remarkable lost on performance. 
Simulations show that when the out-of-order execution is exploited, is possible 
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reduce the vector register size up to 1/4, without a considerable degradation in 
performance (slowdowns of 1.0-1.5). 

Finally we have compared the performance between architectures, where the 
out-of-order vector architecture used the same or less, register file size than 
the baseline architecture. Simulations showed that, using an out-of-order it is 
possible to reduce the size of each vector register up to 4Kb (REF128/4) with a 
better performance (speedups of 1.04-1-34) than the conventional architecture 
and up to 2Kb (REF128/8), with speedup in the range 0.9-1.3. 

With this work we showed that, when ILP is exploited using out-of-order 
architecture, the need for very large vector registers, as we noted in our pre- 
vious studies, it is substantially reduced. The vector register reduction can be 
used in several different ways: either to decrease processor cost by reducing the 
total amount of storage devoted to register values or to improve performance 
by more effectively using the available storage. Using out-of-order execution and 
short register, the vector architecture concept like a big and expensive super- 
computers could change, because designers could use the actual technology and 
ideas (caches, memory systems, no blocking loads, Clustering, etc.) in order to 
improve the performance. 
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Abstract. An ORTHOMIN(fc) algorithm, a truncated version of GCR 
(generalized conjugate residual) algorithm proposed by Eisenstat et od. [4], 
has been widely used for solving large and sparse nonsymmetric linear 
systems of equations Ax = b. In order to accelerate the convergence of 
the ORTHOMIN(fc) method, we generally use a restart technique. But, it 
is not so easy to find out the restarting timing of its algorithm. In this pa- 
per, we will propose new adaptive restarted procedure which will find the 
restart timing of the ORTHOMIN(fe) automatically. At last, numerical 
experiments are reported that demonstrate the efficacy of the adaptive 
restated procedure combined with the ORTHOMIN(fc) algorithm on a 
distributed memory parallel machine AP1000. 

1    Introduction 

In this paper, we consider the iterative solution of large and sparse linear systems 
of equations 

Ax = b (1) 

in which the coefficient A is a non-singular n x n matrix and 6 is a given n- 
vector. To simplify in this paper, we will presume A and 6 to be a real and 
large nonsymmetric matrix. The class of non-stationary iterative methods is 
characterized by the fact that update for the residual vector is computed sep- 
arately from the current approximation to the solution. A major class of these 
methods is Krylov subspace or conjugate gradient type algorithms, like GCR 
(generalized conjugate residual) [4], GMRES (generalized minimal residual) [5], 
BiCG (bi-conjugate gradient) [2], and BiCGStab (bi-conjugate gradient stabi- 
lized) [8, 11, 17, 18]. 

The ORTHOMIN(fc) algorithm [1] is the important variant of GCR algo- 
rithm [4]. This algorithm converges very quickly under certain condition among 
the GCR algorithm's family. However, in some case, the residual of the ORTHO- 
MIN(&) algorithm may not have a faster convergence. So we present an adaptive 
restarted procedure on the ORTHOMIN(A;) algorithm, principally the combined 
algorithm can be better deal with a faster convergence. The adaptive restarted 
procedure with the PRES (pseudo residual) [9] algorithm was primarily proposed 
by Inadu and Nodera [13, 16]. In this paper, the adaptive restarted procedure 
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for the ORTHOMIN(fc) algorithm will be proposed, and it will be recognized to 
decide the restart timing, automatically. 

This paper is organized as follows. In section 2, we briefly review the ORTHO- 
MIN(fc) algorithm and its associated properties. In section 3, we show the main 
idea on which the adaptive restarted procedure for the ORTHOMIN(fc) algo- 
rithm. In section 4, we report the numerical experiments to show the convergence 
behavior of the adaptive restarted ORTHOMIN(fc) algorithm on the MIMD par- 
allel machine API000, followed by some concluding remarks in section 5. 

2    Review of ORTHOMIN(fc) 

One kind of the most successful scheme is based on the orthogonal projec- 
tion, typified by GCR [4] (generalized conjugate residual) or ORTHOMIN [1, 4] 
and ORTHODIR [3, 11] or ORTHORES [9, 12] and GMRES [5] algorithm. The 
GCR algorithm is mathematically equivalent to GMRES algorithm. The GCR 
algorithm begins with the initial approximate solution xo and initial residual 
r0 = b — Axo and characterizes kth approximate solution as Xk = xo + Zk, where 
Zk solves 

min ||( - A{x0 + z)\\2 = min \\r0 - Az\\2. 

Here, Kk is the A;th Krylov subspace determined by the coefficient matrix A and 
r0, which defined 

Kk = span{r0, Ar0, A
2r0,..., A

1"1^}. 

In some sense, GCR algorithm finds the best approximate solution in the Krylov 
subspace. In contrast to the BiCG like algorithms [11, 8, 17] based on the Lanc- 
zos process, GCR algorithm uses long recurrences. This work and storage per 
step grows drastically as the number of steps increase and the algorithm be- 
comes impractical for lots of iterations. As a consequence, we must restart this 
algorithm in practice, which may results in very slow convergence. In order to 
overcome this advantage of the long recurrences, a popular technique is to resort, 
to truncated strategies. It uses only a few, say k, rather than all the vectors gen- 
erated previously in recurrences to get the next vectors and can be significantly 
less expensive at each restart. 

The ORTHOMIN(fc) algorithm, primarily proposed by Vinsome [1] as a trun- 
cated version of the GCR algorithm. Figure 1 displaies the standard ORTHO- 
MIN(fc) algorithm without correction. In this algorithm, the direction vector 
update can be truncated so that at most I;«" previous direction vectors are 
used after iteration k. 

i-l 

Pi = r<+  Y,  ßiJ)PJ (2) 
j=i-k 

In this case, the z, + 1 is local minimum, the point in 

a:,-_fc + span{p,-_*,...,pj} 
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1:    Choose XQ. 

2:    r0 = 6 — Axo 
3:    for I=r0, 1, 2, ... 

3.1 if i = 0 then 
3.1.1:    po = ro 
else 
3.1.2:    for  j = <T, <r+ 1, ..., t-1 

3.1.2.1:    ßiW = -(An, APi)l(Ap„ Ap:) 
endfor 

3.1.3:    p, = r, + J2'-lßtU)p: 

endif 
3.2 ati = (ri,Api)/(Api,Api) 
3.3 x;+i = Xi + aipi 
3.4 r,+i = r, -otiApi 
3.5 If converge, escape the loop. 
endfor 

Where >, a = max{0, i — k} 

Fig. 1. The ORTHOMIN(Jk) algorithm 

whose residual norm ||r,+i||2 is minimized. 
The following theorem was proposed by Eisenstat et cd. [4]. 

[Theorem 2.1] Let M = (A + AT)/2 denote the symmetric part of A, and 
R — (A — AT)/2 denote the skew-symmetric part of A. When M is positive 
definite, residuals generated by the ORTHOMIN(k) method fulfill the following 
relation. 

Pi  2 < 1 - 
,(M)2 

Amin(M)Amax(M)+/>(fl)2J 

t/2 

iFO   2- 

where Am;n(M) and Am,K(.\/) imply the smallest and largest eigenvalues of M, 
respectively. Also, p(/?'t <irnotes the spectral radius of R. 

This theorem states that the residual norm of the ORTHOMIN(fc) algorithm 
is decreased in every iteration «teps. Namely, we will get the approximate solution 
by using this algorithm In [>r%rtice, we have found that even if this bound to be 
pessimistic, this algorithm i» »n effective solution technique for large and sparse 
nonsymmetric matrix pr .Mem» This algorithm is very easy to implement, but in 
some case the ORTHOMIV * algorithm slows down the convergence of residual 
norm. In this case, we makr the choice of new starting vector and then restarts 
the algorithm once again ** > *n suitable restarting is usually necessary for this 
algorithm to make the a<< ekrut ion of convergence of residual. In the next section, 
we devote to the study of automatic restart of the ORTHOMIN(fc) algorithm in 
adaption. 
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3    The adaptive restarted procedure 

The restarts of ORTHOMIN(fc) algorithm are ordinarily needed to reduce for the 
round off errors and the amount of the necessary computational time to satisfy 
the convergence criterion. However, so many restarts slow down the convergence 
of the ORTHOMIN(fc) algorithm. So the suitable restart of this algorithm can 
be accelerated the convergence of the residuals. We have designed an adaptive 
procedure with the automatic restart for the ORTHOMIN(A;) algorithm. 

The adaptive restarted procedure, which was proposed by Inadu and Nodera 
[13, 16], is the technique which is introduced to the ORTHORES(A;) algorithm 
for solving the large sparse sets of nonsymmetric linear systems of equations. 
The ORTHORES(fc) algorithm belongs to the class of the pseudo residual al- 
gorithm [9, 10]. This technique improves the convergence of ORTHORES(fc) 
method by using the restart of its algorithm, appropriately. In order to work this 
approach effectively, we need to find out the timing of performing the restart. 
For the pseudo residual algorithm, we decided the timing of the restart from the 
two points of view: one is the observation of oscillating residual norm, and the 
another is the observation of the scalar coefficients of the ORTHORES(fc) algo- 
rithm. On the other hand, the ORTHOMIN(fc) algorithm has a good property 
which minimizes the residual norm. Therefore, we consider to use a different 
strategy that does find out about the timing of restart for the ORTHOMIN(ifc) 
algorithm, adaptively. 

The ORTHOMIN(fc) algorithm has very slow convergence behavior, when 
the scalar |Q,| is the smallest enough. One of the reasons that the degree of 
the direction polynomials does not come up higher order. So in order to im- 
prove the convergence of its residual, we consider the timing of the restart of 
ORTHOMIN(fc) algorithm, which is based on the scalar \at\. Also, the scalar 
|a,-1 has a meaning called the distance that proceeds along a direction vector. In 
fact, while the norm of residual decreasing sharply, we have a property that the 
scalar |a,| stalls at the small value. Let us consider about the execution of the 
adaptive restart with the following rule of the determination of the timing. 

(1) Rule of deciding the timing of restart 

When the scalar ||ar,-.4p,-||/||rj|| is even small more than the parameter given 
e in advance, we are not able to expect a faster convergence of the ORTHO- 
MIN(fc) method in the continuous iteration of k steps, and then we consider 
to do the restart. In fact, while the restart is difficult to be executed for 
smaller value of parameter e, the restart is easy to be executed for the 
larger value of the parameter e. We have shown that the adaptive restarted 
procedure stabilized to the many problems around the parameter e = 1.0, as 
the results of numerous experiments coming from the discretization of the 
boundary value problem of partial differential equation, etc. 

For the next iteration steps of the ORTHOMIN(fc) method after performed 
the restart, we expect that the scalar ||a,-Ap,-||/||r,-|| becomes the larger value. 
While for smaller value of ||o;,-.Ap,-||/||r,-|| we performed the restart tentatively, 
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Choose XQ and e. 

To 

...» = 0i adapt jrestart := on 
= b — Axo, k.count = 0 

■ (2-a) 

for i = 0, 1, 2, ... 
Calculate a, andp,, using ORTHOMIN(fc) method. 4.1 

4.2 
4.3 
4.4 
4.5 
4.6 
4.7 

4.8: 

z,+ i = Xi + ctip 
n+i = n -a.vlpi 
If converge, escape the loop. 

a! = ||a.-Ap,-||/||n|| 
If aj > alnax, then adapt jrestart := on (2-b) 
if a\ < e then 
4.7.1:    k.count = k.count + 1 
else 
4.7.2:    k-count = 0, adapt jrestart := on (2-d) 
endif 
if k.count = k then (1) 
4.8.1:    if adapt jrestart = on then (2-c) 

4.8.1.1:    aJn,x =      max    a'. 

adapt jrestart := off 
xo = £t-H and restart (goto step 3). 

4.8.1.2: 
4.8.1.3: 
endif 

endif 
endfor 

Fig. 2. The algorithm of adaptive restarted procedure for the ORTHO- 
MIN(fc) method, (AR-ORTHOMIN(fc)) 

even if the convergence of the ORTHOMIN(ä:) method is still slow, the situa- 
tion becomes more worse from which the residual polynomial has remained in 

this time. In this case, we better do not have to perform the restart. However, 

after we restarted the algorithm, in order to know the scalar ||a,Api||/||ri|| in 

advance, the additional computational cost, which is equal to the iteration steps, 

is needed. Consequently, one might not expect with efficient. Therefore, we per- 

form the restart in an unconditional judgment of the first restart, and then we 

shall decide whether we do perform or do not perform the restart in according 
to the circumstances of the former update restart after the second restart. 

(2) Rule of the execution of restart 
(a) The restart is done in an unconditional judgment of the 1st restart. 
(b) When we performed the restart, comparing the maximum value of dis- 

tance that proceeds in k iteration steps before the restart and after the 

restart, we examine the efficiency of the restart. If one of the maximum 

value of distance proceeding after the restart is larger, we consider that 

the restart is working effectively. 
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Table 1. AP1000 specification 

Architecture Distributed Memory, MIMD 
Number of processors 64 
Inter processor networks Broadcast network(50MB/s) 

Two-dimensional torus network 
(25MB/s/port) 
Synchronization network 

4    Numerical experiments 

We now give some numerical results to demonstrate the behavior of convergence 
associated with the AR-ORTHOMIN(A-) algorithm. We use the test problems 
coming from the boundary value problems of partial differential equation in the 
scientific and industrial applications. We shall show the efficiency of the adaptive 
restarted procedure. All the computations were done in double precision (64. 
bits) on the MIMD parallel machine Fujitsu AP1000 with 64 processors. The 
Specification of AP1000 is given in Table 1. Each cell of AP1000 employs RISC- 
type SPARC or SuperSPARC processor chip. For. simplicity we did not use any 
preconditioner in numerical experiments. 

[Example 1] Firstly, we consider a finite difference problem, namely, central 
finite differencing applied to the following Dirichlet problem: 

-uxx - uyy + aux(x, y) + ruy(x, y) 

= /(*, y) on Q = [0, l]2, 
u(*.y) laß = l+xy. 

with f{x,y) is chosen so that the true solution u(x,y) = 1 + xy on Q. Let h 
represent the mesh size in each direction. This yields a matrix of size n — 66536 
(where, h = 1/257), after boundary points have been eliminated. In our numer- 
ical computations, the initial guess is chosen as x0 = 0, and an approximate 
solution xk is considered to have converged if the residual satisfies ||rA||2/jjr0|| < 
10~12. Also, the iteration was stopped, when the number of iteration exceeded 
6654(« 0.1 x n). By varying the constant a and r, the amount of nonsymmetric- 
ity of the coefficient matrix A may be varied. 

In Table 2, we are displayed the numerical results obtained by the stan- 
dard ORTHOMIN(Ar) and AR-ORTHOMIN(Ar) method. For this problem, AR- 
ORTHOMIN(5) and AR-ORTHOMIN(IO) method applied to this problem worked 
quite well. On the other hand, the standard ORTHOMIN(Ar), Ar = 5, or 10, 
method gave an excessive computational times and the number of iterations. Fig- 
ure 4 gives representative plots of the convergence behavior of ORTHOMIN(5), 
ORTHOMIN(IO), AR-ORTHOMIN(5), and AR-ORTHOMIN(IO) method for 
the case of h = 1/257, and {a+r)h/A = 5.0. As you can seen clearly, only the AR- 
ORTHOMIN(Ar) method is successful in this example. The ORTHOMIN(Ar) with- 
out, the adaptive restarted procedure has some trouble from the beginning, which 
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Table 2. The numerical results for example 1, ((<r + r)h/4 = 0.5) 

(g  =  r) 8:07:16:25:3 4 : 4 

((execution time (Sec )» 
ORTHOMIN(5) 64.01 63.98 55.20 47.76 45.37 

AR-ORTHOMIN(5) 53.23 54.75 51.53 46.51 47.46 
ORTHOMIN(IO) 114.06 103.27 94.08 82.08 83.55 

AR-ORTHOMIN(IO) 86.00 82.00 84.60 77.61 77.16 
((number of iteration )) 

ORTHOMIN(5) 1031 1030 891 772 732 
AR-ORTHOMIN(5) 838 852 798 737 745 

ORTHOMIN(IO) 1258 1139 1039 906 920 
AR-ORTHOMIN(IO) 964 915 943 865 858 

((number of restart )) 
AR-ORTHOMIN(5) 

AR-ORTHOMIN(IO) 

1 | 1 1 1 ! 1 1 ! 1 

18-01 

1e-02 

1e-03 

1e-04 

1e-05 

1e-06 

1e-07 

1e-08 

1e-09 

1e-10 

>■                                                                                                   '   '   '1 V 

     i                           '                          f 
li                                                  I   ■                                                   \         ■ \        ' 

x        ,: -,               iÖRfHÖMIN(5J r\ 

r  tAR-ORTHOMIN(S) 
\      ■ 

UHlt IOW1N(10) 

i   ,AR-OF THOMIN(10) 
■ ■     ■ 

1e-12 

1e-13 
1                    ' 

i     . 

0        50      100     150     200     250     300     350     400 
Time(sec) 

Fig. 4. The convergence behavior of residual norms vs. computational 
time for example 2 ({a + T)/I/4 = 5.0, a : T = 8 : 0) 

causes the stagnation. Note that in this case the AR-ORTHOMIN(5) method is 
preferable, because it is more efficient: the working cost of AR-ORTHOMIN(5) 
method less than AR-ORTHOMIN(IO) method. This result shows that the AR- 
ORTHOMIN(fc) method keeps the residual size better behaved than the standard 
ORTHOMIN(it) method, which without the adaptive restarted procedure, over 
the course of run. We found that in most cases the AR-ORTHOMIN(fc) method 
was more efficient than the standard ORTHOMIN(A;) method in CPU times. 

[Example 2] We now consider a little bit difficult class of finite difference dis- 
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Table 3. The numerical results for example 2 

ah                           T*   |   2"1   |    2U 2l     I    2* 
{{execution time (Sec) }} 

ORTHOMIN(5) 
AR-0RTH0MIN(5) 

ORTHOMIN(IO) 
AR-ORTHOMIN(IO) 

213.55 
191.54 
227.48 
243.68 

290.96 
217.57 
309.03 
276.74 

344.28 
325.40 
431.88 
482.00 

— — 

{{number of iteration )) 
ORTHOMIN(5) 

AR-ORTHOMIN(5) 
ORTHOMIN(IO) 

AR-ORTHOMIN(IO) 

3212 
2896 
2499 
2723 

4369 
3338 
3400 
3111 

5185 
4945 
4751 
5447 

(4e-12)* 
(2e-10)* 
(3e-12)* 
(3e-ll)* 

(le-8)* 
(2e-8)* 
(2e-8)* 
(2e-8)* 

{(number of restart )) 
AR-ORTHOMIN(5) 
AR-ORTHOMIN(IO) 

18 
15 

63 
24 

58 
53 

43 
52 

35 
28 

The relative residual norm after the maximum iterations 

cretization of the Dirichlet boundary value problem as follows: 

-Uyy   +   a y--2 + 1.-3 
3.'* 

= /(x,y)onß=[0,l]2 

u{x,y)\an = 1 + xy. 

Central differencing, with uniform mesh spacing h in each direction, yields a 
n x n sparse coefficient matrix. The right hand side of the above equation is 
taken such that the true solution is u(x, y) = 1 + xy. Problems of this type arise 
frequently in many scientific problem and are significant practical importance. 
The initial approximation vector is xo = 0 and no preconditioning is used for 
these numerical experiments. 

For the test problem we let h = 1/257 and use several value of a. We give 
comparative results in Table 3 with ah — 2~2,2"1,2°, 21, 22, respectively. In the 
item of execution time in this table, runs for which convergence is not possible 
maximum iterations are labeled by (—). 

In the Table 3, in most cases AR-ORTHOMIN(5) method worked quite well. 
For the case of ah = 2~2, and 2"1, the AR-ORTHOMIN(IO) method gave an 
excessive number of iterations and the computational times. 

Figure 5 gives representative plots of the convergence behavior of the above 
mentioned methods with no preconditioning for the case ah = 2°. 

The following observations on this problem can be made. The AR-ORTHO- 
MIN(5) method worked well in most cases, particularly in ah = 2-1. As you can 
see that, for large k such as the AR-ORTHOMIN(IO) method, the improvement 
of the computational cost is not impressive, but the residual norms of the AR- 
ORTHOMIN(IO) method stay well below those of the standard ORTHOMIN(IO) 
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; ORTHOMIN(IO) 
'%, AR-ORTHOMIN(IO) 

0      50    100   150   200   250   300   350   400   450   500 
Time(sec) 

Fig. 5. The convergence behavior of residual norms vs. computational 
time for example 2 (ah — 2°) 

method. We note that, as expected from.these numerical experiments, the AR- 
ORTHOMIN(5) method is slightly more efficient than the AR-ORTHOMIN(IO) 
method. 
[Example 3] Our last example is taken from the example of Reichel et al. [6] and 
Gutknecht [7]. 

1 0.5 Q 
0   1  0.5 w 

(7   0    1  0.5 
a   0     

U a   0    1 

A:= eR 4096x4096 ,    (*>0) 

Since all the eigenvalues of M = (A + AT)/2 are distributed in the interval 
[—2cr,2 + 2a], the condition number of M becomes large so that the element 
a is large. Also, the property of positive definite of M is not guaranteed. On 
the other hand, the spectral radius of R - (A - AT)/2 is satisfied the following 
inequality p(R) < 1 + 2a. 

Table 4 shows the numerical results for several a. In this example, since 
the behavior of residuals of standard ORTHOMIN(fc) method showed linear 
convergence by all cases, there is no restat performed by the AR-ORTHOMIN(A;) 
method. 

5    Conclusion 

Our study involved a new approach to the adaptive restarted procedure for 
the ORTHOMIN(fc) algorithm. One interesting feature of this technique is the 
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Table 4. The numerical results for example 3 

a                            0.1 0.3 0.5 0.7 0.9 
({execution time (sec) )) 

ORTHOMIN(5) 
AR-ORTHOMIN(5) 

ORTHOMIN(IO) 
AR-ORTHOMIN(IO) 

0.45 
0.46 
0.68 
0.68 

0.45 
0.46 
0.68 
0.68 

0.83 
0.84 
1.17 
1.18 

1.69 
1.72 
2.29 
2.31 

6.85 
6.90 

((number of iteration )) 
ORTHOMIN(5) 

AR-ORTHOMIN(5) 
ORTHOMIN(IO) 

AR-ORTHOMIN(IO) 

32 
32 
32 
32 

32 
32 
32 
32 

57 
57 
52 
52 

115 
115 
98 
98 

(4e-10)* 
(4e-10)* 

285 
285 

{(number of restart )) 
AR-ORTHOMIN(5) 
AR-ORTHOMIN(IO) 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

*The relative residual n orm after the maximum iterations 

fact that extra calculation is not explicitly needed, which may be used only 
implicitly given as calculations of the standard ORTHOMIN(ifc) algorithm. The 
results presented in this paper suggest that the adaptive restarted procedure with 
ORTHOMIN(A;) algorithm, which we called the AR-ORTHOMIN(fc), can be one 
of the useful tools for computing the approximate solution of large and sparse 
nonsymmetric linear systems of equations on parallel machines with modern 
high performance architectures. The details of the parallel implementation of 
this strategy and the further numerical experiments are given in Tsuno and 
Nodera [15]. 
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Reconfigurable Systems 
Past and Next 10 Years 
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Abstract. A driving factor in Digital System DS architecture is the 
feature size of the silicon implementation process. We present Moore's 
laws and focus on the shrink laws, which relate chip performance to 
feature size. The theory is backed with experimental measures from [14], 
relating performance to feature size, for various memory, processor and 
FPGA chips from the past decade. Conceptually shrinking back existing 
chips to a common feature size leads to common architectural measures, 
which we call normalized: area, clock frequency, memory and operations 
per cycle. We measure and compare the normalized compute density of 
various chips, architectures and silicon technologies. 
A Reconfigurable System RS is a standard processor tightly coupled to a 
Programmable Active Memory PAM, through a high bandwidth digital 
link. The PAM is a FPGA and SRAM based coprocessor. Through soft- 
ware configuration, it may emulate any specific custom hardware, within 
size and speed limits. RS combine the flexibility of software programming 
to the performance level of application specific integrated circuits ASIC. 
We analyze the performance achieved by PI, a first generation RS [13]. 
It still holds some significant absolute speed records: RSA cryptography, 
applications from high-energy physics, and solving the Heat Equation. 
We observe how the software versions for these applications have gained 
performance, through better microprocessors. We compare with the per- 
formance gain which can be achieved, through implementation in P2, a 
second-generation RS [16]. 
Recent experimental systems, such as the Dynamically Programmable 
Arithmetic Array in [19] and others in [14], present advantages over cur- 
rent FPGA, both in storage and compute density. RS based on such chips 
are tailored for video processing, and similar compute, memory and 10 
bandwidth intensive. We characterize some of the architectural features 
that a RS must posses in order to be fit to shrink: automatically enjoy 
the optimal gain in performance through future shrinks. The key to scale, 
for any general purpose system, is to embed memory, computation and 
communication at a much deaper level than presently done. 

1    Moore's Laws 

Our modern world relies on an ever increasing number of Digital Systems DS: 
from home to office, through car, boat, plane and elsewhere. As a point in case, 
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the shear economic magnitude of the Millenium Bug [21], shows how futile it 
would be to try and list all the functions which DS serve in our brave new 
digital world. 

.  -»-Gbop/s x2.1/y 

t  ■*" Gtrans/y xl,8/y 

Fig. 1. Estimated number and world wide growth rate: G = 109 transistors fabricated 
per year; G bit operations computed each second; Billion $ revenues from silicon sold 
world wide; $ cost per G = 230 bits of storage 

A J,hr°uShJeCent decades' earth's combined raw compute power has more than 
doubled each year. Somehow, the market remains elastic enough to find appli- 
cations and people to pay, for having twice as many bits automatically switch 
state than twelve months ago. At least, many people did so, each year, for over 
thirty years - fig. 1. J     ' 

An ever improving silicon manufacturing technology meets this ever increas- 
ing demand for computations: more transistors per unit area, bigger and faster 
chips. On the average over 30 years, the cost per bit stored in memory goes down 
by 30% each year. Despite this drop in price, selling 80% more transistors each 
year increases revenue for the semi-conductor industry by 20% - fig. 1. 

The number of transistors per mm2 grows about 40% each year, and chip 
size increases by 15%, so: 

The number of transistors per chip doubles in about 18 months. 

That is how G. Moore, one of the founders of Intel, famously stated the laws 
embodied in fig. 1. That was in the late sixties, known since as Moore's Laws 

More recently, G. Moore [18] points out that we will soon fabricate more 
transistors per year than there are living ants on earth: an estimated 1017 

♦i, ^u' P^e°^le bUy comPutations> not transistors. How much computation do 
they buy? Operating all of this year's transistors at 60 MHz amounts to an 
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aggregate compute power worth 1024 bop/s - bit operation per second. That 
would be on the order of 10 million bop/s per ant! 

This estimate of the world's compute power could well be off by some order 
of magnitude. What matters is that computing power at large has more than 
doubled each year for three decades, and it should do so for some years to come. 

1.1     Shrink Laws 

100 

10 

0,1 

■*■ um ■ mm2/chip 
• 

•   • 
• 

• 
• 

• • 

• 

^ 

Fig. 2. Shrink of the feature size with time: minimum transistor width, in pm = 10_6m. 
Growth of chip area - in mm2. 

The economic factors at work in fig. 1 are separated from their technological 
consequences in fig 2. The feature size of silicon chips shrinks: over the past 
two decades, the average shrink rate was near 85% per year. During the same 
time, chip size has increased: at a yearly rate near 10% for DRAM, and 20% for 
processors. 

The effect on performance of scaling down all dimensions and the voltage of 
a silicon structure by 1/2: the area reduces by 1/4, the clock delay reduces to 
1/2 and the power dissipated per operation by 1/8. 

Equivalently, the clock frequency doubles, the transistor density per unit area 
quadruples, and the number of operations per unit energy is multiplied by 8, see 
fig. 2. This shrink model was presented by [2] in 1980, and intended to cover 
feature sizes down to 0.3 ßm - see fig. 3. 

Fig. 4 compares the shrink model from fig. 3 with experimental data gathered 
in [14], for various DRAM chips, published between in the last decade. The last 
entry - from [15] - accounts for synchronous SDRAM, where access latency is 
traded for throughput. Overall, we find a rather nice fit to the model. In fig. 7, 
we also find agreement between the theoretical fig. 3 and experimental data for 
microprocessors and FPGA, although some architectural trends appear. 

A recent update of the shrink model by Mead [9] covers features down to 
0.03 urn. The optimists conclusion, from [9]: 
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op/nj 

^ -*- trans/mnr 

^-GHz 

Fig. 3. Theoretical chip performance, as the minimum transistor width (feature size) 
shrinks from 8 to 0.03 micron ßm: transistors per square millimeter; fastest possible 
chip wide synchronous clock frequency, in giga hertz; number of operations computed 
per nano joule. y       ' 

We can safely count on at least one more order of magnitude of 
scaling. 

The pessimist will observe that it takes 2 pages in [2] to state and justify the 
linear■shrink rules; it takes 15 pages in [9], and the rules are no longer linear 
Indeed, thin oxide is already nearly 20 atoms thick, at current feature size 0 2 
/xm. A linear shrink would have it be less than one atom thick, around 0.01 ßm 
Other fundamental limits (quantum mechanical effects, thermal noise, light's 
wavelength, ...) become dominant as well, near the same limit. Although C 
Mead [9] does not explicitly cover finer sizes, the implicit conclusion is: 

We cannot count on two more orders of magnitude of scaling. 

Moore's law will thus eventually either run out of fuel - demands for bop/s will 
some year be under twice that of the previous - or it will be out of an engine 
- shrink laws no longer apply below 0.01 ßm. One likely possibility is some 
combination of both: feature size will shrink ever more slowly, from some future 
time on. 

On the other hand, there is no fundamental reason why the size of chips 
cannot keep on increasing, even if the shrink stops. Likewise, we can expect new 
architecture to improve the currently understood technology path. No matter 
what happens, how to best use the available silicon will long remain an im- 
portant question. Another good bet: the amount of storage, computation and 
communication, available in each system will grow, ever larger. 

2    Performance Measures for Digital Systems 

Communication, processing and storage are the three building blocks of DS 
They are intimately combined at all levels. At micron scale, wires, transistors 
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Fig. 4. : Actual DRAM performance as feature size shrinks from 0.8 to 0.075 pro: clock 
frequency in Mega hertz; square millimeters per chip; bits per chip; power is expressed 
in bit per second per square micron. 

and capacitors implement the required functions. At human scale, the combi- 
nation of a modem, microprocessor and memory in a PC box does the trick. 
At planet scale, communication happens through more exotic media - waves in 
the electromagnetic ether, or optic fiber - at either end of which one finds more 
memory, and more processing units. 

2.1    Theoretical performance measures 

Shannon's Mathematical Theory of Communication [1] shows that physical mea- 
sures of information (bits b) and communication (bits per second b/s) are related 
to the abstract mathematical measure ot statistical entropy H, a positive real 
number H > 0. Shannon's theory does not account for the cost of any compu- 
tation. Indeed, the global function of a communication or storage device is the 
identity X = Y. 

On the other hand, source coding for MPEG video is among the most de- 
manding computational tasks. Similarly, random channel coding (and decod- 
ing), which gets near the optimal for the communication purposes of Shannon 
as coding blocks become bigger, has a computational complexity which increases 
exponentially with block size. 

The basic question in Complexity Theory is to determine how many opera- 
tions C(/), are necessary and sufficient for computing a digital function /. All 
operations in the computation of / are accounted for, down to the bit level, re- 
gardless of when, where, or how the operation is performed. The unit of measure 
for C(f) is one Boolean operation bop. It is applicable to all forms of compu- 
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tations - sequential, parallel, general and special purpose. Some relevant results 
(see [5] for proofs): 

1. The complexity of n bit binary addition is 5n - 3 bop. The complexity of 
computing one bit of sum is 1 add = 5 bop (full adder: 3 in, 2 out). 

2. The complexity of n bit binary multiplication can be reduced, from 6n2 

bop for the naive method (and 4n2 bop through Booth Encoding), down to 
c(e)n1+£, for any real number e > 0. As c(e) h+ oo when e H> 0, the practical 
complexity of binary multiplication is only improved for n large. 

3. Most Boolean functions /, with n bits of input and one output, have a bop 
complexity C{f) such that 2n/n < C(f) < 2n/n(2 + e), for all e > 0 and n 
large enough. To build one, just choose at random! No explicitly described 
Boolean function has yet been proved to posses more than linear complexity 
(including multiplication). An efficient way to compute a random Boolean 
function is through a Lookup Table LUT, implemented with a RAM or a 
ROM. 

Computation is free in Shannon's model, while communication and memory are 
free within Complexity Theory. The Theory of VLSI Complexity aims at mea- 
suring, for all physical realizations of digital function /, the combined complexity 
of communication, memory, and computation. The VLSI complexity of function 
/ is defined with respect to all possible chips for computing /. Implementations 
are all within the same silicon process, defined by some feature size, speed and 
design rules. Each design computes / within some area A, clock frequency F and 
T clock periods per 10 sample. The silicon area A is used for storage, commu- 
nication and computation, through transistors and wires. Optimal designs are 
selected, based on some performance measure. For our purposes: minimize the 
area A for computing function /, subject to the real time requirement F/T < Fio. 
In theory, one has to optimize among all designs for computing /. In practice, 
the search is reduced to structural decompositions into well known standard 
components: adders, multipliers, shifters, memories, ... 

2.2    Trading size for speed 

VLSI design allows trading area for speed. Consider, for example, the family of 
adders: their function is to repeatedly compute the binary sum S = A+B of two 
n bits numbers A, B. Fig. 5 shows four adders, each with a different structure, 
performance, and mapping of the operands through time and 10 ports. Let us 
analyze the VLSI performance of these adders, under simplifying assumptions: 
afa = 2ar for the area (based on transistor counts), and dfa = dT for the 
combinatorial delays of fadd and reg (setup and hold delay). 

1. Bit serial (base 2) adder sA2. The bits of the binary sum appear through 
the unique output port as a time sequence s0, su ..., sn, ... one bit per clock 
cycle, from least to most significant. It takes T = n + 1 cycles per sum S. 
The area is A = 3ar: it is the smallest of all adders. The chip operates at 
clock frequencies up to F = l/2dr: the highest possible. 
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Fig. 5. Four serial adders: sA2 - base 2, sA4 - base 4, sAI4 - base 4 interleaved, and 
2sA2 - two independent sA2. An oval represents the full adder fadd; a square denotes 
the register reg (one bit synchronous flip-flop; the clock is implicit in the schematics). 

2. Serial two bits wide (base 4) adder sA4. The bits of the binary sum appear 
as two time sequences s0, s2, ..., s2„, ... and si, s3, ... two bits per cycle, 
through two output ports. Assuming n to be odd, we have T = (n + l)/2 
cycles per sum. The area is A = 5ar and the operating frequency F = l/3dr. 

3. Serial interleaved base 4 adder sAI4. The bits of the binary sum S appear 
as two time sequences s0, *, s2, *, .... s2„, *, ... and *, su *, s3, ... one bit 
per clock cycle, even cycles through one output port, odd through the other. 
The alternate cycles (the *) are used to compute an independent sum S', 
whose 10 bits (and carries) are interleaved with those for sum S. Although 
it still takes n +1 cycles in order to compute each sum S and 5', we get both 
sums in so many cycles, at the rate of T = (n + l)/2 cycles per sum. The 
area is A = 6ar and the maximum operating frequency F = l/2dr. 

4. Two independent bit serial adders 2s42. This circuit achieves the same per- 
formance as the previous: T = (n + l)/2 cycles per sum, area A = 6ar and 
frequency F = l/2dr. 

The transformation that unfolds the base 2 adder sA2 into the base 4 adder sAA 
is a special instance of a general procedure. Consider a circuit C which computes 
some function / in T cycles, within gate complexity G bop and memory M bits. 
The procedure from [11] unfolds C into a circuit C" for computing /: it trades 
cycles T = T/2 for gates G' = 2G, at constant storage M' = M. 

In the case of serial adders, the area relation is A' = 5A/3 < 2A, so that 
AT < AT. On the other hand, since F' = l/3d and F = l/2d, we find that 
A'T'/F' > AT IF. An equivalent way to measure this, is to consider the density 
of full adders fadd per unit area afa = 2ar, for both designs C and C": as 
2/A = 0.66 < 4/A' = 0.8, the unfolded design has a better fadd density than 
the original. Yet, since F' = 1.5F, the compute density - in fadd per unit area 
and time dfa = dr - is lower for circuit C": F/A - 0.16 > 2/A'F' = 0.13. When 
we unfold from base 2 all the way to base 2n, the carry register may be simplified 
away: it is always 0. The fadd densities of this n-bit wide carry propagate adder 
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is 1 per unit area, which is optimal; yet, as clock frequency is F = 1/n, the 
compute density is low: 1/n. 

Circuits sAI4 and 2sA2 present two ways of optimally trading time for area, 
at constant operator and compute density. Both are instances of general meth- 
ods, applicable to any function /, besides binary addition. From any circuit C 
for computing / within area A, time T and frequency F, we can derive circuits 
C which optimally trades area A' = 2A for time V = T/2, at constant clock 
frequency F1 = F. The trivial unfolding constructs C = 2C from two indepen- 
dent copies of C, which operate on separate 10. So does the interleaved adder 
sAH, in a different manner. Generalizing the interleaved unfolding to arbitrary 
functions does not always lead to an optimal circuit: the extra wiring required 
may force the area to be more than A' > 2A. Also note that while these optimal 
unfolding double the throughput (T = n/2 cycles per add), the latency for each 
individual addition is not reduced from the original one (T = n cycles per addi- 
tion). We may constrain the unfolded circuit to produce the 10 samples in the 
standard order, by adding reformatting circuitry on each side of the 10: a buffer 
of size n-bit, and a few gates for each input and output suffice. As we account 
for the extra area (for corner turning), we see that the unfolded circuit is no 
longer optimal: A' > 2A. For a complex function where a large area is required, 
the loss in corner turning area can be marginal. For simpler functions, it is not.' 

In the case of addition, area may be optimally traded for time, for all integer 
data bit width D = n/T, as long as D < Vn. Fast wide D = n parallel adders 
have area A = nlog(n), and are structured as binary trees. The area is dominated 
by the wires connecting the tree nodes, their drivers (the longer the wire, the 
bigger the driver), and by pipelining registers, whose function is to reduce all 
combinatorial delays in the circuit below the clock period 1/F of the system. 

Transitive functions permute their inputs in a rich manner (see [4]): any input 
bit may be mapped - through an appropriate choice of the external controls - 
into any output bit position, among N possible per 10 sample. It is shown in [4] 
that computing a transitive function at 10 rate D = NF/T, requires an area A 
such that: 

A > amN + ai0D + awD2, (i) 

where am, aio and aw are proportional to the area per bit respectively required 
for memory, 10 and communication wires. Note that the gate complexity of a 
transitive function is zero: input bit values are simply permuted on the output. 
The above bound merely accounts for the area - 10 ports, wires and registers - 
which is required to acquire, transport and buffer the data at the required rate. 
Bound (1) applies to shifters, and thus also to multipliers. Consider a multiplier 
that computes 2n-bit products on each cycle, at frequency F. The wire area of 
any such multiplier is proportional to n2, as T = 1 in (1). For high bandwidth 
multipliers, the area required for wires and pipelining registers is bigger than 
that for arithmetic operations. 

The bit serial multiplier (see [11]) has a minimal area A = n, high operating 
frequency F, and it requires T = 2n cycles per product. A parallel nave multiplier 
has area A' = n2 and T = 1 cycle per product. In order to maintain high 
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frequency F' = F, one has to introduce on the order of n2 pipelining registers, 
so (perhaps) A' = 2n2 for the fully pipelined multiplier. These are two extreme 
points in a range of optimal multipliers: according to bound (1), and within a 
constant factor. Both are based on nave multiplication, and compute n2 mul per 
product. High frequency is achieved through deep pipelining, and the latency 
per multiplication remains proportional to n. In theory, latency can be reduced 
to T, by using reduced complexity n1+€ shallow multipliers (see [3]); yet, shallow 
multipliers have so far proved bigger than nave ones, for practical values such 
as n < 256. 

2.3    Experimental performance measures 

Consider a VLSI design with area A and clock frequency F, which computes 
function / in T cycles per TV-bit sample. In theory, there is another design for / 
which optimally trades area A' = 2A for cycles T = T/2, at constant frequency 
F' = F. The frequency F and the AT product remain invariant in such an 
optimal tradeoff. Also invariant: 

- The gate density (in bop /mm2), given by Dop = c{f)/A = C(f)/AT. Here 
c(/) is the bop complexity of / per cycle, while C(f) is the bop complexity 
per sample. 

- The compute density (in bop/smm2) is c(f)F/A = FDop. 

Note that trading area for time at constant gate and compute density is equiv- 
alent to keeping F and AT invariant. 

Let us examine how various architectures trade size for performance, in prac- 
tice. The data from [14] tabulates the area, frequency, and feature size, for 
a representative collection of chips from the previous decade: sRAM  DRAM 
mPROC, FPGA, MUL- 

The normalized area A/X2 provides a performance measure that is indepen- 
dent of the specific feature size A. It leads [14] to a quantitative assessment of 
the gate density for the various chips, fig. 6 and 7. 

Unlike [14], we also normalize clock frequency: the product by the operation 
density is the normalized compute power. To define the normalized the system 
clock frequency </>, we follow [9] and use <j> = l/100r(A), where r(A) is the minimal 
inverter delay corresponding to feature size A. 

- The non linear formula used for T((1) = cle is taken from [9]: the exponent 
e = 1 -e(l) decreases from 1 to 0.9 as I shrinks from 0.3 to 0.03 /urn. The non 
linear effect is not yet apparent in the reported data. It will become more 
significant with finer feature sizes, and clock frequency will cease to increase 
some time before the shrink itself stops. 

- The factor 100 leads to normalized clock frequencies whose average value is 
0.2 for DRAM, 0.9 for SRAM, 2 for processors and 2 for FPGA. 

In the absence of architectural improvement, the normalized gate and compute 
density of the same function on two different feature size silicon implementations 
should be the same, and this indicates an optimal shrink. 
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Fig. 6. Performance of various SRAM and DRAM chips, within to a common feature 
size technology: normalized clock frequency Hz/<j>; bit density per normalized area 
10 A ; binary gate operations per normalized area per normalized clock period l/<j>. 

- The normalized performance figures for SRAM chips in fig. 6 are all within 
range: from one half to twice the average value. 

- The normalized bit density for DRAM chips in the data set is 4.5 times 
that of SRAM. Observe in fig. 6 that it has increased over the past decade, 
as the result of improvements in the architecture of the memory cell {trench 
capacitors). The average normalized speed of DRAM is 4.5 times slower than 
SRAM. As a consequence the average normalized compute density of SRAM 
equals that of DRAM. The situation is different with SDRAM (last entry in 
fig. 6): with the storage density of DRAM and nearly the speed of SRAM, the 
normalized compute density of SDRAM is 4 times that of either: a genuine 
improvement in memory architecture. 

A Field Programmable Gate Array FPGA is a mesh made of programmable 
gates and interconnect [17]. The specific function - Boolean or register - of each 
gate in the mesh, and the interconnection between the gates, is coded in some 
binary bitstream, specific to function f, which must first be downloaded into 
the configuration memory of the device. At the end of configuration, the FPGA 
switches to user mode: it then computes function /, by operating just as any 
regular ASIC would. 

The comparative normalized performance figures for various recent micro- 
processors and FPGA is found in fig. 7. 

- Microprocessors in the survey appear to have maintained their normalized 
compute density, by trading lower normalized operation density, for a higher 
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Fig. 7. Performance of various microprocessor and FPGA chips from [14], within a 
common feature size technology: normalized clock frequency Hz/4>\ normalized bit 
density; normalized gate and compute density: for Boolean operations, additions and 
multiplication's. 

normalized clock frequency, as feature size has shrunk. Only the micropro- 
cessors with a built-in multiplier have kept the normalized compute density 
constant. If we exclude multipliers, the normalized compute density of mi- 
croprocessors has actually decreased through the sample data. 

- FPGA have stayed much closer to the model, and normalized performances 
do not appear to have changed significantly over the survey (rightmost entry 
excluded). 

3    Reconfigurable Systems 

A Reconfigurable System RS is a standard sequential processor (the host) tightly 
coupled to a Programmable Active Memory PAM, through a high bandwidth link. 
The PAM is a reconfigurable processor, based on FPGA and SRAM. Through 
software configuration, the PAM emulate any specific custom hardware, within 
size and speed limits. The host can write into, and read data from the PAM, as 
with any memory. Unlike conventional RAM, the PAM processes data between 
write and read cycles: it an active memory. The specific processing is determined 
by the contents of its configuration memory. The content of configuration mem- 
ory can be updated by the host, in a matter of milliseconds: it is programmable. 

RS combine the flexibility of software programming to the performance level 
of application specific integrated circuits ASIC. As a point in case, consider the 
system PI described in [13]. From the abstract ofthat paper: 
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We exhibit a dozen applications where PAM technology proves supe- 
rior, both in performance and cost, to every other existing technology, 
including supercomputers, massively parallel machines, and conventional 
custom hardware. 

The fields covered include computer arithmetics, cryptography, error 
correction, image analysis, stereo vision, video compression, sound syn- 
thesis, neural networks, high-energy physics, thermodynamics, biology 
and astronomy. 

At comparable cost, the computing power virtually available in a 
PAM exceeds that of conventional processors by a factor 10 to 1000, 
depending on the specific application, in 1992. 

RS PI is built from chips available in 92 - SRAM, FPGA and processor. Six long 
technology years later, it still holds at least 4 significant absolute speed records 
In theory, it is a straightforward matter to port these applications on a state 
of the art RS, and enjoy the performance gain from the shrink. In the practical 
state of our CAD tools, porting the highly optimized PI designs on oher systems 
would require time and skills. On the other hand, it is straightforward to estimate 
the performance without doing the actual hardware implementation. We use the 
Reconfigurable System P2 [16] - built in 97 - to conceptually implement the 
same applications as PI, and compare. The P2 system has 1/4 the physical size 
and chip count of PI. Both have roughly the same logical size (4k CLB), so the 
applications can be transferred without any redesign. The clock frequency is 66 
MHz on P2, and 25MHz on PI (and 33MHz for RSA). So, the applications will 
run at least twice faster on P2 than on PI. Of course, if we compare equal size 
and cost systems, we have to match PI against 4P2, and the compute power has 
been multiplied by at least 8. This is expected by the theory, as the feature size 
of chips in PI is twice that of chips in P2. 

What has been done [20] is to port and run on recent fast processors, the 
software version for some of the original PI applications. That provides us with 
a technology update on the respective compute power of RS and processors. 

3.1     3D Heat Equation 

The fastest reported software for to solving the Heat Equation on a supercom- 
puter, is presented in [6]. It is based on the finite differences method. The Heat 
Equation can be solved more efficiently on specific hardware structures [7]: 

- Start from an initial state - at time tAt - of the discrete temperatures in a 
discrete 3D domain, all stored in RAM. 

- Move to the next state - at time (t + l)At - by traversing the RAM three 
times, along the x, y and z axis. 

- On each traversal, the data from the RAM feeds a pipeline of averaging 
operators, and the output of the pipeline is stored back in RAM. 

Each averaging operator computes the average value (at +af+1)/2 of two consec- 
utive samples at and at+1. In order to be able to reduce the precision of internal 
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Fig. 8. Schematics of a hardware pipeline for solving the Heat equation. It is drawn 
with a pipeline depth of 4, and bit width of 4, plus 2 bits for randomized round off. 
The actual 1 pipeline is 256 deep, and 16+2 wide. Pipelining registers, which allow the 
network to operate at maximum clock frequency, are not indicated here. Neither is the 
random bit generator. 
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temperatures down to 16 bits, it is necessary, when division by two is odd to 
distribute that low-order bit randomly between the sample and its neighbor AH 
deterministic round-off schemes lead to parasitic effects that can significantly 
perturb the result. The pseudo-randomness is generated by a 64-bit linear feed- 
back shift-register LFSR. The resulting pipeline is shown in fig. 8. Instead of 
being shifted, the least significant sum bit is either delayed or not, based on a 
random choice in the LFSR. 

PI standing design can accurately simulate the evolution of temperature 
over time in a 3D volume, mapped on 5123 discrete points, with arbitrary power 
source distributions on the boundaries. In order to reproduce that computation 
in real time, it takes a 40,000 MIPS equivalent processing power: 40 G instruc- 
tions Per second, on 32Ö data. This is out of the reach of microprocessors, at 
least until 2001. 

3.2    High Energy Physics 

lvrlZfT-iadiati?n Iiw*er ra7,i«partma8uiteofbenchmarfaproposed 
by CbRN [12] The goal is to measure the performance of various computer archi- 
tectures in order to build the electronics required for the Large Hadron Collider 
LHC, soon after the turn of the millennium. Both benchmarks are challenging 
and well documented for a wide variety of processing technologies, including 
some of the fastest current computers, DSP-based multiprocessors, systolic ar- 
rays massively parallel arrays, Reconfigurable Systems, and full custom ASIC 
based solutions. 

The TRT problem is to find straight lines (particle trajectories) in a noisy 
digits black and white image. The rate of images is at 100 kHz; the implied IO 
rate close to 200 MB/s, and the low latency requirement (2 images) preclude 
any implementation solution other specialized hardware, as shown by [12] 

The PI implementation of the TRT is based on the Fast Hough Transform 
[10], an algorithm whose hardware implementation trades computation for wiring 
complexity. To reproduce the PI performance reported in [12], a 64-bit sequential 
processor needs to run at over 1.2 GHz. That is about the amount of compu- 
tation one gets, in 1998, with a dual processor, 64-bit machine, at 600 MHz 
The required external bandwidth (up to 300 MB/s) is what still keeps such 
application out of current microprocessor reach. 

3.3    RSA cryptography 

The PI design for RSA cryptography combines a number of algorithm tech- 

7™£rntld inv!8]- F°r 512-bit k6yS' !t ddiverS a decr^tion rate * excess of 300 kb/s, although it uses only half the logical resources available in Pi 
The implementation takes advantage of hardware reconfiguration in many 

ways: a rather different design is used for RSA encryption and decryption; a 
different hardware modular multiplier is generated for each different prime mod- 
ulus: the coefficients of the binary representation of each modulus is hardwired 
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into the logical equations of the design. None of these techniques is readily appli- 
cable to ASIC implementations, where the same chip must do both encryption 
and decryption, for all keys. 

As of printing time, this design still holds the acknowledged shortest time 
per block of RSA, all digital species included. It is surprising that it has held 
five years against other RSA hardware. According to [20], the record will go 
to a (soon to be announced) Alpha processor (one 64b multiply per cycle, at 
750MHz) running (a modified version of) the original software version in [8]. We 
expect the record to be claimed back in the future by a P2 RSA design; yet, 
the speedup between PI was lOx reported in 92, and we estimate that it should 
be only be 6x on 2P2, in 97. The reason: the fully pipelined multiplier, found 
in recent processors, is fully utilized by RSA software. A normalized measure of 
the impact of multiplier on theoretical performance can be observed in fig. 7. 

For the Heat Equation, the actual performance ratio between PI and the 
fastest processor (64b, 250MHz) was lOOx in 92; with 4P2 against the 64b, 
750MHz processor, the ratio should be over 200x in 98. Indeed, the computation 
in fig. 8 combines 16 b add and shift, with Boolean operations on three low order 
bits: software is not efficient, and the multiplier is not used. 

4    What will Digital Systems shrink to? 

Consider a DS whose function and real time frequency remain fixed, once and 
for all. Examples: digital watch, 56kb/s modem and GPS. 

How does such DS shrink with feature size? 

To answer, start from the first chip (feature size 1) which computes function 
/: area A, time T, and clock frequency F. Move in time, and shrink feature 
size to 1/2. The design now has area A' = A/A, and the clock frequency doubles 
F' = 2F (F' = (2-e)F with non-linear shrink). The number of cycles per sample 
remains the same: T" = T. The new design has twice (or 2 - e) the required real 
time bandwidth: we can (in theory) further fold space in time: produce a design 
C" for computing / within area A" = A'/2 = A/8 and T" = 2T cycles, still 
at frequency F" = F' = 2F. The size of any fixed real time DS shrinks very 
fast with technology, indeed. At the end of that road, after so many hardware 
shrinks, the DS gets implemented in software. 

On the other hand, microprocessors, memories and FPGA actually grow in 
area, as feature size shrinks. So far, such commodity products have each aimed 
at delivering ever more compute power, on one single chip. Indeed, if you look 
inside some recent digital device, chances are that you will see mostly three 
types of chips: RAM, processor and FPGA. While a specific DS shrinks with 
feature size, a general purpose DS gains performance through the shrink, ideally 
at constant normalized density. 
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4.1     System on a chip 

There are compelling reasons for wanting a Digital System to fit on a single chip. 
Cost per system is one. Performance is another: 

- Off-chip communication is expensive, in area, latency and power. The band- 
width available across some on-chip boundary is orders of magnitude that 
across the corresponding off-chip boundary. 

- If one quadruples the area of a square, the perimeter just doubles. As a 
consequence, when feature size shrinks by 1/x, the internal communication 
bandwidth grows faster than the external 10 bandwidth: x3"£ against x2~(. 
This is true as long as silicon technology remains planar: transistors within 
a chip, and chips within a printed circuit board, must all layed out side by 
side (not on top of each other). 

4.2    Ready to Shrink Architecture 

So far, normalized performance density has been maintained, through the suc- 
cessive generations of chip architecture. 

Can this be sustained in future shrinks? 
A dominant consideration is to keep up the system clock frequency F. The 

formula for the normalized clock frequency 1/0 = 100r(A) implies that each 
combinatorial sub-circuit within the chip must have delay less than lOOx that of 
a minimal size inverter. The depth of combinatorial gates that may be traversed 
along any path between two registers is limited. The length of combinatorial 
paths is limited by wire delays. It follows that only finitely many combinatorial 
structures can operate at normalized clock frequency <j>. There is a limit to the 
number N of 10 bits to any combinatorial structure which can operate at such a 
high frequency. In particular, this applies to combinatorial adders (say N < 256), 
multipliers (say TV < 64) and memories. 

4.3    Reconfigurable Memory 

The use of fast SRAM with small block size is common in microprocessors: 
for registers, data and instruction caches. Large and fast current memories are 
made of many small monolithic blocks. A recent SDRAM is described in [15]: 
1Gb stored as 32 combinatorial blocks of 32Mb each. A 1.6 GB/s bandwidth is 
obtained: data is 646 wide at 200MHz. 

By the argument from the preceding section, a large N bit memory must 
be broken into N/B combinatorial blocks of size B, in order to operate at nor- 
malized clock frequency F = <f>. A N bit memory with minimum latency may 
be constructed, through recursive decomposition into 4 quad memories, each of 
size JV/4 - layed out within one quarter of the chip. The decomposition stops 
for N = B, when a block of combinatorial RAM is used. The access latency is 
proportional to the depth log(N/B) of the hierarchical decomposition. 

A Reconfigurable Memory RM is an array of high speed dense combinatorial 
memory blocks. The blocks are connected through a reconfigurable pipelined 

534 



VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing 

wiring structure. As with FPGA, the RM has a configuration mode, during 
which the configuration part of the RM is loaded. In user mode, the RM is some 
group of memories, whose specific interconnect and block decomposition is coded 
by the configuration. One can trade data width for address depth, from 1 x N 
to N/B x B in the extreme cases. 

A natural way to design a RM is to imbed blocks of SRAM within a FPGA 
structure. In CHESS [19], the atomic SRAM block has size 8 x 256. The SRAM 
blocks form a regular pitch matrix within the logic, and it occupies about 30% 
of the area. As a consequence, the storage density of CHESS is over 1/3 that 
of a monolithic SRAM. This is comparable to the storage density of current 
microprocessors; it is much higher than the storage density of FPGA, which rely 
(so far) on off-chip memories. 

After configuration, the FPGA is a large array of small SRAM: each is used 
as LUT - typically LUT4. Yet, most of the configuration memory itself is not ac- 
cessible as a computational resource by the application. In most current FPGA, 
the process of downloading the configuration is serial, and it writes the entire 
configuration memory. In a 0.5x shrink, the download time doubles: 4x bits at 
(2-e)x the frequency. As a consequence, the download takes about 20 ms on PI, 
and 40 ms on P2. 

A more efficient alternative is found in the X6k [17] and CHESS: in config- 
uration mode, configuration memory is viewed as a single SRAM by the host 
system. This allows for faster complete download. An important feature is the 
ability to randomly access the elements of the configuration memory. For the 
RSA design, this allows for very fast partial reconfigurations: as we change the 
value of the 5126 key which is hardwired into the logical equations, only few of 
the configuration bits have to updated. Configuration memory can also be used 
as a general-purpose communication channel between the host and the applica- 
tion. 

4.4    Reconfigurable Arithmetic Array 

The normalized gate density of current FPGA is over lOx that of processors, 
both for Boolean operations and additions - fig. 7. This is no longer true for 
the multiply density, where common FPGA barely meets the multiply density 
of processors which recently integrate one (or more) pipelined floating point 
multiplier. 

The arithmetical density of RS can be raised: MATRIX [DeHon], which is 
an array of 8b ALU, with Reconfigurable Interconnect, does better than FPGA. 
CHESS is based on 46 ALU, which are packed as the white squares in a chess- 
board. It follows that CHESS has an arithmetic density which is near 1/3 that of 
custom multipliers. The synchronous registers in CHESS are 46 wide, and they 
are found both within ALU and routing network, to as to facilitate high speed 
systematic pipelining. 

Another feature of CHESS [19], is that each black square in the chessboard 
may be used either as a switchbox, or as a memory, based on a local configuration 
bit. As a switchbox, it operates on 46 nibbles, which are all routed together. In 
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memory mode, it may implement various specialized memories, such as a depth 
8 shift register, in place of eight 4b wide synchronous registers. In memory mode, 
it can also be used as a 4b in, 4b out 4LUT4. This feature provides CHESS with 
a LUT4 density which is as high as for any FPGA. 

4.5    Hardware or Software? 

In order to implement digital function Y = f(X), start from a specification by a 
program in some high level language. Some work is usually required to have the 
code match the digital specification, bit per bit - high level languages provide 
little support for funny bit formats and operations beneath the word size. 

Once done, compile and unwind this code so as to obtain the run-code Cf. It 
is the sequence of machine instructions, which a sequential processor executes, 
in order to compute output sample Yt from input sample Xt. This computation 
is to be repeated indefinitely, for consecutive samples: t=0, 1, For the sake of 
simplicity, assume the run-code to be straight-line: each instruction is executed 
once in sequence, regardless of individual data values; there is no conditional 
branch. In theory, the run-code should be one of minimal length, among all pos- 
sible for function /, within some given instruction set. Operations are performed 
in sequence through the Arithmetic and Logic Unit ALU of the processor. Inter- 
nal memory is used to feed the ALU, and provide (memory-mapped) external 
10. For W the data width of the processor, the complexity of so computing f 
is W\Cf\ bop per sample. It is greater than the gate complexity G(f). Equality 
\cf\ = G{f)/W only happens in ideal cases. In practice, the ratio between the 
two can be kept close to one, at least for straight-line code. 

The execution of run-code Cf on a processor chip at frequency F computes 
function / at the rate of F/C samples per second, with C = \Cf\. The feasibility 
of a software implementation of the DS on that processor depends on the real 
time requirement Fio - in samples per second. 

1. If F/C > Fio> the DS can be implemented on the sequential processor at 
hand, through straightforward software. 

2. If F/C < Fi0, one needs a more parallel implementation of the digital system. 

In case 1, the full computing power - WF in bop/s - of the processor is only used 
when F/C = Fio. When that is not the case, say F/C > 2Fio, one can attempt 
to trade time for area, by reducing the data width to W/2, while increasing 
the code length to 2C: each operation on W bits is replaced by two operations 
on W/2 bits, performed in sequence. The invariant is the product CW, which 
gives the complexity of / in bop per sample. One can thus find the smallest 
processor on which some sequential code for / can be executed within the real 
time specification. The end of that road is reached for W = 1: a single bit wide 
sequential processor, whose run-code has length proportionnal to G(f). 

In case 2, and when one is not far away from meeting the real time require- 
ment - say F/C < 8Fio - it is advised to check if code C could be further reduced, 
or moved to a wider and faster processor (either existing or soon to come when 
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the feature size shrinks again). Failing that software solution, one has to find a 
hardware one. A common case mandating a hardware implementation, is when 
F ta Fio: the real time external 10 frequency Fio is near the internal clock 
frequency F of the chip. 

4.6    Dynamic Reconfiguration 

We have seen how to fold time in space: from a small design into a larger one, 
with more performance. The inverse operation, which folds space in time, is not 
always possible: how to fold any bit serial circuit (such as the adder from fig 5) 
into a half-size and half-rate structure is not obvious. Known solutions involve 
dynamic reconfiguration. 

Suppose that function / may be computed on some RS of size 2A, at twice 
the real-time frequency F = 2Fio. We need to compute / on a RS of size A at 
frequency Fio per sample. One technique, which is commonly used in [13], works 
when Y = f(X) = g{h{X)), and both g and h fit within size A. 

1. Change the RS configuration to design h. 
2. Process N input samples X; store each output sample Z = h(X) in an 

external buffer. 
3. Change the RS configuration to design g. 
4. Process the N samples Z from the buffer, and produce the final output 

y = g(z). 
5. Go to 1, and process the next batch of N samples. 

Reconfiguration takes time R/F, and the time to process N samples is 2(N + 
R)/F = (N + R)/Fio. The frequency per sample Fio/(l + R/N) gets close to 
real-time Fio, as N gets large. Buffer size and latency are also proportional to N, 
and this form of dynamic reconfiguration may only happen at a low frequency. 

The opposite situation is found in the ALU of a sequential processor: the op- 
eration may change on every cycle. The same holds in dynamically programmable 
systems, such as arrays of processors and DPGA [14]. With such a system, one 
can reduce by half the number of processors for computing /, by having each 
execute twice more code. Note that this is a more efficient way to fold space 
in time than previously: no external memory is required, and the latency is not 
significantly affected. 

The ALU in CHESS is also dynamically programmable. Although no special- 
ized memory is provided for storing instructions (unlike DPGA), it is possible 
to build specialized dynamically programmed sequential processors, within the 
otherwise statically configured CHESS array. Through this feature, one can mod- 
ulate the amount of parallelism in the implementation of a function /, in the 
range between serial hardware and sequential software, which is not accessible 
without dynamic reconfiguration. 

5    Conclusion 

We expect it to be possible to build Reconfigurable Systems of arbitrary size, 
which are fit to shrink: they can exploit all the available silicon, with a high 
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Let us take the conclusion from Carver Mead [9]: 
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Abstract. The problem of determining the optimum size of a feedforward 
neural network is recognized to be crucial for its practical implications in such 
important issues as learning and generalization. Several approaches for 
designing optimum size networks have been proposed in the literature, which 
consist of training a larger than necessary network and then removing the 
unnecessary links and nodes. In this kind of approaches, commonly known as 
pruning, before computing the optimum number of links and nodes it is 
necessary to train the network and, once they have been identified, the reduce- 
size network has to be retrained. In this paper, a direct method to obtain an 
optimum size network during its training process is presented. We use 
orthogonal transformations for computing the optimum number of nodes on 
each iteration of the training process. These transformations lead to a 
decorrelation of the information, which is the key of network size reduction. 

1   Introduction 

The back-propagation algorithm has emerged as one of the most popular for 
supervised training neural networks. This algorithm is extremely computation and 
storage demanding. An enormous amount of computation has to be spent on training 
the network and, in the retrieving phase, high throughputs are required for real-time 
processing which hinges on its massively parallel processing capability. 

Multiprocessors, array of processors and massively parallel processors provide a 
natural solution to the BP algorithm, which can be expressed in basic matrix 
operations, such as inner-product, outer-product and matrix multiplications. For 
instance, this kind of operations can be mapped to basic processor arrays, systolic or 
wavefront arrays. They have the following key advantages: 
• The exploitation of pipelining is very natural in regular and locally connected 

networks. They yield high throughput and simultaneously save the cost associated 
with communication. 

• They provide a good balance between computation and communication, which is 
critical to the effectiveness of array computing. 
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An open question related to neural networks is how to determine the most 
appropriate network size for solving an specific task. To be representative, the 
network should have an optimum number of links and nodes. Moreover, from an 
implementation standpoint, small networks only require limited resources in any 
physical computational environment. The network will be overparametrized if the 
number of links is very high. In such cases, if the training set of data is not noise-free, 
the NN will try to learn the information along with the noise in the data, leading to 
poor validation results. 

There are several approaches to solve the problem of determining the optimum 
size of a neural network. The first approach, called growing algorithm, adds gradually 
hidden units to an initial small network until it reaches the convergence [l]-[4]. The 
second one, known as pruning, consists of training a larger than necessary network, 
then remaining nodes are eliminated and finally the reduced-size network has to be 
retrained [5][6]. 

Pratim Kangilal and Narayan Banerjee [5] have proposed an approach for the 
optimization of the size of feedforward neural networks using orthogonal 
transformations. They used two orthogonal transformations, the singular value 
decomposition (SVD) [7] and the QR with column pivoting factorization (QRcp) [7]. 
Using SVD, the rank of a matrix can be computed and so the optimum number of 
parameters is determined. QRcp coupled with SVD is used for subset selection, which 
is the key of the design of optimal networks. 

The use of the above orthogonal transformations for the NN size optimization 
depends on which nodes (input or hidden nodes) are going to be optimized: 
1- Optimum number of input nottes- Let PxN matrix A comprises the input data sets, 

where P is the number of sets of data points (training patterns), and N is the 
number of inputs. The aim is to determine which of the N features are relatively 
redundant and, hence, can be eliminated. Performing SVD on A, the optimum 
number of input nodes of the neural network (say L) is determined for the input 
data sets. QRcp provides L of the N features, for the P sets of data points, which 
are enough for a correct training process. 

2- Optimum number of hidden links and nodes- Consider a network, which has been 
trained with P input data sets. A PxM matrix B is formed with the M pseudo 
outputs of the concerned hidden layer for each of the P input data sets. SVD is 
performed on B for determining the enough number of hidden nodes for the given 
network. In case of a non-homogeneous network, i.e. when hidden nodes are fed 
with different sets of inputs, QRcp transformation is performed on B and the 
specific links between the hidden layers to be retained are identified. Once 
remaining nodes have been eliminated, the reduced-size network is retrained. 
Castellano et al. [6] have developed a pruning algorithm based on the idea of 

iteratively removing hidden units of a large trained network and then adjusting the 
remaining weights in order to maintain the original input-output behavior. 

In the above approaches, it is necessary to train the network before computing the 
optimum number of hidden nodes and, once they have been identified, remaining 
weights have to be adjusted. In this paper, we propose a method to obtain a network 
with optimum number of hidden nodes at the same time as it is trained. It is based on 

542 



VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing 

computing the optimum number of hidden units on each iteration of the training 
process, and then updating only the weights connected to those hidden units. 

2  Orthogonal Transformations 

In order to compute the optimum size of a feedforward neural network, we apply 
orthogonal transformations. An important property of them is that the vector 2-norm, 
as well as the matrix 2-norm, and the Frobenius norm, are invariant under the 
application of this kind of transformations. 

In particular, we use the properties of Householder reflections for computing the 
optimum number of hidden nodes on each iteration of the training process of the 
network. These transformations are described as follows [7]: 

Let v G5H" be nonzero. An nxn matrix P of the form 

P = I-2vv7vTv (1) 

is called a Householder reflection. The vector v is called a Householder vector. 
It can be shown easily that matrix P is symmetric and orthogonal: 

• Symmetric: 

PT = I - 2(vvT)7vTv = I - 2vv7vTv = P (2) 

• Orthogonal: 

PTP = I + 4vvTvv7vTvvTv - 4vv7vTv = I (3) 

Householder reflections can be used to zero selected components of a vector. 
Given a vector 0*x e 9f, if we want Px to be multiple of e, (the first column of the 
nxn identity matrix), then, for any x e 9T, v must be defined as follows: 

Px = (I - 2vv7vTv)x = x-(2vTx/vTv)v (4) 

Setting v=x+ae, gives 

vTx = xTx + ax, (5) 

vTv = xTx + 2ax, + a2 (6) 

If we assume cc=± llxll, (2-norm of the vector x) 

v = x ± llxll2e, => Px = (I - 2vv7vTv)x = ± llxll2e, (7) 

Given m vectors e 5R" [x,,x, xj, Householder reflections are used to determine 
which of them are linearly independent. Firstly, a Householder matrix (//;) to zero the 
last n-1 components of x, is calculated. Next, the vector y=Hpc2 is obtained. If 
ll)'ll2=lljr,ll2, then x2 is linearly dependent on x,\ otherwise, another Householder matrix 
(H2) has to be computed to zero the last n-2 components of v, and matrix H, must be 
updated with the product Hßr The vector y' is formed by the / first components of 
vector y, where / represents the number of linearly independent vectors obtained on 
each step. Now the vector y is obtained by the product of H, and x, and the equality 
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lly'll2=ILctll? is proved to determine the correlation degree among xn x2 and xr 

Remaining vectors are used of the same way to prove the linear dependencies 
between all of them. 

For instance, assume that we have three vectors e <R", x,, x2 and x„ and that x, is a 
linear combination of x, and x2. In such case, the linear dependency between those 
vectors can be observed applying Householder reflections. The first step is to 
compute the Householder matrix (//,) that transforms x, into a multiple of er Next, 
the vector y=H,x2 is computed. It can be observed that the equality lr/ll2=IUc2ll2' where 
y' is the first component of y, doesn't hold due to x, and x2 are linearly independent. A 
new Householder reflection is computed in order to zero the last n-2 components of 
vector y. To prove the linear dependency of xr x2 and x3, a new vector y2 has to be 
obtained by the product Hflpc,. As x, is a linear combination of x, and x2, it can be 
expressed as ax,+bx2 (with a and b e SR), so the product Hflpc, can be obtained as 
follows: 

y, = H,H,x, = H2H,(ax, + bx2) = aH2H,x, + bH2y (8) 

y2 = a[c, 0 ... 0]T + b[d, d2 0 ... 0]T= [n, n20 ... 0]T (9) 

Equation (9) shows that all the components of y2 are equal to zero, excepting the 
two first ones. Since Householder matrices are orthogonal, the equality lly II =lbt,l| 
holds. So, if the 2-norm of x, can be computed using only the two first components of 
y2, the linear dependency among x,, x2 and x, is verified. 

3   The Proposed Optimizing and Training Algorithm 

The optimization of the size of a feedforward neural network is a very important issue 
of its design, since any network should have an optimum number of links and nodes 
to be representative. This aim can be achieved retaining only the most representative 
nodes and deleting all the others. The selection process hinges upon the linear 
dependency of the nodes. For instance, assume a feedforward neural network with 
three nodes on its hidden layer, where the output value for the third hidden node is 
linearly dependent on the output values of the rest of the hidden nodes for the set of 
training patterns. In such case, the third hidden node could be eliminated due to the 
net inputs of the subsequent layer can be obtained using only the first two hidden 
nodes. 

The method we propose in this paper is based on the idea of determining, on each 
iteration of the training process, the number of linearly independent outputs of the 
hidden layer, say /, and then updating only the weights of the links connected with the 
first / hidden nodes. 

In order to compute the optimum number of hidden nodes using Householder 
reflections, the N outputs of the concerned hidden layer have to be obtained for each 
pattern of the set of training patterns. Thus, P ^-dimensional vectors are formed 
containing the outputs at the hidden layer for the input data set, where P represents 
the total number of training patterns. After presentation of the first training pattern, 
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the first vector x, is obtained and the Householder reflection //, to zero the last N-1 
components of this vector is computed. Next, for each pattern i, a new vector r is 
composed and it is proved its linear dependency with regards to the i-\ vectors 
computed in previous steps. 

Assume that L is the number of linearly independent vectors found at the i-th step. 
This means that the Householder matrix H computed in previous steps zeroes at least 
the last N-L components of each vector of the set [xr ..., *.J. If the new vector xt is 
linearly dependent on [xr ..., jr(J, then the product Hxj must be a vector of the form: 

Hx, = [n,... nL0...0]T (10) 

However, if equation (10) does not hold, matrix H has to be updated using a new 
Householder reflection HUI to zero the last N-L-\ components of the vector obtained 
in (10). Thus, matrix H must be computed as the product HulH. 

3.1   Our Algorithm 

Consider a feedforward neural network with TV input nodes, M hidden nodes and O 
output nodes and P training patterns. Assume that L is the optimum number of hidden 
nodes computed at each iteration of the algorithm, being L equal to M at the 
beginning of the first iteration. The proposed optimizing and training algorithm is as 
follows: 
1) Update the connection weights (vv;.) from the input layer to the hidden layer for 
each of the P training patterns, using the back-propagation algorithm: 

w, = w, + a I(Spk w,kj)/
,(Netj)x,)i        1 < p < P (11) 

where /is the activation function of each neuron;', a is a constant which determines 
the learning rate, xin. is the i-th input of the pattern p, Spt is the error of the k-th output 
node for the pattern p and w'tJ is the connection weight from the j-th hidden node to 
the k-th output node. 
Since w'tj is zero for; greater than L, only the weights connected to the first L hidden 
nodes will be updated. 
2) Compute the number of non-redundant hidden nodes (L) and update the 
connection weights from such nodes to the subsequent layer. At the beginning of this 
step, L is equal to zero. 

2.1) Obtain a vector xf formed by the hidden outputs for the concerned 
training pattern (p). Next, a new vector y is computed by the product Hx,, 
being MxM matrix H the product of all the Householder reflections 
computed at the previous p-\ iterations of this step. At iteration 1, H is the 
MxM identity matrix. 
2.2) In order to prove if vector xp is linearly dependent on the vectors {x,  
*,,.,) formed by the hidden outputs for the previous p-1 training patterns, the 
following equation has to be verified: 

Hy'll^lbgi, (12) 
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where y' is an L-dimensional vector composed by the first L components of 
vector )\ 

If equation (12) holds, then xp is linearly dependent on  (x,  x,,). 
Otherwise, the optimum number of hidden nodes is increased (L=L+J) and 
matrix H is updated with the product H'H, where H' is the Householder 
matrix that zeroes the last M-L-l components of vector y. 
2.3) Update the connection weights (w'jt) from the first L hidden nodes to the 
subsequent layer: 

w,
Jl = WJk + a(d--yrty(NetJ)ypll (13) 

where dfj and yp] are the desired and obtained outputs of the j-th output node 
for the pattern p, respectively, and y/it is the output of the k-th hidden node 
for such pattern. 

2.4) Go to step 2.1 until connection weights of the concerned hidden layer 
are updated for all the training patterns. 

3) Go to step 1 until the network reaches the convergence. 

Remarks of the alsorithm: 

1. Network outputs are computed using only the optimum hidden nodes of the 
previous algorithm iteration. So, at the beginning of the algorithm, network outputs 
are obtained considering M hidden nodes. 

2. At step 2.2, it is not necessary to calculate explicitly matrix H' and then compute 
the product H'H, since the structure of a Householder reflection can be applied 
directly for updating a matrix. 

3. The initial number of hidden units depends on the specific problem to solve. 
However it will be always less or equal than the number of training patterns. 

4. Once the network is trained, the last M-L nodes of the hidden layer can be 
eliminated, since its weights to the subsequent layer are zero. 

5. In case of a network with more than one hidden layer, once the weights of the first 
hidden layer have been updated, step 2 has to be applied again for the subsequent 
hidden layers. 

3.2 Comparison between the original back-propagation method and our 
optimizing and training algorithm 

In order to show the performance of our algorithm, we make a comparison in terms of 
computational cost between this approach and the original back-propagation 
algorithm. 

The following table shows the differences on number of operations between both 
algorithms assuming an NxMxO neural network, P training patterns and L optimum 
hidden nodes. 
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Table 1. Number of operations at different steps of both, the original back-propagation 
algorithm and the optimizing and training algorithm. 

Step Back-propagation 
Algorithm 

Optimizing and Training 
Algorithm 

Compute Network 
Outputs 

PxNxM + PxMxO PxNxM + PxLxO 

Update Input Layer 
Weights 

PxNxM PxNxL 

Compute Optimum 
Number of Hidden Nodes 

- PxMxL 

Compute Householder 
Reflections 

- LxMx(M+l) 

Update Hidden Layer 
Weights 

PxMxO PxLxO 

Network outputs are obtained applying the following equations: 

y/^SwfiXi) l^M (14) 
i=i     J 

M 

yk=/dw'jkyV        l^k<0 (15) 
where y/ are the outputs of the hidden layer, yt are the outputs of the output layer, JC,. 

are the network inputs and vv;, and w'Jt are the weights of input and hidden layers, 
respectively. 

In the original Back-propagation algorithm, M hidden nodes are used to compute 
the network outputs for each training pattern, so PxNxM + PxMxO operations are 
required. In the optimizing and training algorithm L hidden nodes are only needed to 
compute the outputs of the last layer. However the M outputs of the hidden layer have 
to be obtained in order to prove equation (12), so this step entails PxNxM + PxLxO 
operations for the proposed algorithm. 

To compute the optimum number of hidden nodes, it is necessary to verify 
equation (12) at each process iteration. Vector y' is obtained by the first L 
components of the product Hx, so MxL operations are needed for each iteration at this 
step. Since P is the number of iterations, the total number of operations is PxMxL. 

If equation (12) does not hold, a new Householder reflection H' is computed and 
matrix H has to be updated with the product H'H. Instead of forming explicitly matrix 
H' and then computing H'H, which implies a matrix-matrix multiplication, the 
structure of//' can be applied directly using the equation: 

H'H = (I - 2vvT/vTv)H = H - v(2vTH/vTv) (16) 

where v is the Householder vector for the matrix //'. 
Thus, a Householder update of a matrix involves a matrix-vector multiplication 

followed by an outer product update, which entails Mx(M+l) operations. 
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Since L is the optimum number of hidden nodes computed by the algorithm, L 
Householder reflections are needed to prove equation (12). Hence, the total number 
of operations required on this step is LxMx(M+l). 

It should be taken into account that the number of operations of table 1 for the 
optimizing and training algorithm is an upper limit of the actual number of 
operations. It is due to the optimum number of hidden nodes, at any step of the 
process, is always less or equal than L. Moreover, the number of hidden units used on 
each process iteration depends on the order of presentation of training patterns, so 
establishing a general quantitative comparison between both algorithms is a difficult 
task. This evaluation must be done for an specific network application 

4  Simulation Results 

To test the effectiveness of our algorithm, the chaotic time-series generated by the 
Mackey-Glass equation have been studied using three-layer feedforward networks. 

A system is said to be chaotic if the evolutionary trajectory of the system is 
generated by a deterministic mechanism, but it is very sensitive to the system's initial 
condition [8]. Since under certain conditions a chaotic system behaves randomly, the 
identification of such system is difficult. Under those conditions, a model capable of 
identifying the underlying deterministic mechanism can greatly improve system 
performance, predictability and control. 

The discrete time representation of the Mackey-Glass equation is given by 

x(k+1) - x(k) = ax(k-T)/( 1 + xT(k-T)) - ßx(k) (17) 

Consider the series generated with a=0.2, ß=0.1, y=10 and T=17. This combination 
generates a quasiperiodic time series, where a quasiperiodic process is a linear 
combination of several periodic processes. 

The objective is to model the Mackey-Glass series to produce ahead predictions. 
The Mackey-Glass series {x(k)} can be expressed as 

x(k+p) =/(x(k), x(k-T), x(k-2t),..., x(k-(N-])x)) (18) 

where p is the prediction time, which is chosen according to the need for long-term or 
short-term prediction, and N is generally between four and eight [8] [9]. We have 
chosen N=6, so a six-input neural network is considered where x(k), x(k-r), ...,x(k-5t) 
are used as the inputs and x(k+p) is used as the output. 

Simulation results have been obtained from several neural networks with different 
number of hidden units using 300 data sets for training. For each of those neural 
networks both, the back-propagation algorithm and the optimizing and training 
algorithm, have been applied. When the proposed method is applied, a reduced 6x3x1 
network is obtained. 
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Fig. 1. Training length for several networks with different number of hidden nodes 
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Fig. 2. Iteration length for MG series using networks with different number of hidden units. 

Figure 1 and 2 show the training and iteration lengths using different number of 
hidden nodes in the proposed and the original back-propagation algorithms. As it can 
be seen, although training time increases for large networks in both algorithms, the 
optimizing and training method provides better results than the back-propagation 
algorithm, even when the optimum number of hidden nodes is near to the initial 
number of hidden nodes. 

1,5 1 
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Fig. 3. Mackey-Glass series modeled using 6x20x1 and 6x3x1 networks. 
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Fig. 4. Number of iterations required for the back-propagation algorithm and the proposed 
method. 

The representation, in figure 3, of the Mackey-Glass series modeled using a 
6x20x1 network, trained with the original back-propagation algorithm, and a 6x3x1 
network, obtained by means of the proposed method, shows that the performance of 
both networks is equally good. 

Figure 4 shows the number of iterations required to train the networks. From the 
results obtained we can observed that small networks need less number of iterations 
than large networks to reach a low mean-squared error (MSE). However the learning 
speed depends on many other factors such as weights initialization and learning rate 
parameter (a). 

5   Conclusions 

In this paper a method for training and reducing the size of feedforward neural 
networks has been presented. The key idea of this approach consists of iteratively 
computing the optimum hidden nodes and then updating only the weights connected 
to those nodes. Using this method the retraining process of the reduce-size network is 
avoided. 

We apply Householder reflections to compute the optimum network size on each 
process iteration. These orthogonal transformations lead to a decorrelation of the 
network information using few operations, which accelerate the training process. 

From experimental results, an improvement on the network training length can be 
observed with regards to the original back-propagation algorithm and hence, in 
relation to existing pruning approaches. 

The proposed algorithm can be expressed in basic matrix operations and so its 
implementation can be easily achieved using processor arrays, systolic or wavefront 
arrays. 
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Abstract. The Versatile Advection Code is a single scientific software 
package designed and implemented to solve various hydrodynamic and 
magnetohydrodynamic problems typical of astrophysical research. It runs 
on workstations, and on vector and parallel supercomputers as well. The 
versatility for applications is ensured by the Loop Annotation Syntax 
preprocessor and the modular design of the software, while portability 
to different hardware platforms is achieved by the preprocessors that can 
translate the code from Fortran 90 both to High Performance Fortran 
and Fortran 77. Performance results are presented for several platforms. 

1    Introduction 

The Versatile Advection Code (VAC) [1,2] has been developed since 1994 as a 
general purpose tool for hydrodynamic and magnetohydrodynamic astrophysical 
applications. VAC uses various shock capturing numerical methods [3], explicit, 
semi-implicit, or fully implicit time stepping [4,5] on 1, 2, or 3 dimensional 
finite volume grids. The software package is complete with 120 pages of manual 
written in hypertext, a user interface based on web browsers, and visualization 
macros for the most popular visualization softwares. The ever growing number of 
users and applications proves that the concept of a single well designed general 
purpose scientific software package is a good alternative to the typical specialized 
scientific codes. 

The most original software solution in VAC is the Loop Annotation Syntax 
(LASY) [6], which was developed to provide a compact notation for expressions 
occuring in a multidimensional hydrodynamic code independent of the number 
of represented spatial dimensions. The other important feature is the modular 
design, which allows VAC to solve different equations with different methods, and 
lets the user add extra terms in the equations, define special initial and boundary 
conditions, or specify non-default input/output data format by writing a few well 
specified subroutines. 

VAC is designed from the beginning to run on workstations, where most sci- 
entists do their simulations, and on vector and parallel supercomputers, required 
for big 2D and 3D simulations, as well. The source code, after it is translated 
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from the LASY notation, uses Fortran 90 (F90) array syntax and High Per- 
formance Fortran (HPF) style FORALL statements for all the expressions that 
operate on the whole computational grid. Thus it is easy to add HPF compiler 
directives in an automated fashion and run the code on a parallel machine under 
HPF. It is also trivial to translate the FORALL statements back to ordinary DO 
loops for a Fortran 90 compiler on a non-parallel machine. 

Although Fortran 90 is becoming available on most scientific computing fa- 
cilities, it is still necessary to be able to translate the source code to Fortran 77 
(F77). A simple translator program is implemented to carry out this task for 
the limited number of language constructs that are used from the rich Fortran 
90 language. Not using all the features of F90 is a restriction for the developer, 
but it is beneficial for the users, who are more familiar with the simpler F77 lan- 
guage, and for the compilers, which usually do a better job on simpler program 
constructs. 

2    Preprocessors 

The use of the preprocessors can be best demonstrated on a small piece of code. 
The purpose of the gradient subroutine is simple: calculate the gradient gradq 
of the quantity q in direction idir within a rectangle, defined by ix"L indices. 
From the actual, more general, subroutine used in VAC, I extracted the part 
which is valid for Cartesian grids and uses central differences. The subroutine is 
shown in Figure 1. 

subroutine gradient(q,ix"L,idir,gradq) 

include   'vacdef.f90' ' 
double precision::  q(ixG"T),gradq(ixG"T) 
integer::   ix"L,idir,jx*L,hx"L 

!SHIFT 
jx-L=ix-L+kr(idir,"D); 
!SHIFT MORE 
hx-L=ix"L-kr(idir,-D); 
•SHIFT BEGIN 

gradq(ix-S)=0.5D0*(q(jx-S)-q(hx-S))/dx(ix-S,idir) 
!SHIFT END 

return 
end 

Fig. 1. Example source code with LASY. 

The mcluded vacdef .f90 file declares the global parameters and variables 
The array dimensions ixG"T, the grid spacing dx(ixG-T,ndim), and the Kro- 
necker delta array kr(3,3), which is used to shift indices in a certain direction 
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are all declared and initialized before this subroutine is called. The meaning of 
the LASY patterns starting with the special character * is briefly the following: 
*D stands for dimensions, *L for limits, "S for array segments, and "T for the to- 
tal size of arrays. The VAC Preprocessor (VACPP) substitutes the patterns with 
substitute strings, whose number depends on the number of spatial dimensions, 
which is a parameter for VACPP. The preprocessor not only replaces the pat- 
terns with their substitute strings, but it also repeats the source code attached 
to the pattern, and the repetitions are separated appropriately. The detailed 
rules of LASY are described in [6], here I simply show the code translated to 2 
dimensions in Figure 2. 

subroutine gradient(q,izminl,ixmin2,ixmaxl,ixmax2,idir,gradq) 

include 'vacdef.f90' 
integer:: ixminl,ixmin2,ixmaxl,ixmax2,idir,ft 

jxminl,jxmin2,jxmax1,jxmax2,hxminl,hxmin2,hxmax1,hxmax2 
double precision:: q(ixGlol:ixGhil,ixGlo2:ixGhi2),k 

gradq(ixGlol:ixGhil,ixGlo2:ixGhi2) 

!SHIFT 
jxminl=ixminl+kr(idir,l);jxmin2=ixmin2+kr(idir,2); 
jxmaxl=ixmaxl+kr(idir,l);jxmax2=ixmax2+kr(idir,2); 
!SHIFT MORE 
hxrninl=ixminl-kr(idir,l);hxmin2=ixmi n2-kr(idir,2); 
hxmaxl=ixmaxl-kr(idir,l);hxmax2=ixmax2-kr(idir,2); 
!SHIFT BEGIN 
gradq(ixminl:ixmaxl,ixmin2:ixmax2)=0.5D0*ft 

(qCjxminl:jxmaxl,jxmin2:jxmax2)& 
-q(hxminl:hxmaxl,hxmin2:hxmax2))& 
/dx(ixminl:ixmaxl,ixmin2:ixmax2,idir) 

!SHIFT END 

return 
end 

Fig. 2. Source code translated to Fortran 90 for 2 spatial dimensions. 

It is quite easy to imagine what the 1 or 3 dimensional versions would look 
like. Clearly, the LASY notation is not only more general, but also more compact 
than the translated F90 source code. The VACPP preprocessor is implemented 
as the vacpp.pl Perl script. 

In case the user has no F90 compiler available, the Fortran 90 source is 
further translated to Fortran 77 by the f90tof77 Perl script. The translation 
changes the free source format to fixed one, and replaces the array syntax by 
do loops. The f90tof77 script can also deal with the differences between F90 
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subroutine gradient(q,ixminl,ixmin2,ixmaxl,ixmax2,idir,gradq) 

include  'vacdef.f 
integer ixminl,ixmin2,ixmaxl,ixmax2,idir, 

&      j^inl,jxnun2 Jxmaxl Jxmau2,hxminl,hxmin2,hxmaxl,hxmax2 
double precision q(ixGlol:ixGhil,ixGlo2:ixGhi2), 

&      gradq(ixGlol:ixGhil,ixGlo2:ixGM2) 

»SHIFT 
jxminl=ixminl+kr(idir,l) 
jxmin2=ixmin2+kr(idir,2) 
jxmaxl=ixmaxl+kr(idir,1) 
jxmax2=ixmax2+kr(idir,2) 

♦SHIFT MORE 
hxminl=ixminl-kr(idir,l) 
hxmin2=ixmin2-kr(idir,2) 
hxmaxl=ixmaxl-kr(idir,1) 
hxmax2=ixmax2-kr(idir,2) 

»SHIFT BEGIN 

do ix_2=ixmin2,ixmax2 
do ix_l=ixminl,ixmaxl 

gradq(ix_l, ix.2) =0. 5D0* 

&     (q(ix_l+(jxminl-ixminl),ix.2+(jxmin2-ixmin2)) 
&     -q(ix-l+(hxminl-ixminl),ix.2+(hxmin2-ixmin2))) 
&     /dx(ix.l,ix.2,idir) 
enddo 
enddo 

»SHIFT END 

return 
end 

Fig. 3. Source code further translated to Fortran 77. 
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and F77 regarding the variable declaration, and it can translate some functions 
like sum, product, maxval, minval, any, all, which operate on arrays and 
return scalars. The where, forall, case constructs can also be translated. 
Other features of Fortran 90, like dynamic allocation, modules, array valued 
functions, pointers, structures, etc. are not used in VAC, and cannot be trans- 
lated by f90tof77, which is a short and simple program. The gradient subroutine 
in 2 dimensions and in F77 is shown in Figure 3. The loop variables ix.l, ix_2 
are declared in the included file. 

subroutine gradient(q,ixminl,izmin2,ixmaxl,ixmax2,idir,gradq) 

include 'vacdef.hpf' 
integer:: ixminl,ixmin2,ixmaxl,ixmax2,idir,ft 

jxminl,jxmin2,jxmaxl,jxmax2.hxminl,hxmin2.hxmaxl,hxmax2 
double precision:: q(ixGlol:ixGhil,ixGlo2:ixGhi2),ft 

gradqdxGlol:ixGhil,ixGlo2:ixGhi2) 
!HPF$ DISTRIBUTE q(BL0CK,*) ONTO PP 
!HPF$ DISTRIBUTE gradq(BL0CK,*) ONTO PP 

(SHIFT 

jxminl=ixminl+kr(idir,l);jxmin2=ixmin2+kr(idir,2); 
jxmaxl=ixmaxl+kr(idir,l);jxmax2=ixmax2+kr(idir,2); 
!SHIFT MORE 

hxminl=ixminl-kr(idir,l);hxmin2=ixmin2-kr(idir,2); 
hxmaxl=ixmaxl-kr(idir,l);hxmax2=ixmax2-kr(idir,2); 
!SHIFT BEGIN 

IF (hxminl==ixminl-l.and.hxmin2==ixmin2.and.ft 
jxminl==ixminl+l.and.jxmin2==ixmin2) THEN 

gradq(ixminl:ixmax1,ixmin2:ixmax2)=0.5D0*ft 
(q(ixminl+l:ixmaxl+1,ixmin2:ixmax2)ft 
-q(ixminl-l:ixmaxl-1,ixmin2:ixmax2))ft 
/dx(ixmin1:ixmax1,ixmin2:ixmax2,idir) 

ELSE IF(hxminl==ixminl.and.hxmin2==ixmin2-1.and.ft 
jxminl==ixminl.and.jxmin2==ixmin2+l) THEN 

gradqCixminl:ixmaxl,ixmin2:ixmax2)=0.5D0*& 
(qCixminl:ixmaxl,ixmin2+l:ixmax2+l)ft 
-qdxminl: ixmaxl, ixmin2-l: ixmax2-l) )ft 
/dx(ixminl:ixmax1,ixmin2:ixmax2,idir) 

ELSE 

stop "SHIFT did not optimize!' 
ENDIF 
!SHIFT END 

return 
end 

Fig. 4. Source code with HPF directives and optimized index shifts. 
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The f90tohpf script inserts the HPF directives into the Fortran 90 source 
code automatically. All arrays defined on the full grid are declared with the 
ixGlolrixGhil,... index limits, and they can be distributed among the pro- 
cessors according to the parameters given to f90tohpf. On different parallel ar- 
chitectures and/or for different problem sizes, different distributions may be 
optimal. The automatic insertion of the directives makes it extremely simple to, 
e.g., change a (BLOCK,BLOCK) distribution to (BLOCK,*) or (*,BLOCK). 

Unfortunately, HPF compilers are not as mature as F77 or F90 compilers. 
Several HPF compiler bugs were found while VAC was tested on parallel comput- 
ers. Due to the simplicity of the source code, there were relatively few problems, 
and they could be avoided relatively easily. Even if the code compiles and runs 
correctly, the performance can be very poor if the HPF compiler does not rec- 
ognize the simple shift operations in the gradient subroutine and elsewhere 
in the source. The general global communication is much slower than the fast 
specialized shifts, which are supported by the hardware and the communication 
libraries of most parallel computers. To help the compiler, the VAC preproces- 
sor can replace the general shift statement marked with the ! SHIFT comments, 
with shifts in specific directions placed in the appropriate branches of an if,' 
else if construct. The resulting code, shown in Figure 4, is longer and more 
difficult to read, but it usually compiles to a faster code under HPF. The phys- 
ical layout of processors PP is defined in the include file. When only one spa- 
tial dimension is distributed, one can use the HPF directive !HPF$ PROCESSORS 
PP (NUMBER_0F_PR0CESS0RS () ). 

The code can also be translated to Connection Machine Fortran (CMFortran) 
with the f 90tocmf script. Unfortunately the CM Fortran compiler recognizes 
index shifts for a very limited type of syntax, thus communication is not optimal 
without rewriting the critical shifts by hand. In principle, one could automate 
this optimization, but, since CM Fortran is disappearing from the scene, there 
is little motivation to write the necessary Perl script. 

3    Results and Conclusions 

VAC is being used by approximately 25 researchers, mostly astrophysicists. Most 
applications are hydrodynamic and magnetohydrodynamic simulations, but VAC 
is also used as a test suite for different numerical methods. Most users have access 
to powerful workstations, thus the code has been tested and used on DEC, SUN, 
IBM, SGI, HP workstations, and even on Pentium PC-s under LINUX. 

Due to the simplicity of the loops, which is implied by the F90 array syntax, 
the code vectorizes very well. On a single node of the traditional vector super- 
computer Cray C90, VAC runs about 23 times faster than on a DEC Alpha/400 
workstation, while the ratio is 4.2 for the J90. These measurements were done 
for a specific problem [7], but the speed ratios are typical for all timings tried so 
far. 

VAC has also been tested on the IBM SP, Cray T3E, Cray T3D, and Con- 
nection Machine 5 (CM5) parallel machines, and on a cluster of workstations, 
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under different HPF compilers [8,7]. The scaling is close to linear up to 8 pro- 
cessors on the IBM SP and on the Cray T3E for a rather moderate and fixed 
problem size, which proves that good scaling is possible under HPF even for a 
code as complex as VAC. The single node performance is a factor of 5.2 and 
1.7 improvement relative to the DEC Alpha/400 workstation for the SP and the 
T3E machines, respectively. On a 16-node CM5, after optimizing the array shift 
operations by hand, the code runs about 15 times faster than on the DEC Alpha. 
VAC was tested on a cluster of workstations as well. The code compiled and ran 
successfully, but the multiuser environment did not allow for meaningful timing. 

The Versatile Advection Code proves that it is possible to write one source 
code for several different applications and computer platforms with the aid of 
simple but powerful preprocessor and translator programs. All the preprocessor 
programs, vacpp.pl, f90tof77, f90tohpf, f90tocmf, forall2do, are im- 
plemented in Perl, which is a free software, and is installed on almost all scien- 
tific computers. Actually, the preprocessing step and the final compilation can 
be done on different computers if necessary. 

Currently we are working on the HPF compatible implementation of the 
implicit time stepping module. As a first step the Poisson solver using Conjugate 
Gradient type iterative schemes (CG and BiCGSTAB), originally implemented 
in F77, has been rewritten to the LASY notation and now it runs successfully 
on parallel machines with HPF. The next step involves rewriting and testing 
the preconditioner [9] for the block penta- and heptadiagonal Jacobian matrices 
that arise in implicit time stepping schemes. 
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Abstract. The study of the astrophysical N-body problem requires the 
use of numerical integration to solve a system of 6N first-order differen- 
tial equations. The particle-particle codes (PP) using direct summation 
methods are a good example of algorithms where parallelization can 
speed up the computation in an efficient way. For this purpose, a serial 
version of the PP code NNEWTON developed by the author was par- 
allelized using the MPI library and tested on the CRAY-T3D at the 
EPCC. The results of the parallel code here presented show very good 
efficiency and scaling, up to 128 processors and for systems up to 16384 
particles. 

1    Introduction 

We begin by an introduction to the Astrophysical N-body problem and the math- 
ematical models used in our work. We also present an overview of particle simu- 
lation methods, and discuss the implementation of a direct summation method: 
the PP algorithm. A parallel version of this algorithm as well as the perform- 
ance analysis are presented. Finally, the conclusions regarding the discussion of 
results are offered. 

2    The Astrophysical N-Body Problem 

The gravitational N-body problem refers to a system of interacting bodies 
through their mutual gravitational attraction, confined to a delimited region 
of space. In the universe we can select systems of bodies according to the ob- 
servation scale. For instance, we can consider the Solar System with Ar = 10 
(a restricted model: Sun + 9 planets). Increasing the observation scale, we have 
systems like open clusters (systems of young stars with typical ages of the order 
of 108 years, and N ~ 102 - 103), globular clusters (systems of old stars with 
ages of 12-15 billion years, extremely compact and spherically symmetric with 
N ~ 104 - 106), and galaxies (TV ~ 1010 - 1012). On the other extreme of our 
scale, on a cosmological scale, we have clusters of galaxies and superclusters. 
If we want to consider the whole universe, the total number of galaxies in the 
observable part is estimated to be of the order of 109 (see [2], [18], and [9]). 

* This work was supported by EPCC/TRACS under Grant ERB-FMGE-CT95-0051 
and partly supported by PRAXIS XXI under GRANT BM/594/94. 
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In our work we are interested in the dynamics of systems with N up to the 
order of 104 (open clusters and small globular clusters). 

2.1    The Mathematical Model 

In our mathematical model of the physical system each body is considered as a 
mass point (hereafter refered to as particle) characterized by a mass, a position, 
and a velocity. We also define an inertial cartesian coordinate system, suitably 
chosen in three-dimensional Euclidean space, and an independent variable t, the 
absolute time of Newtonian mechanics. 

The state of the system is denned by the set Sjy of 37V parameters: the 
masses, positions, and velocities of all particles. Hence: 

<SN = {(mi,ri,Ti),i = l,...,N}, (i) 

where r* and T{ are the position and velocity vector of particle i, respectively. 

Comments. The physical state of the system can be represented as a point in a 
6/V-dimensional phase-space with coordinates {TI,...,TN,TU...,TN) (see [3]). 
However, we will use this representation of the system which is more suitable for 
the discussion of the parallelization of the N-body integrator, on Sect. 3.3. 

The force exerted by particle j on particle i is given by Newton's Law of 
Gravity: 

Fij = -Gmimjw±^li^, (2) 

and the total force acting on particle i is 
I r« ~ rj 

N 
F«= E *v (3) 

The right-hand side of equation (3) represents the contribution of the other TV-1 
particles to the total force. 

We can now write the equations of motion of particle i: 

1  r, ri = —Ft- (4) rrii v*> 

Defining vk = rt we can write the system of 6/V first-order differential equations: 

ii=Vi>*i=Z^Fi (5) 

with i = 1,...,N. The evolution of the N-body system is determined by the 
solution of this system of differential equations with initial conditions (1). 

For systems with N = 2, the two-body problem known as the Kepler prob- 
lem, (e.g. the Earth-Moon system) the equations of motion (5) can be solved 
analytically. However, for the general N(>2)-body problem that is not the case 
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(see [3]), and we must use numerical methods to solve the system of differen- 
tial equations. In Sect. 3 we will discuss the problem of numerical integration of 
N-body systems. 

In every mathematical model of a physical system there is always the prob- 
lem of the validity of the model, that is, how suitable the model is to describe 
the physics of the system. In our case we are representing bodies with finite 
and, in general, different sizes by material points: bodies endowed with mass, 
but no extension. The physics of the interior of the bodies is not taken into 
account. However, for dynamical studies this model has proven to be suitable, 
and has been used to study the evolution of clusters of stars, galaxies, and the 
development of strutures in single galaxies (see [9]). 

2.2    Exponential Instabilities in N-body Systems 

The initial motivation of this work was the study of the exponential instability 
is self-gravitating N-body systems (see [16]). In this problem we are interested 
in the growth of a pertubation in one or more components of the system. For a 
given system of TV particles we consider the set 

S°N = {(mi,r°,r°),i = l,...,N} (6) 

of initial conditions (at time t = t0), and define the set of perturbed initial 
conditions: 

AS°N = {(mi,Ar°i,Ar0
i),i = l,...,N} (7) 

where Ar? and AT° are the position and the velocity perturbation vectors for 
the initial conditions. To evaluate the growth of the perturbations we must solve 
the system of 37V second-order differential equations (see [6] and nsap): 

N 

Ari = -   £   {(AruAv^TuTi)       ™j (8) 
;=ij*i "ri   Tj 

with i = 1,.. .,7V, and 

fiAr^Ar^Tj) = An - A^ - 3(An - dr^.fa - r,)    *'    *'M2-       (9) 
II Ti ~ Tj II 

Defining Avi = Aii we can rewrite (8) in the form: 

N 

Aii = AvilAvi = -   Y,   f^^r^.rO..     mj (10) 

with i = 1,...,N, Ar{ = (Axi,Ayi,Azi), and A\t = {AxuAyuAii). This 
system of 67V first-order differential equations, the variational equations, must 
be solved together with equations (5). 

We now define several metrics as functions of the components of the perturb- 
ation vectors (see [6] and [16]): 

Z\i? =. max  Hziiil+ 1^1 + 1^1) (11) 
2=1, ...,jV 
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1    N 

<AR>=NY,UAxi\ + \AVi\ + \A*i\) (12) 
t=i 

for the pertubations in the position vectors, and 

AV = maxi=1 N(\A±i\ + \Ayt\ + |Az,-|) (13) 

1   N 

(14) 
i=l 

for the pertubations in the velocity vectors. Each metric is evaluated for each 
time step of the numerical integration of equations (5) and (10). 

The analysis of the quantities given by equations (11), (12), (13), and (14) 
is very important to understand some aspects of the dynamical behavior of 
N-body systems (see [8], [10], [11], and [13]). In particular, we are interested in 
the relation between collisions and the growth of perturbations. The collisions 
between bodies are an important mechanism in the evolution of systems like 
open clusters and globular clusters (see [2] and [9]). 

3    Numerical Simulation of N-Body Systems 

In this section, we will briefly discuss the use of particle methods to solve the 
N-body problem with special attention to the direct summation method: the PP 
method (see [9], for an excellent and detailed presentation of these methods). 
We present a serial version of the PP method and discuss a parallel version of 
that method. 

3.1    Overview of Particle Simulation Methods 

Particle methods is the designation of a class of simulation methods in which the 
physical phenomena are represented by particles with certain attributes (such 
as mass, position, and velocity), interacting according to some physical law that 
determines the evolution of the system. In most cases we can establish a direct 
relation between the computational particles and the physical particles. In our 
work each computational particle is the numerical representation of one phys- 
ical particle. However, in simulations of physical systems with large N, such as 
galaxies of 1011 to 1012 stars, each computational particle is a superparticle with 
the mass of approximately 106 stars. 

We will now discuss the three principal types of particle simulation meth- 
ods: a direct summation method, a particle-in-cell (PIC) method, and a hybrid 
method. 

The Particle-Particle Method (PP). This is a direct summation method: 
the total force on the ith particle is the sum of the interactions with each other 
particles of the system. To determined the evolution of a N-body system we 
consider the interaction of every pair of particles, that is, N{N - 1) pairs (i,j), 
with i,j = 1,...,N A i ^ j. The numerical effort (number of floating-point 
operations) is observed to be proportional to TV2. 
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The Particle-Mesh Method (PM). This is a particle-in-cell method: the 
physical space is discretized by a regular mesh where a density function is defined 
according to the attributes of the particles (e.g. mass density for a self-gravitating 
N-body system). Solving a Poisson equation on the mesh, the forces at particle 
positions are then determined by interpolation on the array of mesh-defined 
values. The numerical effort is observed to be proportional to N. The gain in 
speed is obtained at the cost of loss of spatial resolution. This is particularly 
important for the simulation of N-body systems if we are interested in exact 
orbits. 

The Particle-Particle-Particle-Mesh Method (P3M). This is a hybrid 
method: the interaction between one particle and the rest of the system is de- 
termined considering a short-range contribution (evaluated by the PP method) 
and a long-range contribution (evaluated by the PM method). The numerical 
effort is observed to be also proportional to N, as in the PM method. The advant- 
age of this method over the PM method is that it can represent close encounters 
as accurately as the PP method. On the other hand the P3M method calculates 
long-range forces as fast as the PM method. 

Comments. We base the choice of method according to the physics of the system 
under investigation. For our work we use the PP method: we are interested in 
simulating clusters of stars where collisions are important and, therefore, spatial 
resolution is important. On the other hand, for the values of N used in some of 
our simulations (N ~ 16 - 1024) the use of a direct summation method has the 
advantage of providing forces that are as accurate as the arithmetic precision of 
the computer. 

3.2    The PP Serial Algorithm 

In our previous work (see [16]) we have implemented the PP method using 
FORTRAN 77. Several programs were writen (the NNEWTON codes) but only 
two versions are considered here: a PP integrator of the equations of motion, 
and a PP integrator of the equations of motion + variational equations. These 
two versions use a softened point-mass potential, that is, the force of interaction 
between two particles i and j is defined as (see [1], [2], and [9]): 

Fij = -Gm^||(rj_^-^2||3/2. (15) 

The parameter e is often called the softening parameter and is introduced to 
avoid numerical problems during the integration of close encounters between 
particles: as the distance between particles becomes smaller the force changes 
as 1/ || Ti - Tj ||2 in equation (2) and extremely small time steps must be used 
in order to control the local error of truncation of the numerical integrator. The 
softening parameter will prevent the force to go to infinity for zero distance 
causing overflow errors. 
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3.3    The PP Parallel Algorithm (P-PP) 

The PP method has been used to implement parallel versions of N-body integ- 
rators by several authors (see [14], for instance). Having this in mind, our first 
goal was to write a simple algorithm with good load-balance: each processor 
should perform the same amount of computations. On the other hand, the al- 
gorithm should be able to take advantage of an increased number of processors 
(scalability). 

In our algorithm the global task is the integration of the system of equations 
(5), for N particles, and the sub-tasks are the integration of sub-sets SN of 
Nk particles, with k = 0,...,p, where P = p + 1 is the number of available 
processors. The parallel algorithm implements a single program multiple data 
(SPMD) programming model: each sub-task is executed by the same program 
operating on different data (the sub-sets SNk of particles). 

The diagram in figure 1 shows the structure of the parallel algorithm and the 
main communication operations. The data are initially read from a file by one 
processor and a broadcast communication operation is performed to share the 
initial configuration of the system between every available processor. To each 
processor (k) is then assigned the integration of a sub-set SNk of particles The 
global time step is also determined by a global communication operation, and 
at the end of each time iteration the new configuration of the particles (in each 
sub-set Sffk) is shared between all processors. 

The load-balance problem is completely avoided in this algorithm since each 
processor is responsible for the same number of particles. The defined sub-sets 
of particles are such that 

p P 

£#(SivJ = ;£>* = # (16) 
k=0 fc=o 

and 

Ni = Njt i,j = 0,...,p. 

4    Implementation of the Parallel Algorithm 

4.1    The Message Passing Model 

The implementation of the P-PP algorithm was done in the framework of the 
message passing model (see [5] and [7]). In this model we consider a set of 
processes (each identified with a unique name) that have only local memory but 
are able to communicate with other processes by sending and receiving messages. 

Most of the message passing systems implement a SPMD programming model: 
each process executes the same program but operates on different data. However 
the message passing model does not preclude the dynamic creation of processes,' 
the execution of multiple processes per processor, or the execution of different 
programs by different processes. 
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Initialization 
PEr PE, Section PEp 

Broadcast System Configuration 

Definition of sub-sets   SNk of particles 

Loop Section 

time=t Np 

Definition of global time step: hinin 
- 

SN» SN, 
time=t+hmin SNP 

< ' —■> 

New configuration of the system is shared 

Fig. 1. The diagram shows the structure of the parallel algorithm and the main com- 
munication operations: broadcasting the initial configuration of the system to all pro- 
cessors, determination of the global time step and the global communication between 
processors to share the new configuration of the system after one time step. Each pro- 
cessor PEk, (k = 0, ...p) is responsible for the integration of its sub-set Snk. of particles. 

For our work, this model has one important advantage: it fits well on separate 
processors connected by a communication network, thus allowing the use of a 
supercomputer as well as a network of workstations. 

4.2    The MPI Library 

To implemented the parallel algorithm the Message Passing Interface (MPI) 
library (see [5]-[12]) was chosen for the following reasons: 

- source-code portability and efficient implementations across a range of ar- 
chitectures are available, 

- functionality and support for heterogeneous parallel architectures. 

Using the MPI library was possible to develop a parallel code that runs on a 
parallel supercomputer like the Cray-T3D and on a cluster of workstations. On 
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the other hand, from the programming point of view is Very simple to implemeht 
a message passing algorithm Using the library functions. 

t 

4.3   Analysia at the MPI iniplemfetttatlon 

The UP I implementation bf the P-PP algorithm was possible with the use 
^«^„i^f °Vibmry ^hctions- Twö ve«iotts of the codes writen in 
FORTRAN 77, the ftNSWTOff Codes, (see [16]) wete parallelized using the 
following functions (see [7]): 

Initialization 

1. MPLItilt: Initializes the MPf execution environment. 
2. MPLCüM.StZ£i Determines the huhiber of processors. 
3. MPLCOMMJtANk: Determines the identifier of a processor. 

Data Structures! Special data structures were defined containing the system 
configuration. 

4. MPl_tYPE.£XtENf! ketürhs the size of a datatype. 
5. MPljrYPfc_sTRüCf: Creates a structure datatype. 
6. MPt.TYPE.COtfMit: Commits a hew datatype to the system, 
7. MPl-TYPEJttfcfe: Frees a nti lohger heeded datatype. 

Communication! One bf the processes broadcasts the system configuration 
to all bther processores. 

8. MPI.BCAST: Broadcasts a message from processor With rank "root" to all 
other processors of the group. 

Global Operations: Used to compute the global time step, and to share the 
system configuration between processors after one iteration. 

9. MPI.ALLREDUCE: Combines values from all processors and distribute the res- 
ult back to all processors. 

10. MPI_ALL.GATHERV: Gathers data from all processors and deliver it to all. 

Finalization 

11. MPI_FINALIZE: Terminates MPI execution environment. 
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5    Performance Analysis 

To analyse the performance of a parallel program several metrics can be con- 
sidered depending on what characteristic we want to evaluate. In this work we 
are interested in studying the scalability of the P-PP algorithm, that is, how 
effectively it can use an increased number of processors. The metrics we used to 
evaluate the performance are functions of the program execution time (T), the 
problem size (TV, number of particles), and processor count (P). In this section 
we will define the metrics (as in [5] and [14]) and discuss their application. 

5.1    Metrics of Performance 

We will consider three metrics for performance evaluation: execution time, rel- 
ative efficiency, and relative speedup. 

Definition 1. The execution time of a parallel program is the time that elapses 
from when the first processor starts executing on the program to when the last 
completes execution. 

The execution time is actually the sum over the number of processors of 
three distinct times: computation time (during which the processor is performing 
calculations), communication time (time spent sending and receiving messages), 
and idle time (the processor is idle due to lack of computation or lack of data). 

In this study the program is allowed to run for 10 iterations and the execution 
time is mesured by the time of one iteration (Tone = Tten/10). 

Definition 2. The relative efficiency (Er) is the ratio between time T\ of exe- 
cution on one processor and time Tp of execution on P processors, 

The relative efficiency represents the fraction of time that processors spend 
doing usefull work. The time each processor spends communicating with other 
processors or just waiting for data or tasks (idle time) will make efficiency always 
less than 100% (this may not be true is some cases where we have a superlinear 
regime due to cache effects but we will not discuss it in this work). 

Definition3. The relative speedup (5r) is defined as the ratio between time Ti 
of execution on one processor and time Tp of execution on P processors, 

Sr = Y-p (18) 

The relative speedup is the factor by which execution time is reduced on P 
processors. Ideally, a parallel program running on P processors would be P times 
faster than on one processor and we would get Sr = P. However, communication 
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time and idle time on each processor will make Sr always smaler than P (except 
on the superlinear regime). 

These quantities are very useful to analyse the scalability of a parallel pro- 
gram however, efficiency an speedup as defined above do not constitute an ab- 
solute figure of merit since the time of execution on a single processor is used as 
the baseline. 

5.2    Performance Results of the PNNEWTON Code 

For the performance analysis of the algorithm we mesured the time of one it- 
eration for a range of values of two parameters: problem size, and number of 
processors. The relative efficiency and relative speedup were then evaluated us- 
ing equations (17) and (18). 

The objectives of this analysis are two-fold. First, we want to investigate 
how the metrics vary with increasing number of processors for a fixed problem 
size Second, we want to investigate the behavior of the algorithm for different 
problem sizes within the range of interest for our N-body simulations. For that 
purpose the parallel code (PNNEWTON) was tested on the Cray-T3D system 
at the Edinburgh Parallel Computer Centre (EPCC). The system consists of 512 
7sn »«T Su Processors arranged on a tridimensional torus and running at 
150 MHz. The peak performance of the T3D array itself is 76.8 Gflop/s (see [4]). 

The next figures show the results of the tests for systems with N = 26 214 

The code was integrating equations (5). Similar tests were performed for another 
version of the PNNEWTON code which integrates equations (5) and (10) and 
identical results were obtained. 

6    Conclusions 

ll PMu0Sf °f thiS W°rk WaS the devel°Pment of a parallel code suitable to 
study N-body systems with N ~ 10 - 104. The required features of the program 

7^mS^S\'^^^'^d&daacy- The tests performed on both ver*ions 
(PNNEWTON 1.0 and 2.0) showed an almost linear speedup and a relative 
efficiency between 60% and 98%. The worst cases (Er * 60% and E « 65%) 
correspond to a system with 64 particles running on 64 processors, "and to a 
system with 128 particles running on 128 processors. With those configurations 
the communication costs are comparable to the computational costs and the 
efficiency drops. 

f ,ySin|a,meSSuge PaSSlng m°del and the MPI librarv for the parallelization 
of the PP algorithm is possible to write a portable code with high efficiency and 
good scalability. Our parallel algorithm appears to be appropriate to develop 
parallel versions of the PP method. 
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Time of one Iteration - PNNEWTON(v1.0) / CRAY-T3D (EPCC) 
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Fig. 2. For each value of N=2*, (A: = 6,..., 14) the system is allowed to evolve during 
ten time steps. The computation was performed on a different number of processors. 
The variation of the time of one iteration with the number of processors for the tested 
systems shows a good scalling. 

140 
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100 - 

Relative Speedup - PNNEWTON(v1.0) / CRAY-T3D (EPCC) 

z 
g 
P       60 
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Number of processors 

Fig. 3. The program is showing a good scalability for the tested configurations. The 
speed up is almost linear. 
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z 

Relative Efficiency - PNNEWTON(v1.0) / CRAY-T3D (EPCC) 

0.55 
60 80 

Number of processors 
100 120 140 

Fig. 4. The program shows high efficiency for most of the configurations tested. The 
lowest efficiencies correspond to cases where the cost of communications is relevant 
(the number of particles is the same as the number of processors). 
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Abstract. The Genoa Active Message Machine (GAMMA) is a high- 
performance Active Messages-like communication layer implemented at 
kernel level as an extension of the Linux Operating System, and made 
available to user applications through a programming library. On low- 
cost clusters of Personal Computers (PCs) connected by Fast Ethernet, 
GAMMA achieves much better communication performance compared 
to public domain implementations of MPI and PVM. 
We have considered an existing PVM Molecular Dynamics (MD) parallel 
application, designed to be portable across various MPP as well as NOW 
platforms. The goal of our work is to show how much migrating such a 
complex application from PVM to GAMMA is convenient in terms of 
absolute performance improvement as well as price/performance ratio in 
the perspective of running MD on a low-cost cluster of PCs. The "mi- 
gration" approach is then compared to other two alternatives, namely: 
running the PVM version of MD "as is" on a cluster of PCs and trying 
tuning the PVM version of MD to match the underlying cluster architec- 
ture. It is shown that neither of such two alternatives lead to satisfactory 
performance. 

Keywords: Fast Ethernet; Molecular Dynamics; Network of workstations; Parallel 
processing; Personal computers. 

1    Introduction 

Molecular Dynamics (MD) is one of the most frequent parallel applications in 
the scientific community. MD typically exhibits fairly good speed-up figures on a 
wide range of parallel computers with good intrinsic load balancing. This offers 
the opportunity to investigate the behaviour of large size samples of material by 
numerical simulation. 

Network Of Workstations (NOWs) have emerged as the first cost-effective 
parallel architecture. Cluster of high-end Personal Computers (PCs) are emerging 
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as an even better solution, with unbeated price/performance ratio and potentially 
good absolute performance levels. 

A serious obstacle to running MD on a cluster of PCs is the high commu- 
nication latency exhibited by standard parallel programming environments like 
PVM [6] and MPI [7] running atop industry-standard communication protocols 
like TCP and UDP. Recently several teams have been engaged in producing 
efficient solutions using faster networks and optimized communication software 
to keep latency as low as possible. Many of such attempts gave rise to non- 
standard programming interfaces for high-performance communication. Porting 
a non-trivial parallel application on a non-standard communication layer may be 
an expensive task. However a better price/performance ratio and a satisfactory 
absolute performance level on a cluster of PCs may justify the porting effort. 

In this paper we discuss three experiences of porting an existing MD parallel 
application on a low-cost cluster of PCs. The original MD code is a FORTRAN 
program with calls to PVM communication routines. The low-cost cluster is a 
pool of sixteen Pentium 133 MHz PCs, each equipped with 32 MByte of RAM and 
256 KByte of second-level cache, networked by a shared 100base-TX Ethernet 
LAN. Each PC runs Linux, a POSIX-compliant Unix operating system. 

The first experience [3] consists of migrating MD from PVM to the the Genoa 
Active Message MAchine (GAMMA) [1, 2], an efficient communication system 
based on Active Messages [8] and designed for best efficiency on 100base-T 
clusters of PCs. Porting MD to GAMMA required replacing PVM calls with 
calls to communication routines from the GAMMA library, as well as changing 
some communication patterns in order to achieve better exploitation of the capab- 
ilities of the underlying network hardware fully exposed by GAMMA. Therefore 
the corresponding porting effort was not negligible. The obtained MD application 
shall be called MD-GAMMA hereafter. 

The second porting experience (also described in [3]) consists of running the 
original PVM version of MD "as is" on our cluster. This corresponds to a zero 
porting effort. 

The third porting experience consists of trying tuning the communication 
patterns of the original PVM version of MD in order to increase the match with 
the network architecture of our cluster. This implies a very limited porting effort 
The obtained application shall be called MD-TOKEN hereafter, as a circulating 
token has been added to reduce network contention. 

2    The Genoa Active Message MAchine (GAMMA) 

The Genoa Active Message MAchine (GAMMA) [1, 2] is an efficient messaging 
system based on Active Messages [8]. GAMMA is mainly implemented as a cus- 
tom network device driver plus a small number of additional system calls extend- 
ing the Linux kernel. Currently only the 3COM 3c595 and 3c905 Fast Ethernet 
adapters are supported. The GAMMA programming interface is a small yet 
complete set of communication functions supporting SPMD as well as MIMD 
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programming styles, and made available to user applications through a program- 
ming library. 

The efficiency of GAMMA is mainly due to three features, namely: 

- A "zero copy" communication protocol, that is no temporary buffers for 
messages along the whole communication path, thanks to the adoption of the 
Active Messages communication paradigm. This enables low-latency commu- 
nication. 

- A pipelined communication path, that is the various stages of the commu- 
nication path work in parallel for best communication throughput. Every 
messaging system works in a pipelined way when delivering large messages 
fragmented into smaller units, but GAMMA allows a pipelined path yet with 
small, unfragmented messages. This allows best throughput for small as well 
as large messages. 

- Broadcast primitives which directly expose the Ethernet hardware broadcast 
features to the applications. This allows efficient broadcast communication. 

With GAMMA, any process of a given parallel application owns, and may 
activate and use thereof, 255 communication ports through which it can send and 
receive messages. Useful communication ports are numbered in the range from 
zero to 254. Port number 255 is currently reserved to the implementation of the 
barrier synchronization. Prior to using any of its own ports, the process may 
bind it to: 

- A port of a destination process, for messages that will be sent throughout 
the port. 

- A destination buffer in user space for storing incoming messages. 
- A program-defined function acting as receiver handler for the port. 

A GAMMA receiver handler is an application-defined function which will be 
run at each message arrival. Such function will "consume" the message itself 
and possibly prepare a fresh final destination for the next incoming message. 
For instance, in order to avoid that a subsequent incoming message over- 
laps the previous one in the same user-space destination buffer, the receiver 
handler may re-bind the port to a fresh destination for the next incoming 
message. 

- A program-defined function acting as error handler {or the port. A GAMMA 
error handler is like a receiver handler, but it is issued in case of communic- 
ation errors rather than upon successful message receptions. The purpose of 
error handlers is to help building application-level error recovery policies. 

After a port is bound, its number fully defines the destination of messages 
sent through the port, as well as the user-space final destination of messages 
incoming through the port and the actions performed by the process in order to 
consume them. 

With GAMMA the programmer is forced to bind a port for input before 
receiving messages from that port. This implies that the kernel is notified the 
address of the destination user-space buffer in advance w.r.t. the message arrival. 
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Therefore the activity of storing incoming messages into their final destinations 
can be performed directly by the GAMMA device driver rather than by the user- 
defined receiver handlers, and does not require any temporary kernel buffer. 

2.1     Synchronous receive in GAMMA 

With Active Messages there is a "send" but no "receive" operation. Instead 
the receiver handlers act as independent • threads of the application triggered 
by message arrivals to perform the receive activities. Additional programming 
effort must be spent to ensure that receiver threads correctly cooperate with the 
main process thread. A very frequent problem is when the main thread needs to 
synchronize with a message arrival before continuing computation (e.g. when the 
process needs to receive data before processing them). A general solution is to 
use application-defined synchronization flags as follows: 

1. A flag F of the application is initially reset. 
2. In order to wait for one incoming message from a port P, the receiver process 

starts busy-waiting in a loop until F is set. , 

3. The receiver handler bound to port P sets F upon message arrival. 

GAMMA offers a more flexible and reliable solution in the form of two 
semaphore-oriented library functions, namely gamma_wait() and 
ganuna_signal(). Such functions give safe access to per-port semaphores embed- 
ded into the GAMMA library. The example above becomes as follows: 

1. In order to wait for one incoming message from port P, the receiver process 
issues gamma_wait(P,l) 

2. The receiver handler bound to port P issues gamma_signal(P) upon message 
arrival. 

2.2    Communication performance 

On our low-cost cluster of PCs, GAMMA achieves one-way "ping-pong" user- 
to-user message latency as low as 13 ps, with asymptotic bandwidth as high 
as 12.2 MByte/s (98% of the maximum 100base-T Ethernet, throughput). Half 
the asymptotic bandwidth is achieved with messages as short as 200 byte. Such 
performance numbers are measured at application level, that is they represent 
the communication performance effectively delivered to user applications. 

In terms of latency GAMMA rivals many much more expensive massively- 
parallel platforms. Obviously GAMMA cannot compete with such platforms in 
terms of bandwidth as well as scalability. On the other hand no massively parallel 
computer can compete with GAMMA in terms of price/performance ratio. 

3    The Molecular Dynamics application 

Our MD application [4, 5] is a typical Molecular Dynamics code used for simu- 
lating the behaviour of polarizable fluids. The current, release of MD is written in 
FORTRAN with calls to PVM routines, and is structured as a MIMD application. 
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The simulation of material samples with larger number of molecules turns the 
behaviour of MD from communication intensive to computation intensive. In our 
investigations the number of molecules has been kept as low as 4000 to stress the 
communication side. 

MD performs a standard Lennard-Jones calculation plus the solution of the 
induced polarizability on each molecule taking in account first dipole momentum. 
Each step of MD consists of evaluating the induced dipoles pi consistent with 

the values of E\ due to a given distributions of the point charges. This part of 
the calculation requires an iterative procedure with small computation time and 
many communications to exchange the values of the induced polarizability at each 
iteration among all processors. For a small number of molecules the cutoff radius 
is of the same size as the replicated box and the number of force vectors between 
molecule pairs grows almost quadratically with the total number of molecules. 
In such a situation any domain decomposition technique based on the spatial 
position of each molecule in the box is not feasible. 

In the parallel implementation each processor maintains a copy of the posi- 
tion of each molecule. However each processor will compute force pairs only on a 
predefined subset of molecules which has been previously assigned to it. In this 
way the list of interacting particles, which is by far the larger data structure of 
MD, could be partitioned among the computation nodes and the total memory 
occupancy per processor is expected to decrease with increasing number of com- 
putation nodes. 

When using high-latency communication systems like PVM, an important op- 
timization is to keep the number of distincts messages as low as possible in order 
not to pay too much for the communication start-up costs. This is achieved by 
packing all the variables to be communicated (i.e. forces,virial,energy) in a single 
outgoing message whenever possible. Keeping the number of distinct messages as 
small as possible reduces the possibility of using multicast/broadcast communic- 
ation primitives, since in PVM such collective communications are implemented 
as bare repetitions of point-to-point communications. Almost all communica- 
tions were point-to-point ones, but a few of them, i.e. the exchange of the new 
coordinates of the molecules. 

4    Migrating the application from PVM to GAMMA 

In order to migrate MD from PVM to GAMMA to obtain the MD-GAMMA ap- 
plication, the GAMMA programming library has been extended with FORTRAN 
stubs to the original GAMMA communication C functions in a straighforward 
way. 

Our PC cluster is equipped with low-cost shared 100base-T Ethernet hard- 
ware. This implies that the communication patterns of MD may cause lots of 
Ethernet collisions, with heavy communication delays. This could be partially 
avoided if the Fast Ethernet hub be replaced by a switch, but at a higher price. 
The alternative is to explicitly program a proper serialization of network accesses 
at the application level and to take best advantage of the Ethernet's hardware 
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broadcast facility that the GAMMA programming interface directly exposes 
The serialization of communications during collective all-to-all data exchange« 
has been obtained in MD-GAMMA by considering all processes as circularly 
ordered by instance number and implicitly granting broadcast transmission right 
to a process after it has received broadcast messages from all its predecessors. 

Another source of performance degradation with MD is the need of application- 
level temporary storage for incoming messages. Even with a "zero-copy" mes- 
saging system like GAMMA, MD-GAMMA must implement a temporary storage 
for received messages, because some broadcast messages carry information to be 
scattered among many processors and summed component-wise to existing local 
information arranged as arrays. 

A potential problem with GAMMA is that the receiver is forced to accept 
messages in their final destination at any time the sender starts a communication. 
This may cause race conditions in the memory of the receiver process during the 
all-to-all exchange phase of MD. Such all-to-all exchange is a two-steps oper- 
ation structured as two communication phases interleaved by one computation 
phase. In the computation phase the fresh data from the first communication 
phase are manipulated i.e. summed to previous data. If data from the second 
communication were delivered in the same data structure as data from the first 
communication, an inconsistency would arise if the second communication occurs 
before the intermediate computation step is complete. To avoid such race condi- 
tions in MD-GAMMA we had to implemented FIFO queues of application receive 
buffers for storing incoming GAMMA messages. Computations are carried out 
directly on the FIFOs' head arrays, whereas fresh incoming data are stored in 
the FIFOs' tail arrays. This way data from the second communication phase do 
not overwrite data from the first phase which have not yet been processed. 

Migrating MD from PVM to GAMMA required one week of work from the 
first author of this paper to replace PVM calls with GAMMA calls, change some 
communication patterns and implement Active Messages-like receive policies 
plus an additional week of work from the second author to debug and run the 
obtained MD-GAMMA application. 

5    Tuning the existing PVM application 

Another possibility for porting an existing PVM application on a given tar- 
get platform is to retain the original message passing interface and to tune the 
communication patterns of the application in order to increase performance bv 
matching the target architecture. 

In the case of MD, an obvious drawback of the original version when running 
on a bus-interconnected pool of processing nodes like a PC cluster with shared 
Fast Ethernet is bus contention, which may cause unacceptably large communic- 
ation delays due to collision storms. The easiest way to overcome such problem is 
to serialize processes when accessing the network by adding a circulating token 
implemented by ordered exchanges of null PVM messages. 
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In our preliminary study we added a circulating token only in one subroutine 
of MD, which turns out to be heavily used in the program run. The obtained MD- 
TOKEN application required a very limited working effort. The token overhead 
is negligibe compared to the overall communication overhead as well as the MD 
computation time. 

6    Performance results 

Let us consider the speed-up curves depicted in Figures 1. The slow-down ex- 
hibited by MD as the number of processors increases beyond eight is clearly 
apparent. Given the low computational power of Pentium 133 MHz CPUs, such 
behaviour accounts for the poor efficiency of the PVM messaging systems in- 
volving many temporary copies of messages during the traversal of many layers 
of communication protocols, as well as the collision storms arising from pro- 
cesses simultaneously accessing the shared LAN during the exchange phases of 
the program execution. 

However the excellent speed-up curve of MD-GAMMA up to 16 nodes, with 
the promise of a good scaling over even more processors, is mainly due to the 
following reasons: 

- the relatively poor floating-point computational power of Pentium 133 MHz 
CPUs 

- the high efficiency of GAMMA inter-process communications 
- the fine tuning of the communication patterns in the GAMMA version of the 

application, based on the knowledge of features (broadcast) and limitations 
(shared LAN) of the underlying communication hardware. 

In spite of its lower collision rate, MD-TOKEN shows a speed-up curve which 
is even worse than MD. The reason is that serializing network accesses by a 
circulating token implies serializing the software overhead of communications as 
well. When communication overhead is high, as with ordinary PVM, the potential 
advantage of eliminating collisions is by far recovered by the loss of parallelism in 
the execution of low-level communication software. Thus, coordinating processes 
at application level in the hope of making better use of the network may result 
into a counter effect with high-latency messaging systems. It is worth noting that 
the overhead of the circulating token itself is negligible (less than 5% with 16 
nodes). 

Figure 2 reports the average completion time per time-step for MD as well as 
MD-GAMMA and MD-TOKEN on our PC cluster. The curve of average com- 
pletion time per time-step of MD on an eight-"thin-nodes" IBM SP2 is reported 
too. MD-GAMMA appears to outperform the IBM SP2 if more than twelve pro- 
cessors are engaged in the computation, besides performing better than the other 
two MD versions. When reading such curves it is important to pay attention to 
both the absolute performance and the cost of the hardware platform. It is worth 
pointing out that the current cost on the marketplace of a 16-nodes GAMMA 
leveraging shared 100base-T Ethernet and Pentium 133 MHz CPUs is compar- 
able to the cost of one single high-end workstation. 
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Fig. 1. Molecular Dynamics, GAMMA vs. PVM: speed-up comparison with same hard- 
ware platform (shared 100base-T Ethernet network of Pentium 133 PCs). 

7    Conclusions 

By using a low-latency messaging system like GAMMA, a significant number of 
networked PCs may be successfully exploited to run parallel code even with a low- 
cost interconnect like shared 100base-T Ethernet. Indeed low-latency as well as 
native broadcast communications offer more flexibility at the programming level 
to implement collision-free collective communication patterns. Similar collision- 
free patterns are not feasible with high-latency messaging systems like PVM 
providing a poor implementation of broadcast and too high a communication 
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Fig. 2. Molecular Dynamics: average completion time per time-step on various parallel 
platforms including GAMMA. 

overhead, which are not expected to decrease at the same rate at which the 
peak communication bandwidth offered by the Ethernet technology is increasing 
(not to mention the additional loss of efficiency when moving to SMP processing 
nodes). 

In the case of MD it is apparent that exploiting a low-latency messaging 
system like GAMMA is the only way to turn a low-cost cluster of PCs into a 
cost-effective solution for parallel processing. The same holds for the large class 
of ''non-embarassingly parallel" well-balanced parallel applications. The gain in 
price/performance as well as the good absolute performance level obtained on 
such kind of inexpensive platforms makes the porting effort worthwhile, at least 
in the case of well documented applications. 
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Abstract. Increasing the instruction level parallelism (ILP) is one of the key issues 
to boost the performance of future generation processors. Current processor organi- 
zations include different mechanisms to overcome the limitations imposed by name 
and control dependences but no mechanisms targeting to data dependences. Thus, 
these dependences will become one of the main bottlenecks in the future. Data value 
speculation is gaining popularity as a mechanism to overcome the limitations 
imposed by data dependences by predicting the values that flow through them. In 
this work, we present a study of the potential of data value speculation to boost the 
limits of instruction level parallelism using both perfect and realistic predictors. 
Speedups obtained by data value speculation are very huge for an infinite window 
and still significant for a limited window. Different prediction schemes oriented to 
single thread and multiple threads (from a single program) architectures have been 
studied. The latter shows a significant improvement respect to the former for FP 
benchmarks although the difference is much smaller for integer programs. 

1     Introduction 

The performance of superscalar processors is limited by the necessity to obey the 
dependences existing among the program instructions. These dependences can be clas- 
sified into three types[5]: name dependences, control dependences and data depend- 
ences. 

Name dependences appear when the values generated by two instructions are to be 
written in the same storage location, either a register or memory. They can be eliminated 
by renaming the storage location that causes the dependence (i.e. changing the name of 
the locations where the values are to be written). Register renaming is a well known 
technique that deals with this kind of dependences. It is implemented dynamically by 
many current microprocessors such as DEC Alpha 21264 [4] or MIPS R10000 [23]. 

Control dependences are caused by branch instructions. They slow down the proces- 
sor since it has to stall the fetch of instructions until the branch is solved, i.e. the destina- 
tion address is computed and the condition is evaluated. Branch prediction is the 
mechanism that current microprocessors implement in order to overcome control 
dependences. It is based on the prediction of the outcome of branches which allows 
instructions that depend on a branch to be executed before the result of such branch is 
known. 
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Data dependences or true dependences appear when an instruction consumes the 
value produced by another previous instruction. These dependences are enforced in cur- 
rent microprocessors by executing the consumer after the producer. Thus, data depend- 
ences limit the amount of instruction level parallelism (ILP) by imposing a serialization 
on the execution of some instructions. 

In the same way as control dependences are managed predicting the behavior of 
branches, it may be feasible to predict the result of some instructions in order to avoid 
the ordering imposed by data dependences, allowing the consumer instruction to be 
issued before the execution of the producer. The term data value speculation is used to 
refer to those mechanisms that predict the operands of an instruction, either source or 
destination, and execute speculatively the instructions dependent on it before the actual 
value is computed, allowing the processor to avoid the ordering imposed by data 
dependences. 

In this work, we present a study of the ILP improvement that data value speculation 
techniques can provide. We present an evaluation of the limits of ILP that can be 
exploited by dynamically scheduled processors with infinite resources and data value 
speculation, and compare it with that of the same processor without data value specula- 
te. We evaluate the benefits of predicting individual types of instructions (loads 
stores, simple arithmetic, and multiplications) and the improvement achieved by pre- 
dicting all of them. We consider both ideal prediction schemes and realistic ones 
Finally, the impact of data value speculation for a limited instruction window is also 
evaluated The results shows that data value speculation can significantly increase the 
ILP that dynamically scheduled processors can exploit, and therefore, it is a promising 
technique to be considered for future generation microprocessors. 

The rest of this paper is organized as follows. Section 2 reviews the related work The 
methodology to evaluate the ILP that can be exploited by an ideal processor, either with 
or without data value speculation, is described in section 3. The value predictors consid- 
ered in this work are presented in section 4. The results of this study are detailed in sec- 
tion 5. Finally, section 6 summarizes the main conclusions of this work. 

2     Related work 

There   have   been   a   plethora   of  works   dealing   with   the   limits   of  the   ILP 
[1][2][6][10][16][20][21]. Each work studies the ILP that could be exploited under 
some constraints such as fetch width, instruction window size, branch prediction ren- 
ter renaming, memory aliasing, etc. A conclusion that can be extracted from all these 
works is that one of the main features that limit the parallelism are data dependences 
For instance, in [5] it is shown that the maximum ILP that a processor could achieve 
with infinite resources and perfect branch prediction is not much higher than a few hun- 
dred instructions per cycle (IPC) and for some applications it is about a few tens of IPC 
n^T ™]T SpecuIation has been the foc"s of several recent works. It is performed in 
[4] by predicting the address of load instructions whereas in [9] the address of stores is 
also predicted. In both cases the prediction is carried out using a history table of mem- 
ory instructions and a stride based predictor. In [12], data value speculation is based on 
predicting the value that load instructions read from memory. The proposed mechanism 
exploits the feature that the authors call value locality, which refers to the fact that many 
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load instructions repeatedly bring the same value from memory. Value locality is 
extended for all type of instructions in [11]. In [8] data value speculation is performed 
by predicting the value read by load instructions. Unlike the mechanism proposed in 
[12], the load values are predicted by predicting their effective address and prefetching 
the data from memory into the history table. In [15] Sazeides and Smith show that the 
results that an instruction generates may follow a repetitive pattern that stride predictors 
cannot predict and propose a context-based predictor. In [22] Wang and Franklin present 
a hybrid predictor. The implementation of this predictor is similar to that of a 2-level 
branch predictor. In [7] the impact of different value predictors on the performance of a 
processor is studied using a limited instruction window. 

The main contributions of this work are the following: This is the first work to our 
knowledge that evaluates the limits of ILP in an ideal dynamically scheduled supersca- 
lar processor that exploits data value speculation and compares it with that of the same 
processor without data value speculation. In [11], value prediction is evaluated for a per- 
fect machine, as it is called by the authors. However, that machine is limited by a finite 
instruction window (4096 entries), branch prediction and fetch bandwidth. Besides, in 
this paper we study the benefits of predicting individual types of instructions for both 
ideal and realistic predictors. 

3     Methodology 

This section describes the methodology that we have used to obtain the ILP under dif- 
ferent scenarios regarding prediction schemes and hardware resources. 

3.1 Experimental framework 

The evaluation methodology is trace-driven. The trace of each program has been gener- 
ated using the ATOM tool [19]. For each instruction, the instrumentation routine 
obtains: its operation code, the source and target registers, the effective address (if the 
instruction is either a load or a store), and the value generated in the case of arithmetic 
and load instructions. These data are fed into the analysis program, which computes the 
performance achieved by the particular architectural model. Performance is reported as 
Instructions per Cycle (IPC). 

The whole SPEC95 benchmark suite has been used for the different experiments. All 
the benchmarks have been compiled for a DEC AlphaStation600 5/266 with '-04' opti- 
mization flag, and executed with their largest input set. Each program has been run for 5 
billion of instructions, except gcc and ijpeg, which have been run until completion 
(1,569,885,184 and 684,497,921 instructions respectively). Figure 1 details the percent- 
age of different types of instructions executed for the whole SPEC95 benchmark suite. 

3.2 Architectural model 

The first study of the limits of ILP is achieved assuming an ideal microprocessor with 
infinite resources, perfect branch prediction, infinite instruction fetch bandwidth, an infi- 
nite cache memory with infinite number of ports, perfect memory disambiguation, 
dynamic renaming with an infinite number of registers and memory renaming with infi- 

587 



FEUP - Faculdade de Engenharia da Universidade do Porto 

Branch 
Store 
Load 
Division 
Multiplication 
Arithmetic 

Speclnt SpecFp 

Figure 1. Dynamic percentage of each type of instructions 

nite storage locations for renaming. Both an infinite and a limited instruction window 
are considered. In all the cases, precise exceptions [17] and an infinite retirement (com- 
mit) bandwidth are assumed. 

3.3 IPC computation for an ideal architecture without data value speculation 

The IPC of a given program for a particular architectural model is obtained by determin- 
ing the time (measured in number of cycles) when the latest result of any instruction of 
the program is computed, and then, dividing the number of executed instructions by 
such number of cycles. 

We will refer to the cycle when the result of an instruction i is available as the com- 
pletion time of i, or CT, for short. CT, is computed as the maximum CTj for any j such 
that; produces a result that is a source operand of i plus the latency of the operation i. 
This approach is similar to the one used in [1]. 

Each instruction of the trace produced by the execution of the instrumented program 
is analyzed in order to know the time when its operands are available. For each storage 
location the analysis program keeps track of the C7of the last instruction that wrote to 
it. This is implemented by means of two tables that are called the register write table 
(RWT) and the memory write table (MWT). RWTT stores the CT of the last instruction so 
far that its destination operand was the logical register r. MWTa stores the CT of the last 
store that wrote into address a. 

Therefore, when an arithmetic instruction is processed, the RWT is accessed in order 
to obtain the cycle that the source operands are available. Then, its C7is computed and 
the RWT entry associated to its destination register is updated with the new computed 
CT. That is: 

RWTde„ = max (RWTsrcIl RWTsrc2) + Latency, operation (1) 

In a similar way, when a load from address a is processed, the MWT is accessed to 
obtain the cycle that a previous store wrote into that memory position. Then, the RWTis 
updated as follows: 
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RWTdes, = max (RWTsrc], RWTsrc2, MWTJ + Latency lmd (2) 

Finally, when a store to address a is processed, the MWT is updated to reflect the new 
write to this memory location: 

MWT(l = max (RWTsrc], RWTsrc2) + Latencyswre (3) 

Notice that the new RWTdes( or MWTa can be lower that the previous one because 
register and memory renaming is assumed. Dynamic register renaming is very common 
in current architectures. Memory renaming is much more complex and it is imple- 
mented to some extent by some mechanisms like the ARB of the Multiscalar [3]. In this 
paper, we assume unlimited renaming capabilities for both registers and memory. 

When a new value for RWT or MWT is computed, the previous value is overwritten 
because any further instruction in the trace will always refer to the last value stored into 
a register or a memory location. However, in order to compute the IPC, we have to 
determine the maximum CT for any instruction of the program. To obtain such value, 
the analysis program keeps a variable that stores the maximum CTup to the current exe- 
cution point (Max_CT). 

3.4    IPC computation for a limited instruction window 

A limited instruction window with W entries and in-order retirement implies that an 
instruction cannot start execution until the instruction W locations above in the trace and 
all previous instructions have completed and retired. Thus, the restriction of having a 
limited instruction window can be modeled by keeping track of the CT of the last W 
instructions. This is accomplished by means of a table, which is called window retire- 
ment time (WRT), that has W entries and stores the retirement time of the last W instruc- 
tions processed so far. 

Thus, when computing the C^of an instruction, in addition to consider the CT of its 
source operands, the WRT of the instruction W locations above has also to be consid- 
ered. For instance, for each arithmetic instruction processed by the analysis program, 
the corresponding entry in the RWT is updated as follows: 

RWTdest = max (RWTml. RWTm:2, WRTnJnst%w) + Latencyoperatim (4) 

where njnst refers to the ordinal number of the current instruction in the trace. Expres- 
sions (2) and (3) are modified in a similar way to account for the effect of the limited 
instruction window. 

For each new instruction, the WRT is updated to reflect the retirement (commit) time 
of the current instruction. This time is the maximum CT of any previous instruction, 
including the current one, and it is stored in the same entry of the WRT that was occu- 
pied by the instruction W locations above since it is not useful any more: 

WRTninMW=Max_CT (5) 
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3.5    IPC computation for data value speculation 

Data value speculation is based on predicting the source and/or the destination operands 
or some instructions. In this section, we present a methodology to compute the IPC 
when data value speculation is incorporated into a superscalar processor, independently 
of the particular predictor being used. In this way, we consider a predictor as a system 
that given an instruction (usually its program counter), provides its source and/or desti- 
nation operands. In addition, each individual prediction is characterized by the time 
when the prediction is available (PT) and the correctness of the prediction. 

In this paper, we consider data value speculation for the following type of instruc- 
tions: Loads, Stores, Integer Arithmetic, Integer Multiplication, Float Arithmetic and 
Float Multiplication. 

In all the cases, if a prediction is not correct, the RWT and MUT are updated as if pre- 
diction were not used. If the prediction is correct, the RWT and MWT are updated with 
the minimum between the completion time, given by expressions (1), (2) and (3) and 
the prediction time, which is a characteristic of the particular predictor being used Sec- 
tion 4 discusses the predictors considered in this work and in particular, the time when 
predictions are available. 

4     Data predictors 

In this work we consider stride-based predictors, although the presented methodology 
could be applied for any other data predictor. A stride predictor has the structure shown 
in Figure 2. It is implemented by means of a table of 4096 entries that is direct-mapped 
non-tagged and it is indexed with the least significant bits of the instruction address (PC) 
whose source or destination operands are to be predicted. Each entry stores the follow- 
ing information: 

• Last value: This is the last value seen by that instruction. This value corresponds 
to the destination operand for all predictors except for the load and store address 
predictors. In these cases, it corresponds to the last effective address. 

• Stride: This field contains the stride observed for the values of the 
corresponding instruction. 
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• Confidence: This field is used to assign confidence to the prediction. It is 
implemented by means of a 2-bit up/down saturated counter. A prediction is 
considered correct only if the most significant bit is set. 

Predictor for arithmetic instructions stores the last result in the last value field. Load 
address predictors store the last effective address. Load value predictors store the last 
value read from memory. Finally, store predictors uses two tables: one for predicting the 
effective address and the other for predicting the value to be written. 

When an instruction is to be predicted (either its result or its effective address, 
depending on the particular predictor), the prediction table is accessed and the predicted 
value is computed adding the stride to the previous last value. If the most significant bit 
of the confidence field is set (i.e., the prediction is considered to be correct) and the pre- 
diction is correct, the predicted value can be used instead of the actual value if the 
former is available earlier. The stride field is only updated if the confidence counter is 
below 102 after being updated. 

In addition, we consider a perfect predictor that is assumed to produce always correct 
predictions. This is used to determined the upper bound of the performance that data 
value speculation can achieve. 

4.1    Prediction time 

An important feature of a predictor is the time when the predicted value is available. 
This time is used to update the RWTand MWT as explained in section 3.5. 

Regarding the prediction time, two different types of predictors have been consid- 
ered: 

• Serialized: Every time the prediction table is accessed, only one prediction per 
static instruction can be performed at most. That is, an instruction is not 
predicted until the last execution of the same static instruction has been 
predicted. 

• Non-serialized: Every time the prediction table is accessed, multiple predictions 
for each static instruction can be performed. In particular, all the subsequent 
executions of the same static instruction are predicted until the first one that is 
incorrect. That is, once the corresponding entry of the table has the correct 
stride, successive executions of the same static instructions can be predicted all 
at once. 

The serialized predictors may be suitable for superscalar processors. In fact, most of 
the studies on value prediction assume this type of predictors [8][9][11][12][14]. A non- 
serialized predictor could be useful for architectures supporting multiple threads of con- 
trol obtained from a single program, such as multiscalar processors [18] and the specu- 
lative multithreaded processors [13]. 

To determine the time when a prediction is available we consider a parameter that 
reflects the time required to perform a prediction operation (either of a single value for 
the serialized approach or multiple values for the non-serialized one). This parameter is 
called the prediction latency (PL). This is the time required for a table look-up plus its 
update. 
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The prediction time of each instruction is determined by means of an additional field 
that is added to each entry of the prediction table for evaluation purposes This field 
stores the cycle in which the entry has been used/updated for the last time. This field 
will be called last update time (LUT). 

The prediction time for an instruction is just the sum of the last update time plus the 
prediction latency. That is: 

PT=LUT+PL (6) 

The LUT is updated in a different way for serialized and non-serialized predictors 
For the former, for each new instruction of the trace, the corresponding LUT is updated 
with the time when its operand is available (either computed or predicted, whichever 
occurs first): 

LUT = RWTde!.,for load and arithmetic instructions with destination register dest 

LUT= MWTa for stores to address a (j) 

For non-serialized predictors, the LUT field is updated in the same way as the serial- 
ized case but only for those instructions that are mispredicted or are considered not pre- 
dictable as stated by the confidence field. 

5     Results 

The results of this section assume a one-cycle latency for all instructions and one-cycle 
prediction latency. 

Table 1 shows the IPC achieved by the ideal processor described in sections 2 with 
an infinite instruction window and without data value speculation 

This results will be used as a baseline to compare the performance of data value spec- 
ulation techniques. They represent the maximum parallelism that is possible to achieve 
in an ideal processor that is only constrained by data dependences whereas data value 
speculation removes this constraint. Notice that even for this ideal machine, the average 

Jf on|y 3739 for integer programs and 790.29 for floating point applications. When 
we add the constraint of a limited instruction window of 128 instructions, the IPC goes 
down to 9.64 and 17.51 respectively. This may suggest that relieving the restrictions 
imposed by data dependences through data value speculation can be and interesting 
mechamsm to boost performance. In the following results, only the average result for 
integer and FP programs will be shown. 

Figure 3 shows the speedup (in logarithmic scale) achieved by data value speculation 
with perfect prediction in relation to the infinite machine without data value speculation 
In this figure and the following ones the speedup is computed as follows: 

Speedup =    IPC w'th data value speculation 
IPC without data value speculation 

In each bar, only a single type of instructions is predicted individually. With perfect 
prediction, when an instruction is predicted its result is considered to be available at 
cycle 0. Looking at the graphs, one can see that the potential performance of predicting 

592 



VECPAR '98 ■ 3rd International Meeting on Vector and Parallel Processing 

Table 1. IPC achieved with infinite resources and no data value 
speculation 

Speclnt IPC SpecFP IPC 

go 89.45 tomcatv 397.79 

m88ksim 17.14 swim 1403.82 

gcc 47.02 su2cor 56.64 

compress 35.71 hydro2d 181.09 

li 27.62 applu 578.31 

ijpeg 34.12 mgrid 4735.11 

perl 18.72 turb3d 140.19 

vortex 29.34 apsi 231.21 

fpppp 105.71 

wave5 73.02 

Average 37.39 Average 790.29 

memory instructions, both loads and stores, is less than the speedup achieved by predict- 
ing arithmetic instructions. This suggests that for the analyzed programs, there are much 
more arithmetic than memory instructions on critical paths. The speedup achieved by 
predicting multiplications is almost negligible. In addition to not being on critical paths, 
this may be due to the small percentage of multiplication operations, as shown in Figure 

Figure 4 shows the speedup obtained for a realistic prediction scheme based on a 
stride predictor, as it was described in previous sections. The instruction window is con- 
sidered to be infinite and the prediction is non-serialized. The speedup achieved by pre- 
dicting arithmetic instruction is very huge and it suggests that arithmetic prediction may 
be the most effective approach to remove the serialization imposed by data depend- 
ences. The IPC of data value speculation just for arithmetic instructions is 531 times 
higher than the IPC achieved without data value speculation, for an infinite machine and 
the FP benchmarks. When data value speculation is implemented for all the instructions, 
the speedup goes up to 2368. The speedup for integer programs is not so high (42 when 
predicting all the instructions). On the other hand, the speedup achieved by predicting 
memory instructions is much more limited (1.4 and 4.8 for integer and FP benchmarks 
respectively when predicting stores and load values). Predicting multiplications is not 
considered any more due to the poor results observed for the perfect predictor. 

The speedup obtained with a serialized predictor is depicted in Figure 5. Notice that, 
as pointed out before, this scheme would correspond to the implementation of data 
value speculation on a superscalar processor since in such processors there is only one 
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CD Load predictor 
K3 Store predictor 
■i Multiplication predictor 
■ Arithmetic predictor 

Speclnt SpecFp 

Figure 3. Speedup achieved by data speculation with perfect prediction, for 
different types of predictors. 

flow of control and a given execution of a static instruction can be predicted only if its 
previous execution has updated the prediction table. On the other hand, a non-serialized 
predictor can be exploited by an architecture supporting multiple threads of control. 

The speedup achieved by serialized prediction is still quite significant. The IPC 
achieved by these schemes is 30 and 35 times higher than the IPC achieved without data 
value speculation for integer and FP programs respectively. These results also show that 
the potential gain that load prediction may achieve is slightly higher for value prediction 
than for address prediction, but this gain is insignificant when compared to arithmetic 
prediction. 

If we compare the speedup achieved by non-serialized prediction (Figure 4) against 
the speedup achieved by serialized prediction (Figure 5) we can observe that for integer 
benchmarks there is not much difference (e.g. it goes from 42 to 30 when predicting all 
the instructions) whereas for FP benchmarks the difference is huge (e.g. it goes from 
2368 to 35 when predicting all the instructions). The main reason for this different 
behavior in the two types of benchmarks can be explained through the figures in Table. 
2. This table shows the percentage of correctly predicted arithmetic instructions for 
which the completion time (CT) is lower than prediction time (PT). For these instruc- 
tions, the prediction does not provide any improvement in spite of being correct. As 
expected, this percentage is greater when the predictions are serialized than when they 
are not since the prediction time of the serialized scheme is in general higher. Besides, 
the difference between serialized and non-serialized schemes for FP benchmarks is 
much higher than for integer benchmarks, which explains the higher impact of serial- 
ized prediction for FP benchmarks, as observed in Figure 4 and Figure 5. 

The speedup achieved by predicting instructions relies on the amount of strided val- 
ues existing among the applications. Figure 6 shows the percentage of strided values for 
the different instruction types for the whole Spec95 benchmark suite. It can be seen that 
load addresses have the greatest percentage of strided references and therefore one may 
expect a speedup for load address speculation higher than it actually is (see Figure 4 and 
Figure 5). However, even when the address of a load is predicted, it has to wait for pre- 
vious stores to the same address to finish. On the other hand, predicting the value of a 
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C3 Load Address prediction 
O Load Value prediction 
O Store prediction 
ra Stores + Load address prediction 
ra Stores + Load value prediction 
■ Arithmetic prediction 
■I All inst. predicted (Load address) 
■i All inst. predicted (Load Value) 

Speclnt SpecFp 
Figure 4. Speedup achieved by data value speculation with non- 
serialized prediction 

Speclnt SpecFp 
Figure 5. Speedup achieved by data value speculation with serialized 
predictions 

Table 2. Percentage of correctly predicted 
instructions whose C^is lower than its PT. 

Non-serialized Serialized 

Speclnt 59.65 70.85 

SpecFp 48.31 90.64 

load or the result of any other instruction avoids completely the order imposed by data 
dependences. Simple arithmetic instructions (mainly integer arithmetic) has a high per- 
centage of strided values. This fact, along with the significant weight of arithmetic 
instructions on the critical path (as confirmed in the evaluation of the prefect prediction 
scheme), makes arithmetic prediction to be the most effective type of speculation among 
the ones evaluated in this work. 

Finally, we consider the impact of data value speculation with a limited instruction 
window. Figure 7 shows the speedup of data value speculation (IPC achieved by data 
value speculation divided by IPC achieved without data value speculation) when all 
types of instructions are predicted using separate history tables for each class, and pre- 
dicting the value of loads. A non-serialized predictor is considered since it outperforms 
a serialized predictor for an infinite window (notice that the speedup is not depicted in 
logarithmic scale but in linear scale). It can be seen in this figure that the impact of the 
size of the instruction window its very significant since, for instance, the speedup is 
decreased from 2368 to only 1.75 for a window of 512 instructions in the SpecFp pro- 
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Figure 6. Percentage of strided values for each type of instruction 
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Figure 7. Speedup achieved with a finite instruction 

grams. Furthermore, the gain due to data value speculation for the Speclnt outperforms 
the gain for SpecFp, which is the opposite to what happened with an infinite instruction 
window. 

A main conclusion of the study of the effect of data value speculation on a limited 
instruction window is that it is an effective technique that could be considered for future 
generation microprocessors. A speedup around 2 can be achieved with simple stride- 
based predictors. However, the potential benefits of data value speculation are much 
higher for very large instructions windows. In this scenario, conventional superscalar 
microprocessors have been shown to be rather limited in the amount ILP that they can 
exploit due mainly to data dependences. This limitation can be significantly relieved by 
data value speculation techniques. Thus, novel organizations to support large instruc- 
tions windows, like the multiscalar architecture [18] and speculative multithreaded pro- 
cessor 13] can be benefitted from data value speculation to a larger extent than 
superscalar processors. 

6     Conclusions 

In this work we have presented a study of the limits of instruction level parallelism 
(ILP) that can be exploited by a machine with infinite resources, infinite instruction win- 
dow, perfect branch prediction and ideal memory. We have shown that avoiding the 
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ordering imposed by data dependences is a promising approach to improve the perfor- 
mance of superscalar processors for future generations. This can be accomplished by 
data value speculation techniques. These techniques are based on predicting the source 
or destination operands of instructions and execute speculatively the instructions depen- 
dent on them. 

Data value speculation has been approached by means of both perfect and stride- 
based predictors. Two different types of prediction schemes have been studied: serial- 
ized and non-serialized. The former is oriented to superscalar processors whereas the 
latter is more suitable for multithreaded architectures (i.e., machines that support multi- 
ple threads of control from a single program). We have measured the benefits of data 
value speculation techniques by comparing the limits of ILP that can be exploited with 
such technique with that of a superscalar processor with the same features but without 
data value speculation. Results show an important speedup for arithmetic instructions 
both for serialized and non-serialized prediction schemes. We have also observed that 
the difference between these two schemes is very high for FP programs (non-serialized 
outperforms always serialized schemes) but it is relatively low for integer programs. 

Finally, we have evaluated the impact of data value speculation with a limited 
instruction window. We have observed that the speedup suffers an important reduction 
but it is still significant. However, the benefits of data value speculation increases with 
the instruction size. We believe that data value speculation may play an important role 
when it is combined with mechanisms to support large instruction windows. 
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Abstract. Matter in the universe mainly consists of plasma. The dy- 
namics of plasmas is controlled by magnetic fields. To simulate the evo- 
lution of magnetized plasma, we solve the equations of magnetohydro- 
dynamics using the Versatile Advection Code (VAC). 
To demonstrate the versatility of VAC, we present calculations of the 
Rayleigh-Taylor instability, causing a heavy compressible gas to mix into 
a lighter one underneath, in an external gravitational field. Using a single 
source code, we can study and compare the development of this insta- 
bility in two and three spatial dimensions, without and with magnetic 
fields. The results are visualised and analysed using IDL (Interactive 
Data Language) and AVS (Advanced Visual Systems). 
The example calculations are performed on a Cray J90. VAC also runs 
on distributed memory architectures, after automatic translation to High 
Performance Fortran. We present performance and scaling results on a 
variety of architectures, including Cray T3D, Cray T3E, and IBM SP 
platforms. 

1    MagnetoHydroDynamics 

The MHD equations describe the behaviour of a perfectly conducting fluid in the 
presence of a magnetic field. The eight primitive variables are the density p(r, t), 
the three components of the velocity field v(r, t), the thermal pressure p(r, t), and 
the three components of the magnetic field B(r, t). When written in conservation 
form, the conservative variables are density p, momentum pv, energy density £, 
and the magnetic field B. The thermal pressure p is related to the energy density 
as p = (7 - 1)(£ - \pv2 - ±J32), with 7 the ratio of specific heats. The eight 
non-linear partial differential equations express: (1) mass conservation; (2) the 
momentum evolution (including the Lorentz force); (3) energy conservation; and 
(4) the evolution of the magnetic field in an induction equation. The equations 
are given by 

% + V • (Pv) = 0. (1) 
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d(Pv)      „   , —7£- + V • [pvv + ptotI - BB] = pg, (2) 

-^ + V • (5v) + V • (p,otv) - V • (v • BB) = pg • v + V • [B x 77(V x B)],  (3) 

dB 
-^ + V • (vB - Bv) = -V x [»7(V x B)]. (4) 

We introduced ptot = p + \B2 as the total pressure, / as the identity tensor, 
g as the external gravitational field, and defined magnetic units such that the 
magnetic permeability is unity. 

Ideal MHD corresponds to a zero resistivity 77 and ensures that magnetic flux 
is conserved. In resistive MHD, field lines can reconnect. An extra constraint 
arises from the non-existence of magnetic monopoles, expressed by V • B = 0. 
The ideal MHD equations allow for Alfven and magnetoacoustic wave modes, 
while the induction equation prescribes that flow across the magnetic field en- 
trails the field lines, so that field lines are 'frozen-in'. The field may, in turn, 
confine the plasma. The MHD description can be used to study both laboratory 
and astrophysical plasma phenomena. We refer the interested reader to [2] for 
a derivation of the MHD equations starting from a kinetic description of the 
plasma, while excellent treatments of MHD theory can be found in, e.g. [4,1]. 

2    The Versatile Advection Code 

The Versatile Advection Code (VAC) is a general purpose software package for 
solving a conservative system of hyperbolic partial differential equations with 
additional non-hyperbolic source terms [10,11], in particular the hydrodynamic 
(B = 0) and magnetohydrodynamic equations (l)-(4), with optional terms for 
gravity, viscosity, thermal conduction, and resistivity. 

VAC is implemented in a modular way, which ensures its capacity to model 
several systems of conservation laws, and makes it possible to share solution 
algorithms among all systems. A variety of spatial and temporal discretizations 
are implemented for solving such systems on a finite volume structured grid. 
The spatial discretizations include two Flux Corrected Transport variants and 
four Total Variation Diminishing (TVD) algorithms (see [15]). These numerical 
schemes are shock-capturing and second order accurate in space and time. 

Explicit time integration may exploit predictor-corrector and Runge-Kutta 
time stepping, while for multi-timescale problems, mixed implicit/explicit time 
integration is available to treat only some variables, or some terms in the gov- 
erning equations implicitly [7]. Fully implicit time integration can be of interest 
when modeling steady-state problems. Typical astrophysical applications where 
semi-implicit and implicit methods are efficiently used can be found in [8,14]. 

VAC runs on personal computers (Pentium PC under Linux), on a variety of 
workstations (DEC, Sun, HP, IBM) and has been used on SGI Power Challenge 
Cray J90 and Cray C90 platforms. To run VAC on distributed memory archi- 
tectures, an automatic translation to High Performance Fortran (HPF) is done 
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at the preprocessing phase (see   [9]). We have tested the generated HPF code 
on several platforms, including a cluster of Sun workstations, a Cray T3D, a 
16-node Connection Machine 5 (using an automatic translation to CM-Fortran) 
an IBM SP and a Cray T3E. Scaling and performance is discussed in section 3.' 

On-line manual pages, general visualization macros (for IDL, MatLab and 
SM), and file format transformation programs (for AVS, DX, and Gnuplot) fa- 
cilitate the use of the code and aid in the subsequent data analysis. 

In this manuscript, we present calculations done in two and three spatial 
dimensions, for both hydrodynamic and magnetohydrodynamic problems This 
serves to show how VAC allows a single problem setup to be studied under 
various physical conditions. We have used IDL and AVS to analyse the appli- 
cation presented here. Our data analysis and visualization encompasses X-term 
animation, generating MPEG-movies, and video production. 

3    Scaling results 

As detailed in [9], the source code uses a limited subset of the Fortran 90 lan- 
guage, extended with the HPF forall statement and the Loop Annotation SYntax 
(LASY) which provides a dimension independent notation. The LASY nota- 
tion [12] is translated by the VAC preprocessor according to the dimensionality 
of the problem. Further translation to HPF involves distributing all global non- 
static arrays across the processors, which is accomplished in the preprocessing 
stage by another Perl script. 

Figure 1 summarizes timing results obtained on two vector (Cray J90 and 
C90) and three massively parallel platforms (Cray T3D, T3E and IBM SP) 
We solve the shallow water equations (l)-(2) with B = 0 and p = (g/2)p2 on 
a 104 x 104 grid on 1, 2, 4, 8, and 13 processors. This simple model problem 
is described in [13], and our solution method contains the full complexity of a 
real physics application. We used an explicit TVD scheme exploiting a Roe-type 
approximate Riemann solver. We plot the number of physical grid cell updates 
per second against the number of processors (solid lines). The dashed lines show 
the improved scaling for a larger problem of size 208 x 208, up to 16 processors. 
On all parallel platforms, we exploited the Portland Group pghpf compiler We 
find an almost linear speedup on the Cray T3D and T3E architectures, which 
is rather encouraging for such small problem sizes. Note how the single node 
execution on the IBM SP platform is a factor of 2 to 3 faster than the Cray 
T3E, but the scaling results are poor. The figure indicates clearlv that for this 
hydrodynamic application, on the order of 10 processors of the Cray T3E and 
IBM SP are needed to outperform a vectorized Fortran 90 run on one processor 
of the Cray C90. Detailed optimization strategies for all architectures shown in 
Figure 1 (note the Pentium PC result and the DEC Alpha workstation timing 
in the bottom left corner) are discussed in [13]. 
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Fig. 1. Combined performance and scaling results for running the Versatile Advection 
Code on vector and parallel platforms. See text for details. 
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4    Simulating Rayleigh-Taylor instabilities 

To demonstrate the advantages of having a versatile source code for simulating 
fluid flow, we consider what happens when a heavy compressible plasma is sit- 
ting on top of a lighter plasma in an external gravitational field. Such a situation 
is unstable as soon as the interface between the two is perturbed from perfect 
flatness. The instability is known as the Rayleigh-Taylor instability. Early ana- 
lytic investigations date back to a comprehensive and detailed analysis given by 
Chandrasekhar [3]. 

The initial configuration is one where two layers of prescribed density ra- 
tio (dense to light ratio of pd/pt = 10) are left to evolve between two planes 
(y = 0 and y = 1), with gravity pointing downwards (g = -iy unit vector). 
The heavy plasma on the top is separated from the light plasma below it by 
the surface y = yQ + tsin(kxx)sin{kzz). Initially, both are at rest with v = 0, 
and the thermal pressure is set according to the hydrostatic balance equation 
(centered differenced formula dp/dy = -p). Boundary conditions make top and 
bottom perfectly conducting solid walls, while the horizontal directions are pe- 
riodic. We then exploit the options available in VAC to see how the evolution 
changes when going from two to three spatial dimensions, and what happens 
when magnetic fields are taken along. All calculations are done on a Cray J90, 
where we preprocess the code to Fortran 90 for single-node execution. 

4.1    Two-dimensional simulations 

Figure 2 shows the evolution of the density in two two-dimensional simulations 
without and with an initial horizontal magnetic field B = 0.1ex. Both simulations 
are done on a uniform 100 x 100 square grid, and the parameters for the initial 
separating surface are y0 = 0.8, e = 0.05, and kx = 2TT (there is no z dependence 
in 2D). The data is readily analysed using IDL. 

In both cases, the heavy plasma is redistributed in falling spikes or pillars, also 
termed Rayleigh-Taylor 'fingers', pushing the lighter plasma aside with pressure 
building up underneath the pillars. However, in the ideal MHD case, the frozen-in 
field lines are forced to move with the sinking material, so it gets wrapped around 
the pillars. The extra magnetic pressure and tension forces thereby confine the 
falling dense plasma and slow down the sinking and mixing process. In fact, since 
we took the initial displacement perpendicular to the horizontal magnetic field, 
we effectively maximized its stabilizing influence. 

In [3], the linear phase of the Rayleigh-Taylor instability in both hydrody- 
namic and magnetohydrodynamic incompressible fluids is treated analytically. 
The stabilizing effect of the uniform horizontal magnetic field is evident from 
the expression of the growthrate n as a function of the wavenumber kx 

y    Pd+Pi      2n(pd + Pl)- 
[b) 

Hence, while the shortest wavelength perturbations are the most unstable ones 
in hydrodynamics (B = 0), all wavelengths below a critical XCTit = B2/g(pd-Pl) 
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Fig. 2 Rayleigh-Taylor instability simulated in two spatial dimensions, in a hydrody- 
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in the magnetohydrodynaimc case, also the magnetic field lines, are plotted 
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in the magnetohydrodynamic case, also the magnetic field lines, are plotted. 
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are effectively suppressed by a horizontal magnetic field of strength B. Similarly, 
our initial perturbation with A = 2w/kx = 1 will be stabilized as soon as the 
magnetic field surpasses a critical field strength Bcrit = ^/g\{pd - pi) ~ 0.95. 

The simulations confirm and extend these analytic findings: the predicted 
growthrate can be checked (noting that our simulations are compressible), while 
the further non-linear evolution can be investigated. The discrete representation 
of the initial separating surface causes intricate small-scale structure to develop 
in the simulation at left of Figure 2. This is consistent with the fact that in a 
pure hydrodynamic case, the shortest wavelengths are the most unstable ones. 
Naturally, the simulation is influenced by numerical diffusion, while the periodic 
boundary conditions and the initial state select preferred wavenumbers. The 
suppression of short wavelength disturbances in the MHD case is immediately 
apparent, since no small-scale structure develops. The simulation at right has 
an initial plasma beta (ratio of gas to magnetic pressure forces) of about 400. 
For higher plasma beta yet, the MHD case will resemble the hydrodynamic 
simulation more closely, while a stronger magnetic field (B = ex) suppresses the 
development of the instability entirely, as theory predicts. 

Note also how the falling pillars develop a mushroom shape (left frames) as a 
result of another type of instability caused by the velocity shear across their edge: 
the Kelvin-Helmholtz instability. The lighter material is swept up in swirling 
patterns around the sinking spikes. In the MHD simulation (right frames) the 
Kelvin-Helmholtz instability does not develop due to the stabilizing effect of the 
magnetic field. Typically however, both instabilities play a crucial role in various 
astrophysical situations. Two dimensional MHD simulations of Rayleigh-Taylor 
instabilities in young supernova remnants [5] demonstrate this, and confirm the 
basic effects evident from Figure 2: magnetic fields get warped and amplified 
around the 'fingers'. General discussions of these and other hydrodynamic and 
magnetohydrodynamic instabilities are found in [3]. 

4.2    Three-dimensional simulations 

In Figure 3, we present a snapshot of a hydrodynamical calculation in a 3D 
50x50x50 unit box, where the initial configuration has both kx = 2n and k: = 
2TT. With gravity downwards, we look into the box from below. On two vertical 
cuts, we show at time t = 2 (i) the logarithm of the density in a color scale 
and (ii) the streamlines of the velocity field, colored according to the (logarithm 
of the) density. The cuts are chosen to intersect the initial separating surface 
between the heavy and the light plasma at its extremal positions where the 
motion is practically two-dimensional. 3D effects are readily identified by direct 
comparison with the two-dimensional hydrodynamic calculation. The time series 
of the 3D data set has been analysed using AVS (a video is made with AVS to 
demonstrate how density, pressure and velocity fields evolve during the mixing 
process). 

Figure 4 shows the evolution of a three-dimensional MHD calculation at times 
t = 1 and t = 2. We show an isosurface of the density (at 1% above the initial 
value for prf), colored according to the thermal pressure. A cutting plane also 
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Fig. 3. Rayleigh-Taylor instability in 3D, purely hydrodynamic. We show streamlines 
(left) and density contours (right) in two vertical cutting planes. 



shows the vertical stratification of the thermal pressure. Note the change in the 
initial configuration (kx = 6ir and kz = 4n, with y0 = 0.7): more and narrower 
spikes are seen to grow and to split up. The AVS analysis of the full time series 
shows how droplets form at the tips of the falling pillars, which seem to expand 
horizontally to a critical size before continuing their fall. At the same time, the 
magnetic field gets wrapped around the falling pillars. Figure 4 nicely confirms 
that places where spikes branch into narrower ones correspond to places with ex- 
cess pressure underneath. Similar studies of incompressible 3D ideal MHD cases 
are found in [6]. They confirm that strong tangential fields suppress the growth 
as expected from theoretical considerations, while the Rayleigh-Taylor instabil- 
ity acts to amplify magnetic fields locally. In such magnetic fluids, parameter 
regimes exist where secondary Kelvin-Helmholtz instabilities develop, just as in 
the hydrodynamic situation of Figure 3 (note the regions of strong vorticity in 
the streamlines). 

p&Rho p&Rho 

t= 1.00 p: 1.01 t= 2.00 p: 1.01 

Fig. 4. 3D MHD Rayleigh-Taylor instability. At two consecutive times, an isosurface 
of the density is colored according to the thermal pressure. The thermal pressure is 
also shown in a vertical cut. 

5     Conclusions 

We have developed a powerful tool to simulate magnetized fluid dynamics. The 
Versatile Advection Code runs on many platforms, from PC's to supercomputers 
including distributed memory architectures. The rapidly maturing HPF compil- 
ers can yield scalable parallel performance for general fluid dynamical simula- 
tions. Clearly, the scaling and performance of VAC make high resolution 3D 
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simulations possible, and detailed investigations may broaden our insight in the 
intricate dynamics of magneto-fluids and plasmas. 

We presented simulations of the Rayleigh-Taylor instability in two and three 
spatial dimensions, with and without magnetic fields. VAC allows one to do 
all these simulations with a single problem setup, since the equations to solve 
and the dimensionality of the problem is simply specified in a preprocessing 
phase Data analysis can be done using a variety of data visualization packages 
including IDL and AVS as demonstrated here. In the future, we plan to use VAC 
to investigate challenging astrophysical problems, like winds and jets emanating 
from stellar objects, magnetic loop dynamics, accretion onto black holes, etc 

Website info on the code is available at http: //www. f ys.ruu.nl/'toth/ and 
at http: //www. f ys. ruu. nl/~mpr/. MPEG-animations of various test problems 
can also be found there. 
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Abstract. We introduce the parallel grid manipulations needed in the 
Earth Science applications currently being implemented at the Data As- 
similation Office (DAO) of the National Aeronautics and Space Admin- 
istration (NASA). Due to real-time constraints the DAO software must 
run efficiently on parallel computers. Numerous grids, structured and 
unstructured are employed in the software. 
The DAO has implemented the PILGRIM library to support multiple 
grids and the various grid transformations between them, e.g., interpo- 
lations, rotations, prolongations and restrictions. It allows grids to be 
distributed over an array of processing elements (PEs) and manipulated 
with high parallel efficiency. The design of PILGRIM closely follows the 
DAO's requirements, but it can support other applications which em- 
ploy certain types of grids. New grid definitions can be written to support 
still others. Results illustrate that PILGRIM can solve grid manipulation 
problems efficiently on parallel platforms such as the Cray T3E. 

1    Introduction 

The need to discretize continuous models in order to solve scientific problems 
gives rise to finite grids — sets of points at which prognostic variables are sought. 
So prevalent is the use of grids in science that it is possible to forget that a. 
computer-calculated solution is not the solution to the original problem but 
rather of a discretized representation of the original problem, and moreover is 
only an approximate solution, due to finite precision arithmetic. Grids are ubiq- 
uitous where analytical solutions to continuous problems are not obtainable, e.g., 
the solution of many differential equations. 

Classically a structured grid is chosen a priori for a given problem. If the 
quality of the solution is not acceptable, then the grid is made finer, in order to 
better approximate the continuous problem. 

For some time the practicality of unstructured grids has also been recognized. 
In such grids it is possible to cluster points in regions of the domain which require 

611 



FEUP - Faculdade de Engenharia da Universidade do Porto 

higher resolution, while retaining coarse resolution in other parts of the domain. 
Unstructured grids are often employed in device simulation [1], computational 
fluid dynamics [2], and even in oceanographic models [3]. Although these grids 
are more difficult to lay out than structured grids, much research has been 
done in generating them automatically [4]. In addition, once the grid has been 
generated, there numerous methods and libraries are available to adaptivelv 
refine the mesh [5] to provide a more precise solution. 

Furthermore, the advantages of multiple grids of varying resolutions for a 
given domain have been recognized. This is best known in the Multigrid tech- 
nique [6] in which low frequency error components of the discrete solution are 
eliminated if values on a given grid are restricted to a coarser grid on which a 
smoother is applied. But multiple grids also find application other fields such as 
speeding up graph partitioning algorithms [7]. 

An additional level of complexity has arisen in the last few years: many con- 
temporary scientific problems must be decomposed over an array of processing 
elements (or PEs) in order to obtain a solution in an expedient manner. Depend- 
ing on the parallelization technique, not only the work load but also the grid 
itself may be distributed over the PEs, meaning that different parts of the data 
reside in completely different memory areas of the parallel machine. This makes 
the programming of such an application much more difficult for the developer. 

The Goddard Earth Observing System (GEOS) Data Assimilation Svstem 
(DAS) software currently being developed at the Data Assimilation Office (DAO) 
is no exception to the list of modem grid applications. GEOS DAS uses observa- 
tional data with systematic and random errors and incomplete global coverage 
to estimate the complete, dynamic and constituent state of the global earth 
system. The GEOS DAS consists of two main components, an atmospheric Gen- 
eral Circulation Model (GCM) [8] to predict the time evolution of the global 
earth system and a Physical-space Statistical Analysis Scheme (PSAS) [9] to 
periodically incorporate observational data. 

At least three distinct grids are being employed in GEOS DAS: an observa- 
tion grid — an unstructured grid of points where physical quantities measured 
by instruments or satellites are associated — a structured geophysical grid of 
points spanning the earth at uniform latitude and longitude locations where 
prognostic quantities are determined, and a. block-structured computational grid 
which may be stretched in latitude and longitude. Each of these grids has a 
different structure and number of constituent points, but. there are numerous 
interactions between them. Finally the GEOS DAS application is targeted for 
distributed memory architectures and employs a message-passing paradigm for 
the communication between PEs. 

In this document we describe the design of PILGRIM (Fig. 1), a parallel li- 
brary for grid manipulations, which fulfills the requirements of GEOS DAS The 
design of PILGRIM isjbject-oriented [10] in the sense that it is modular, data is 
encapsulated in each design layer, operations can be overloaded, and different in- 
stantiations of grids can coexist, simultaneously. The library is realized in Fortran 
90, which allows the necessary software engineering techniques such as modules 
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Fig. 1. PILGRIM assumes the existence of fundamental communication primitives such 
as the Message-Passing Interface (MPI) and optimized Basic Linear Algebra Subrou- 
tines (BLAS). PILGRIM'S first layer contains routines for communication as well as for 
decomposing the domain and packing and unpacking sub-regions of the local domain. 
Above this is a sparse linear algebra layer which performs basic sparse matrix opera- 
tions for grid transformations. Above PILGRIM, modules define and support, different 
grids. Currently only the grids needed in GEOS DAS are implemented, but the further 
modules could be designed to support yet other grids. 

and derived data types, while keeping in line with other Fortran developments 
at the DAO. The communication layer is implemented using MPI [11]: however 
the communication interfaces defined in PILGRIM'S primary layer could con- 
ceivably be implemented with other message-passing libraries such as PVM [12] 
or with other paradigms, e.g., Cray SHMEM [13] or with shared-memory prim- 
itives which are available on shared-memory machines like the SGI Origin or 
SUN Enterprise. 

This document is structured in a bottom-up fashion. Reasonable design as- 
sumptions are made in Sect. 2 in order to ease the implementation. The layer 
for communication, decompositions, and buffer packaging is discussed in Sect" 3 
The sparse linear algebra layer is specified in Sect. 4. The plug-in grid modules 
are defined in Sect. 5 to the degree necessary to meet the requirements of GEOS 
DAS. In Sect. 6 some examples and prototype benchmarks are presented for the 
interaction of all the components. Finally we summarize our work in Sect. 7. 

2    Design Assumptions 

A literature search was the first step taken in the PILGRIM design process in 
order to find public domain libraries which might be sufficient for the DAO's 
requirements [14]. Surprisingly, none of the common parallel libraries for the 
solution of sparse matrix problems, e.g.. PETSc [15]. Aztec [16]. PLUMP [17], 
et al., was sufficient for our purposes. These libraries all trv to make the parallel 
implementation transparent to the application. In particular, the application is 
not supposed to know how the data are actually distributed over the PEs 
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This trend in libraries is not universally applicable for the simple reason 
that if an application is to be parallelized, the developers generally have a good 
idea of how the underlying data should be distributed and manipulated Experi- 
ence has shown us that hiding complexity often leads to poor performance, and 
the developer often resorts to workarounds to make the system perform in the 
manner she or he envisions. If the developer of a parallel program is capable of 
deciding on the proper data distribution and manipulation of local data then 
those decisions need to be supported. 

In order to minimize the scope of PILGRIM, other simplifying assumptions 
were made about the way the library will be used. 

1. The local portion of the distributed grid array is assumed to be a contiguous 
section of memory. The local array can have any rank, but if the rank is 
greater than one the developer must assure that no gaps are introduced 
into the actual data representation, for example, by packing it into a 1-D 
array if necessary. 

2. Grid transformations are assumed to be sparse, i.e., each of the values on one 
grid is determined from a linear combination of only a few values from the 
other grid The linear transformation corresponds to a sparse matrix with a 
predictable number of non-zero entries per row. This assumption is realistic 
lor the localized interpolations used in GEOS DAS. 

3. At a high level, the application can access data through global indices i e 
the indices of the original undistributed problem. However, at the level where 
most computation is performed, the application needs to work with local in- 
dices (ranging from one to the total number of entries in the local contiguous 
array). The information to perform global-to-local and local-to-global map- 
pings must be contained in the data structure denning the grid However it 
is assumed that these mappings are seldom performed, e.g., at the beginning 

A   TnT        execution, and these mappings need not be efficient 
4. All decomposition-related information is replicated on all PEs. 

These assumptions are significant. The first avoids the introduction of an 
opaque type for data and allows the application to manipulate the local data as it 
sees fit The fact that the data are contained in a simple data structure generally 
allows higher performance than an implementation which buries the data inside a 
derived type The second assumption ensures that the matrix transformation are 
not memory limited. The third implies that most of the calculation is performed 
on he data ,n a local fashion. In GEOS DAS it is fairly straightforward to run 
in this mode; however, it might not be the case in other applications. The last 
assumption assures that every PE knows about the entire data decomposition. 

3    Communication and Decomposition Utilities 

hi this layer communication routines are isolated, and basic functionality is pro- 
vided for defining and using data decompositions as well as for moving sect on« 
of data arrays to and from buffers. "      un" 
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The operations on data decompositions are embedded in a Fortran 90 module 
which also supplies a generic DecompType to describe a decomposition. Any 
instance of DecompType is replicated on all PEs such that every PE has access to 
information about the entire decomposition. The decomposition utilities consist 
of the following: 

DecompRegularld 
DecompR.eguIar2d 
DecompR.egular3d 

Create a 1-D blockwise data decomposition 

Decomplrregular 
DecompCopy 
DecompPermute 
DecompFree 
DecompGlobalToLocal Id 
DecompGlobalToLocal2d 
DecompLocalToG lobal 1 d 
DecompLocalToGloballd 

Create a 2-D block-block data decomposition 
Create a 3-D block-block-block data decomposition 
Create an irregular data decomposition 
Create new decomposition with contents of another 
Permute PE assignment in a given decomposition 
Free a decomposition and the related memory 
Map global 1-D index to local (pe.index) 
Map global 2-D index to local (pe.index) 
Map local (pe.index) to global 1-D index 
Map local (pe,index) to global 2-D index 

Using the Fortran 90 overloading feature, the routines which create new 
decompositions are denoted by DecompCreate. Similarly, the 1-D and 2-D global- 
to-local and local-to-global mappings are denoted by DecompGlobalToLocal and 
DecompLocalToGlobal. resulting in a total of five fundamental operations. 

Communication primitives are confined to this layer because it mav be nec- 
essary at some point to implement them with a message-passing library other 
than MPI such as PVM or SHMEM, or even with shared-memory primitives 
such as those on the SGI Origin (the principle platform at the DAO). Thus it is 
wise to encapsulate all message-passing into one Fortran 90 module. For brevity, 
only the overloaded functionality is presented: 

Parlnit 
ParExit 
ParSplit 
ParMerge 

Initialize the parallel code segment 
Exit from the parallel code segment 

ParScatter 
ParGather 
ParBegiuTransfer 
ParEndTransfer 
ParExchange Vector 
Par Redistribute 

Split parallel code segment into two groups 
Merge two code segments 
Scatter global array to given data, decomposition 
Gather from data decomposition to global array 
Begin asynchronous data transfer 
End asynchronous data transfer 
Transpose block-distributed vector over all PEs 
Redistribute one data decomposition to another 

In order to perform calculations locally on a given PE it is often necessary 
to "ghost adjacent regions, that is. send boundary regions of the local domain 
to adjacent PEs. To this end a module has been constructed to move »host 
regions to and from buffers. The butlers can be transferred to other PEs with 
the communication primitives such as ParBeginTransf er and ParEndTransfer 
Currently the buffer module contains the following non-overloaded functionality 
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BufferPackGhost2dReal 
BufferUnpackGhost2dR.ea.l 
BufferPackGhost3dReal 
BufferUnpackGhost3dR.ea; 
'BufferPackSparseReal 
B»fferUnpa.ckSparseR.eal 

Pack a 2-D array sub-region into buffer 
Unpack buffer into 2-D array sub-region 
Pack a 3-D array sub-region into buffer 
Unpack buffer into 3-D array sub-region 
Pack specified entries of vector into buffer 
I1 n pack buffer into specified entries of vector 

In this module, as in most others, the local coordinate indices are used instead 
of global indices. Clearly this puts responsibility on the developer to keep track 
oi the indices which correspond to the ghost regions. In GEOS DAS this turns 
out to be fairly straightforward. 

4    Sparse Linear Algebra 

The concept of transforming one grid to another involves interpolating the val- 
ues defined on one grid at grid-points on another. These values are stored as 
contiguous vectors with a given length. 1. ..Ntocal, and distribution defined by 
the grid decomposition (although the vector might actually represent a multi- 
dimensional array at a higher level). Thus the sparse linear algebra laver funda- 
mentally consists of a facility to perform linear transformations on distributed 
vectors. 

A .AS ri1
1c1

0tl!er Parallel Sparse linear algebra PackaSes- e.g., PETSc [15] and 
Aztec [16J, the linear transformation is stored in a distributed sparse matrix 
format. Unlike those libraries, however, local indices are used when referring to 
individual matrix entries, although the mapping DecompGlobalToLocal can be 
used to translate from global to local indices. In addition, the application of the 
linear transformation is a matrix-vector multiplication where the matrix is not 
necessarily square, and the resulting vector may be distributed differently than 
the original. 

There are many approaches to storing distributed sparse matrices and per- 
forming a the matrix-vector product. PILGRIM uses a format similar to that 
described in [17], which is optimal if the number of non-zero entries per row is 
constant. 

Assumption 3 in Sect. 2 implies that the matrix definition is not time- 
consuming In GEOS DAS the template of any given interpolation is initialized 
once, but the interpolation itself is performed repeatedly. Thus relatively little 
attention has been paid to the optimization of the matrix creation and definition 
Hie basic operations for creating and storing matrix entries are- 

SparseMatCreate 
SparseM at Destroy 

Create a sparse matrix 

■SparselnsertEntries 
SparselnsertLocalEntries 

Destroy a sparse matrix 
Insert entries replicated on all PEs 
nsert entries of local PE 

Two scenarios for inserting entries are supported. In the first scenario everv 
PE inserts all matrix entries. Thus every argument of the corresponding routine, 
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SparselnsertEntries, is replicated. The local PE picks up only the data which 
it needs, leaving other data to the appropriate PEs. This scenario is the easiest 
to program if the sequential code version is used as the code base. 

In the second scenario the domain is partitioned over the PEs, meaning that 
each PE is responsible for a disjoint subset of the matrix entries, and the matrix 
generation is performed in parallel. ('learly this is the more efficient scenario. The 
corresponding routine. SparselnsertLocalEntries assumes that no two PEs 
try to add the same matrix entry. However, it does not assume that the all matrix 
entries reside on the local PE. and it will perform the necessary communication 
to put the matrix entries in their correct locations. 

The efficient application of the matrix to a vector or group of vectors is 
crucial to the overall performance of GEOS DAS, since the linear transformations 
are performed continually on assimilation runs for days or weeks at a time. 
The most common transformation is between three-dimensional arrays of two 
different grids which describe global atmospheric quantities such as wind velocity 
or temperature. One 3-D array might be correspond to the geophysical grid which 
covers the globe, while another might be the computational grid which is more 
appropriate for the dynamical calculation. The explicit description of such a 3-D 
transformation might be prohibitive in terms of memory. But fortunately, this 
transformation only has dependencies in two of the three dimensions as it acts 
on 2-D horizontal cross-sections independently. 

To fulfill the assumptions in Sect. 2, a 2-D array is considered a vector x. Us- 
ing this representation the transformations become parallel matrix-vector mul- 
tiplications, which can be performed with one of the following two operations: 

SparseMatVecMult          Perform y <- a Ax + ßy   \ 
SparseMatTransVecMult Perform y <- a A1 x + ßy\ 

In order to transform several arrays simultaneously, the arrays are grouped 
into multiple vectors, that is. into a n x m matrix where 7? is the length of the 
vector (number of values in the 2-D array), and in is the number of vectors. The 
following matrix-matrix and matrix-transpose-matrix multiplications can group 
messages in such a way as to drastically minimize latencies and utilize BLAS-2 
operations instead of BLAS-1: 

SparseMatMatMult 
SparseMatT'ransMatMult 

Perform Y <- a AX + ßY 
Perform V" f^ aAJ A" + ßY 

The distributed representation of the matrix contains, in addition to the ma- 
trix information itself, space for the communication pattern. Upon entering any 
one of the four matrix operations, t he the matrix is checked for new entries which 
may have been added since its lasi application. If the matrix has been modified, 
the operation first generates I lie communication pattern — an optimal map of 
the information which has to be exchanged between PEs — before performing 
the matrix multiplication. This is a fairly expensive operation, but in GEOS DAS 
it only needs to be clone once when the matrix is first defined. Subsequently, the 
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matrix multiplication can be performed repetitively in the most efficient manner 
jJUool Die. 

5    Supported Grids 

The grid data structure describe, „ set of gnd-pomts and their decomposition 
over a group of PEs a, well as other information, such a. the size of the domain 

1 au
rpF T TCtme itSdf ?°eS I10t COntain aCtUal data a»d can b* «plicated" 

on all PEs due to its minimal memory requirements. The data reside in arravs 

strtcw TlV6r P,ES and giVen meanhlg b)"the inf0rmatl0n in the «rid data tructure. There is no bm.tat.on on how the application accesses and manipulates 
the local da a arrays. Two types of grids employed in GEOS DAS are described 
here but others are conceivable and could be supported bv PILGRIM without 
modifications to the library. " wruiu wit.nout 

The latitude-longitude grid defines a lat-lon coordinate svstem - a regular 

StüTinl cd earth Whh f P°in? iD °ne r°W havin* »"Pven latitude^ 
all po.nts in a column a given longuude. The grid encompasses the entire earth 
Horn -7T to 7T longitudinally and from -TT/2 to ff/2 in latitude. 

Liiiipiutlc 

Fig 2  GEOS DAS uses a column decomposition of data (left), also termed a "checker 

S) ^^"V^ 'V^ diStribUti0n °f ^ ^horizontal c^S^ 
(nght). The width and breadth of a column can be variable, although generally an 
approximately equal number of points are assigned to every PE. 

The decomposition of this grid is a "checkerboard"  (Fig. 2)   because the 

Sed'b? ! ^71Si0nal da,n '^ C°nW ail '"* °f *' "e - ignated by the 2-D decompos.hoi, of the horizontal cross-section. This decom- 

foTea" PEto°btaln 3 VThle~*]7rf reCtanglp °f P°intS ~ h » n°t —sari 
ba a^ cL e j t ''VT'!'ned a? et,Ual aumbCT - »nd th- *>™ freedom for load 
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TYPE LatLonGridType 
TYPE (DecompType) :: Decomp 
INTEGER :: ImGlobal 
INTEGER :: JmGlobal 
REAL :: Tilt 
REAL :: Rotation 
REAL :: Precession 
REAL,POINTER :: dLat(:) 
REAL.POINTER :: dLon(:) 

END TYPE LatLonGridType 

! Decomposition 
! Global Size in X 
! Global Size in Y 
! Tilt of remapped NP 
! Rotation of remapped NP 
! Precession of remapped NP 
! Latitudes 
! Longitudes 

This grid suffices to describe both the GEOS DAS computational grid used 
for dynamical calculations and the geophysical grid in which the prognostic 
variables are sought. The former makes use of the parameters Tilt, Rotation 
and Precession to describe its view of the earth (Fig. 3). and the dLat and 
dLon grid box sizes to describe the grid stretching. The latter is defined by the 
normal geophysical values for Tilt. Rotation and Precession = (f ,0,0) and 
uniform dLat and dLon. 

The observation grid data structure describes observation points over the 
globe, as described by their lat-lon coordinates. In contrast, to the lat-lon grid, the 
point grid decomposition is inherently one-dimensional since there no structure 
to the grid. 

TYPE ObsGridType 
TYPE  (DecompType) 
INTEGER 

END TYPE ObsGridType 

Decomp !   Decomposition 
Nobservations     !  Total points 

The data corresponding to this grid data structure is a set of vectors, one 
for the observation values and several for attributes of those values, such as the 
latitude, longitude and level at which an observation was taken. 

6    Results 

An example of a non-trivial transformation employed in atmospheric science ap- 
plications is grid rotation [18]. Computational instabilities from finite difference 
schemes can arise in the polar regions of the geophysical grid when a strong 
cross-polar flow occurs. By placing the pole of the computational grid to the 
geographic equator, however, the instability near the geographic pole is removed 
due to the vanishing Coriolis term. 

It is generally accepted that the physical processes such as those related to 
long- and short-wave radiation can be calculated directly on the geophysical grid. 
Dynamics, where the numerical instability occurs, needs to be calculated on the 
computational grid. An additional refinement, involves calculating the dynamics 
on a rotated stretched grid, in which the grid-points are not uniform in latitude 
and longitude. The LatLonGridType allows for both variable lat-lon coordinates 
as well as the description of any lat-lon view of the world where the poles are 
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assigned to a new geographical location. The grid rotation (without stretching) 
is depicted in Fig. 3. 

Fig. 3. The use of the latitude-longitude grid (a) and (c) as the computational grid 
results in instabilities at the poles due to the Coriolis term. The instabilities vanish 
with on a grid (b) where the pole has been rotated to the equator. The computational 
grid is therefore a lat-lon grid (d) where the "poles" on the top and bottom are in the 
Pacific and Atlantic Oceans, respectively. 

It would be natural to use the same decomposition for both the geophysical 
and computational grids. It turns out. however, that this approach disturbs data 
locality inherent to this transformation (Fig. 4). If the application could have 
unlimited freedom to choose the decomposition of the computational grid, the 
forward and reverse grid rotations could exhibit excellent data locality, and the 
matrix application would be much more efficient.1 Unfortunately, practicality 
limits the decomposition of both the geophysical and computational grids to be 
a checkerboard decomposition. 

However, there are still several degrees of freedom in the decomposition, 
namely the number of points on each PE and the assignment, of local regions to 
PEs. While an approximately uniform number of points per PE is generally best 
for the dynamics calculation, the assignment of PEs is arbitrary. The following 
optimization is therefore applied: the potential communication pattern of a naive 

A simply connected region in one domain will map to at most two simply connected 
regions in the other. 
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Unpermuted Communication Matrix Permuted Communication Matrix 

r   0 219 5905 172   0  97 507  12"| [-5967 166   2 341 371   4   0  61 
53 5731 690   2   1 303 132   0 53 5731 690   2   1 303 132   0 
3 477 136   0  53 5727 516   0 0 219 5905 172   0  97 507  12 
0  97 335   4   3 366 5942 165 516   0  53 5727 136   0   3 477 

516   0  53 5727 136   0   3 -177 543  12   0  61 5941 172   0 183 
5967 166   2 341 371   4   0  61 3 477 136   0  53 5727 516   0 
543  12   0  61 5941 172   0 183 0  97 335   4   3 366 5942 165 

L 133   0   1 302 760   1  54 5661J .133   0   1 302 760   1  54 5661 

Fig. 4. The above matrices represent the number of vector entries requested by a 
PE (column index) from another PE (row index) to perform a grid rotation for one 
72 x 48 horizontal plane (i.e., one matrix-vector multiplication) on a total of eight 
PEs. The unpermuted communication matrix reflects the naive use of the geophysical 
grid decomposition and PE assignment for the computational grid. The permuted 
communication matrix uses the same decomposition, except the assignment of local 
regions to PEs is permuted. The diagonal entries denote data local to the PE and 
represent work which can be overlapped with the asynchronous communication involved 
in fetching the non-local data. The diagonal dominance of the communication matrix 
on the right translates into a considerable performance improvement. 

computational grid decomposition is analyzed by adopting the decomposition of 
the geophysical grid. With a heuristic method, this analysis leads to a permuta- 

tion of PEs for the computational grid which reduces communication (Fig. 4). 
The decomposition of the computational grid is then defined as a permuted ver- 
sion of the geophysical grid. Only then is the grid rotation matrix defined. An 
outline of the code is as given in Algorithm 1. 

Algorithm 1 (Optimized Grid Rotation) Given the geophysical grid decom- 
position, find a permutation of the PEs which will maximize the data locality 
of the geophysical-to-computational grid transformation, create and permute the 
computation grid decomposition, and define the transformation in both direc- 
tions. 

SparseMatrixCreate(  ..., GeoToCorap ) 
SparseMatrixCreate( ..., CompToGeo ) 
DecompCreate(  ..., GeoPhysDecomp ) 
LatLonCreate( GeoPhysDecomp,   ....,  GeoPhysGrid ) 
AnalyzeGridTransform( GeoPhysDecomp,      Permutation ) 
DecompCopyC GeoPhysDecomp. CompDecomp ) 
DecompPermute( Permutation, CompDecomp ) 
LatLonCreate( CompDecomp   CompGrid ) 
GridTransform( GeoPhysGrid, CompGrid, GeoToComp ) 
GridTransformC CompGrid, GeoPhysGrid, CompToGeo ) 

In GridTransf orm the coordinates of one lat-lon grid are mapped to another. 
Interpolation coefficients are determined by the proximity of rotated grid-points 
to grid-points on the other grid (Fig. 3). Various interpolation schemes can be 
employed including bi-linear or bi-<ubic: the latter is employed in GEOS DAS. 
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The transformation matrix can be completely defined by the two grids — the 
values on those grids are not necessary. 

Once the transformation matrix is defined, sets of grid values, such as in- 

dividual levels or planes of atmospheric data, can be transformed ad infinitum 
using a matrix-vector multiplication. 

DO L =  1,  GLOBAL.Z 

CALL SparseMatVecMult(GeoToComp,  1.0,  In(l,l,L), 0.0.  OutKl  1 L)) 
END DO '   ' 

Alternatively, it the transformation of the entire 3-D data set can be per- 
formed with one matrix-matrix product: 

CALL SparseMatMatMult( GeoToComp, GLOBAL.Z,  1.0,  In,  0.0,  0ut2 ) 

Note that the pole rotation is trivial (embarrassingly parallel) if anv given 
plane resides entirely on one PE, i.e., if the 3-D array is decomposed in the z- 
dimension. Unfortunately, there are compelling reasons to distribute the data in 
vertical columns with the checkerboard decomposition. 

Fig. 5 compares the performance of the unpermuted rotation with that of 
the permuted rotation on the Cray T3E. A further optimization is performed by- 
replacing the non-blocking MPI primitives used in ParBeginTransf ormby faster 
Cray SHMEM primitives. The result of these optimizations is the improvement 
in scalability from tens of PEs to hundreds of PEs. The absolute performance in 
GFlop/s is presented in Fig. 6. 

MPI Poto Rotation: Performance on Cray T3E 
OptirmiKj MPI-SHMEM Pol« Rotation: Performance on Cray T3E 

Cray T3E Processor* (300 MHi.) 
Cray T3E Processors (300 MHz.) 

Fig. 5. With a naive decomposition of both the geophysical and computational grids 
and a straightforward MPI implementation, the performances at the left for the 7"> x 
46 x 70 (*). 144 x 91 x 70 (x). and 28* x 181 x 70 (o) resolutions vield good scalability 
only to 10-50 processors. The optimized MPI-SHMEM hybrid version on the right 
scales to nearly the entire extent of Mit' machine (012 processors). 
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MPI-SHMEM Hybrid: Performance of the rotation of one field on T3E 

100 200 300 400 500 
Number of T3E (300MHz) Processing Elements 

600 

Fig. 6. The GFlop/s performances of the grid rotation on grids with 144 x 91 x 70 (o). 
and 288 x 181 x 70 (x) resolutions is depicted. These results are an indication that the 
grid rotation will not represent a bott leneck for the overall GEOS DAS system. 

7    Summary 

We have introduced the parallel grid manipulations needed by GEOS DAS and 
the PILGRIM library to support them. PILGRIM is modular and extensible, 
allowing us to support, various types of grid manipulations. Results from the 
grid rotation problem were presented, indicating scalable performance on state- 
of-the-art. parallel computers with a large number (> 100) of processors. 

We are hoping to extend the usage of PILGRIM in GEOS DAS to the inter- 
face between the forecast model and the statistical analysis, to perform further 
optimizations on the library, and to offer the library to the public domain. 
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Abstract. A universal character of molecular dynamics (MD) method is discussed. 
Contrary to the classical area of MD applications in microscopic world 
investigations, MD simulation of mesoscopic phenomena is considered. Sample 
results of MD simulations of the Rayleigh-Taylor instability are shown and 
discussed briefly. To cover the larger time-and-space scale either simplified MD 
model or more sophisticated particle based algorithms can be used. In the first case 
MD method can be directly applied as a predictive display in computer animation. 
In the second, MD code can be a "backbone" of efficient computer realization of 
such particle based methods as dissipative particle dynamics and smoothed particle 
hydrodynamics. Applications of MD approach in global optimization problems are 
discussed also. It is emphasized that inherent parallelism of MD method resulting in 
efficient realization on MPP systems together with its universal properties makes 
the method a powerful natural solver. 

1   Introduction 

According to physics, particles interact one with another through exchange of virtual 
objects, e.g., photons in electromagnetics. Changes in physical states of particles, i.e., 
their positions, momenta, spins etc. result from their interactions. This atomistic 
approach reflects an important principle of nature and human logic, i.e., construction 
of complex models from simple elements and rules via their mutual "interactions", or 
in other terms, information exchange. 

Virtual particle (VIP) [1,2] is a base element of the particle based computational 
model. VIP can be defined on different levels of abstraction [2] e.g. as: atom, particle, 
cluster of particles, vehicle-target-obstacle, genotype, multidimensional point, UNIX 
process, single processor, etc. For example, taking into account that UNIX processes 
can "interact" via sending and receiving messages we can think about direct 
transformation of the VIP model into the message-passing model of parallel 
computations. This involves the change of the the VIP level of abstraction from the 
particles to the processes exchanging messages. It is relatively easy, due to flexibility 
of VIP model and its self-consistency. 

The main suggestion put forward in [1,2] consists in the elaboration of a new 
strategy of parallel realization of an application using two stages of mapping (see 
Fig. 1). At first, a problem is transformed into one of the natural solvers (or their 
hybrid) and virtual particles are defined. Then the method is realized on a 
multicomputer system through the transformation of virtual particles onto a virtual 
parallel machine model [1]. Several widely used natural solvers such as: Boltzmann 
lattice gas, lattice gas, simulated annealing, direct Monte-Carlo, cellular automata, 
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genetic algorithms, neural networks and others, having more limited scope of use such 
as: diffusion limited aggregation (DLA), percolation etc., can be treated as particles 
based techniques in accordance with the definition presented in [2]. All these 
techniques, have been used in physics, chemistry and biology for many years. 
Therefore, the second stage of mapping (i.e., its implementation on a multiprocessor 
architecture) often allows us to exploit ready to use parallel algorithms or at least 
existing knowledge about the ways of parallelization of the particle based methods. In 
the authors opinion, successful mapping of a problem into a solver is crucial. This sort 
of mapping needs a creative and abstract way of thinking impossible to mimic by 
current and future generations of computer systems. 

Problem MPP System 

VIP- Virtual particle 
model Multicomputer 

model 

Fig.l. Problem mapping onto multiprocessor model through its transformation into a natural 
solver [1]. 

Molecular dynamics method (MD) (a well known technique of computational physics 
and one of the Grand Challenges of Science [3] problems) can be taken as a pure 
particle paradigm. The goal of this paper is to show that MD can be treated as a 
natural solver, i.e., a universal paradigm, which principles come from nature and 
which can be used as a solver in various fields of science and engineering. MD and 
other natural solvers like: simulated annealing, genetic algorithms, neural networks, 
cellular automata, etc., due to their inherent parallelism, constitute the class of 
powerful computational tools when empowered by a parallel system. Increasing 
interest in implementation of these techniques on multiprocessor systems constitutes 
the natural consequence of this property. 

At the beginning of the paper the mathematical background and computer 
realization of MD method are discussed briefly. Then sample results of MD 
applications in large-scale computational experiments concerning investigations of 
Rayleigh-Taylor instability are presented. In the following section it is shown that 
simplified computer realization of the MD method can be used as an efficient 

626 



VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing 

animation technique based on the principal physical laws. Since the visual impression 
of movement plays the principal role in animation, physical details can be hidden from 
the observer and then substantially simplified. Other advantages of MD applications 
for computer animation are also discussed. The role of simulation using particles as a 
new technique of global minimum search is introduced. The visual clustering problem 
is considered as an example. Based on the results, conclusions are formulated at the 
end of paper. 

2   MD principles 

Molecular dynamics is a computational technique, widely used in physics, chemistry 
and biology for almost 35 years (e.g. [4]). Its basic principles are shown in Fig.2. 

Each particle (' interacts with all others located in sphere with R^, radius according 
to potential energy of interactions. In the simplest case two body pair radial potential 
function <t>(r„.) depends on the distance ry- between the particles. For more complex 
molecules, the potential function can be more sophisticated. Let the pair force fy = - 
V(j> (r,;), while the total force F,, which acts on a single particle i, is the sum of pair 
forces fy- of its neighbour particles within Rcut sphere. 

TTTwrrT1 

ri=ri+vii£t 

vi=Vi+FiTAt/m 
i) 

o 
.T=FI^TFI,4 

o ©- ? 
Fig.2. Basic principles of MD paradigm. 

Time evolution of particles, i=l,...,M-, is defined by the Newtonian equations of 
motion:. 

dyi V«- dT> m-— =    ZA.       -r=v. 
jeS(i,Rcut) dt dt 

(1) 

where: v, and r, - represent velocity and coordinates of particle /, respectively. The 
computer implementation of MD techniques consists of subsequent calculation of 
forces and particle movements for each time step. 

A set of simulated particles is confined (in the most cases) in a rectangular box 
with periodic boundary conditions (PBC) implied. This assumption is important to 
obtain valuable simulation results. The number of particles, M, is limited by the 
computational power of computers (Atf=109 on the fastest parallel system [5]). In the 
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real world, one mole of liquid contains 1026 molecules. PBC enables to mimic infinity 
of a medium using limited number of molecules. However, this assumption works well 
only for time scale limited by the size of computational box divided by sound speed in 
a medium simulated. Because the former one depends on M, to get more accurate 
results of phenomena under investigation, larger samples of molecules should be taken 
into account. Assuming that a molecule may consist of hundred and thousands of 
atoms (particles) and its simulation is much more slower than for a simple molecule in 
liquid Argon for example, the evolution of large number of particles simulated in 
longer and longer time scales becomes the great challenge for the fastest computer 
systems ever constructed. Therefore, the serious research has been going on for years 
now to implement MD codes on the top performance computer systems [6]. For 
parallel implementation of MD method, geometric decomposition is usually used. In 
Fig.3 we can see typical decomposition of the computational box for distributed 
computations on the ring of workstations (Fig.3a) and for parallel processing on 
MPP tightly coupled architectures (Fig. 3b). 

.':• • *,*.• ■ ■ • v"' a'-:.\ .*:. h^-': . ; *-. !%*• ' ;;'. ;.**. ** ■* • ' t " *."*. ** 
'•!' 

■ * ■ •   • 

•]•;•; :';;:l*V 
• • ',, ;.'•. • '    "•*• ;/•. •' •*. "••.;• 

:t m *■:•':: 
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»l„i* t* *l I 

\<\* *. 1 '.Vc.'i 

Fig 3. Two approaches for MD domain parallelism. The arrows show directions of information 
exchange between a domain (shaded) and its neighborhood. For (a) the load balancing is 
reahzed changing the strips width while for (b) it is more fine grained though complicated. ° 

As is shown in [6], the progress in hardware and software development lets to increase 
the number of atoms simulated using MD codes from hundreds in late seventies to 
billions in the middle of nineties. The parallel MD codes reach 95% efficiency on 
hundreds of processors. A vast amount of literature and MD software for the full 
spectrum of vector and multiprocessor architectures are available. From this point of 
view, the MD method fulfills the important condition which the natural solver should 
posses. However, the most relevant feature of natural solvers consists in their 
universality. 

3  Large-scale MD simulations of physical phenomena 

The classical field of interest of MD simulations covers the microscopic, short-time 
phenomena in liquids and solids. Due to time and space averaging of stochastic 
functions and variables one can obtain integral and/or differential parameters of a 
medium investigated. Fitting simulation results to the experimental and theoretical 
values, one can find the proper model of molecules and/or potential energy of the 
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interacting particles. Moreover, it is possible to observe reactions of separate 
molecules and the whole system on the external stimulus. Nevertheless, all these 
phenomena occur in abstract microscopic world, which (as seems to be) limits the 
field of MD approach application. 

The first MD experiments [7,8] in which not statistical fluctuations but rather 
collective movement of simple Lennard-Jones particle ensembles were investigated, 
show that even for relatively small number of particles in short-time simulations it is 
possible to observe the striking resemblance of patterns created in microscopic and 
macroscopic worlds. Increasing the number of particles to millions it is possible to 
simulate the phenomena in mesoscale (i.e., where the size of samples is lum of order 
and simulation time is tens of nanoseconds), e.g., fluid flows [8,9], crack formations 
[10], hydrodynamical instabilities creation [11,12]. Such investigations are important 
while classical models based on continuous matter and momenta equations (e.g. 
Navier-Stokes formulae in hydrodynamics) are insufficient and the assumptions of 
continuity are not valid any longer. The same concerns description of phenomena 
having their origins in microscale and resolving in macroscale. To simulate them using 
classical continuous models, artificial fluctuations are introduced. This results in the 
lack of any information about the beginning stage of mixing process, its causality and 
start up time. 

The first results of simulations of the Rayleigh-Taylor instability using pure MD 
parallel code are presented in [12]. The computer experiment consists in simulation of 
mixing of two particle layers. The first layer consists of heavy particles and the second 
one - placed below - is made of light particles. The gravitational field directed from 
the heavy layer to the lighter one makes the system unstable. Due to statistical 
fluctuations two fluids begin to mix. This sort of instability belongs to the hardest case 
for simulation using classical hydrocodes. Especially its initialization is not 
investigated yet in details because of the lack of causality factor in the classical 
equations of fluid dynamics. As one can see in Fig.4, the evolution of mixing process 
using MD code is similar to this observed in experiment and those obtained from 
simulations which use classical hydrocodes. Unlike in simulations which use 
hydrocodes, however, the process is spontaneous, i.e., not initialized artificially. The 
fluctuations represent the real causality factor lacking in the former models. Due to 
this advantage it is possible to investigate more thoroughly time evolution of mixing 
layer not only for infinitely thick liquid layers but also for the layers with free surface 
(see Fig.4). For example, as one can see in Fig.5, two mixing regimes can be 
distinguished. The first one is observed at the beginning of process when only thin 
boundary layers of two liquids take part in mixing. While the sound wave - caused by 
turn on of the acceleration field - reflects from the bottom of computational box, the 
process changes in character and mixing gets faster. 

The resemblance of the simulation results of similar processes in micro and 
macroscales inclines to the conclusion that by rescaling, changing the definition of a 
particle and interparticle potential we can use the MD model for simulation of 
physical phenomena in macroscale [13]. 
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Fig.4. The snapshots of the Rayleigh-Taylor instability simulation using a million of particles 
for 300.000 timesteps in MD experiment The colors show the particles density. Simulation was 
performed using MD parallel code in PVM environment on 48 processors of Cray T3E system. 

The advantages of particle approach over the computational methods, which use finite 
elements or finite differences, are evident. The most important factors are as follows: 
• the lack of any grid, 
• simple and flexible computational model, 
• simple definition of discontinuities, 
• efficient parallel codes, 
• minor problems with complicated boundaries and inhomogenities. 

1K44 

TIME (in number oTtimesteps) 

Fig.5. The growth of mixing layer for two different simulations (different thickness of the 
heavy layer assumed). 

The problems with interparticle potential definition can be overcome usine models 
for, so called, dissipative particle dynamics method [14] or deriving it directly from 
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the particle formulation of the Navier-Stokes equations using smoothed particle 
hydrodynamics method [15]. Another approach is used for granular media 
investigations (e.g. [16]) where the particles have different shapes and interaction 
potential is very sophisticated. Nevertheless, the "backbone" of all these models is 
based on the pure MD formulation and their parallel realization on MD parallel 
algorithms and methods. 

Fig.6. Two balls made of particles hitting one another. MD 3-D simulation. 

We can expect, of course, that making the model more exact (e.g. due to more 
realistic potentials applied) thus more complicated, one can obtain eventually the 
results of MD simulations, which are in good quantitative agreement with an 
experiment. However, the fact that even for the simplest implementation of the MD 
method the quality of results obtained is astonished emphasizes the universal character 
of MD approach. For example, some effects in granular dynamics, similar to these 
observed in the reality can also be simulated using the simplest "soft balls" MD 
algorithms (see Fig.6). This fact can be exploited for animation purposes. 

4   Method of particles as a predictive display 

In some situations detailed physics, which stays behind phenomena under 
consideration, is not crucial. In animation methods, which assume some level of 
agreement with physical laws (so called, predictive display) more important is visual 
impression, than accurate quantitative agreement with the reality. 

a)                                                               b) 

,     1 \ f     1           i .               I     1       M       '     \. 

y4" 1 *\ 

Fig.7. Two types of particle meshes in animation [17]. 
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Assume that we are going to animate a thin flexible surface. This is a very 
complicated task in fact. As was shown in [18], such animation in real time is 
impossible due to complicated mathematics models laying behind a fabric dynamics. 
Moreover, the simulation needs supercomputer power when a typical FEM algorithm 
is involved. 

Imagine that the fabric is made of particles. At the beginning of simulation the 
particles are placed in the nodes of hexagonal or rectangular grid (see Fig.7) 

Each particle interacts with its neighbors via a semi-harmonic potential (for more 
details see[19]). Let us introduce gravitation and friction forces in Eqs.(l). Using 
leap-frog numerical scheme to the Newton equations (1) we obtain: 

■V)   „,„     oAt 
•v 

(! + <*>) (1 + p)      J=| 
{ 10-f -I K +■*•!,} •  C' = r" + *r"2 • A/ (2) 

assuming that the friction force is: 

F,. =-A-v,. and     a = L ,   <p = JL.At 
m 2m 

nj - current distance between particles / and;', 
ay   - initial distance between / and its neighbours on the mesh at the beginning of 
simulation, 6 

m - particle mass, 
k - a parameter of the semi-harmonic interparticle potential assumed, 
At - time step. 

Using MD code modified in such a way, realistic pictures of the fabric dynamics 
can be obtained during on-line animation on a standard Pentium II based PC (see 
Fig.8 for example, see also [17,19]). 

Next, assume that several moving objects are animated. For very simple objects 
(see Fig.9) it can be done easily using the MD code on a PC computer. However 
when the objects are more complicated and each consists of about 10.000 particles 

machine^ ^ '" ^'^ ^ ^^ °n"Hne an'mation is Possible using a Para»el 

As shown in [20], objects-to-processor mapping can be used. More than one object 
on a single processor is recommended. Additionally, two processors are used for 
graphical service and animation supervision (master processor) respectively Load 
balancing is organized in such a way, that two colliding objects are moved to a single 
processor. If the number of objects taking part in collision is larger than 2 the number 
of processors used for simulation of this event is increased. The processors which are 
used in simulation of dynamics of the remaining objects communicate only with 
master processor to check collision conditions. As shown in Fig. 10, for four colliding 
objects the optimal number of slaves is 2 (plus master and visualization processors) 
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^&z&z,'s: 

■'   i. 

Fig.8. Snapshots of animation of the flexible surface using MD code. 

Fig.9. Fragments of trajectories of the simple objects animated using MD approach. The scene 
consists of: 2 sticks (A), 2 circles of various radiuses (B), a square (C) and a triangle (D). 
One can see the collisions between the objects and the square rotating after collision 
against the wall. 
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Fig.10. Timings for animation of a scene (with and without of load balancing), which consists 
of four moving cubes (2000 particles each). SEQ - sequential version, M - master processor, V 
- processor for visualization, K - slaves. 

5   MD in global optimization problems 

The change of particle abstraction level and interpretation of interparticle forces 
makes possible MD code application solving problems of a vehicle navigation 
between obstacles and search of global minimum of multidimensional functions. 

In the first case the shortest or the most feasible path of a moving vehicle from a 
starting point to a target is looked for in presence both of static and dynamic obstacles. 
The application of the MD model for solving this problem is straightforward. Let us 
assume that the vehicle represented by a particle is attracted by the target. The 
obstacles are made of static particles, which repel the moving object. Then the object 
moves in accordance with Newton laws. 

An MD approach to the navigation problem [21] differs from the classical 
navigation algorithms. This difference concerns a dynamic layer of the problem 
considered, i.e. the movement scenario, which is directly connected by physical laws 
with the vehicle-environment (obstacles and terrain) interactions. This makes the 
algorithm more flexible and open for verifications and improvements. Unlike graph 
theory algorithms both static and moving obstacles can be considered. An example of 
the vehicle paths are shown in Fig. 11, assuming the presence of static obstacles only. 
Even for more complicated scenario the parallel realization of MD algorithm is not 
necessary because only local interaction between the object and obstacle are 
considered. While moving obstacles are taken into account, the parallel algorithm can 
be similar to that described earlier for animation purposes. 

The problem of global optimization in a multidimensional space of a multimodal 
function is one of the most important and complex goals in many branches of science 
and engineering. Because, in general, the problem is unresolved using deterministic 
approaches many stochastic and heuristic methods were constructed in search of 
"immune" (problem independent) optimizer. According to our best knowledge such a 
method does not exist, though success of approaches such as genetic algorithms and 

634 



VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing 

simulated annealing is out of question. MD, alike both of these heuristics, bases on 
the principles which come from nature. Let us assume that in Eqs.(l) a small 
dissipative factor is introduced. After some time, when kinetic energy of the particle 
system is removed, the particles stop moving and a minimum of the total potential 
energy of the system is gained. When dissipation of the kinetic energy is sufficiently 
slow, the global minimum is achieved. 

[;Jj  fYit*nÜ,iI Missal» jaHWAltlftf 

Fig.ll. The paths from starting point to the target for different initial velocities of a vehicle. 
The most feasible path is the shortest one. 

In Fig. 12 one can see a realization of this idea. A global minimum of a multimodal 
and multidimensional function f(x) is searched. Initially the particles are scattered 
randomly in the function domain. The particles, which coordinates are Xj (i=l,...,Af), 
interact via two-body, one-directional forces. Only particle representing lower f(x) 
value attracts the other one. A particle which gives the lowest function value for a 
current simulation step is stopped. The force between two particles / and j is 
dependent on the difference between the function values in Xj and x,, i.e., lf(Xi)-f(xj)l. 
As one can see in Fig. 12 the right solution is found for relatively small number of 
particles and without f(x) gradient calculation. 

MD approach to global optimization was successfully applied in, so called, visual 
clustering and non-linear mapping problems [22]. The principal goal of non-linear 
mapping algorithms, consists in such a generation of points in 2(3)-dimensional space 
that the distances between them approximate the distances between respective N- 
dimensional points, which represents the measurement data. The method lets to 
visualize the multidimensional forms in 2(3)-dimensional space. This is accomplished 
by minimizing the criterion function 

E = I2y0(Du,ru) (3) 

The criterion (3) is the generalized case of the well known Sammon's criterion 
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*=?!$"•[%-$ (4) 

where: Z); - is squared distance between points i and; in N-dimensional space, r~ - 

is squared distance between respective i and; points in 2(3)-D Euclidean space, w and 
m - parameters (m> 1 and we {-1,0,1}). 

Fig.12. The application of MD paradigm in search for global minimum of multimodal and 
multidimensional (10-D) test function. 

. t.rtm--f.w;'l '■ 
fc*I M»2 w*« 

Fig.13. The snapshots of MD mapping process of 100-dimensional data placed on the sphere. 

A new method proposed in [2,22], uses MD for minimization of the criteria (3,4). It is 
assumed that in 2(3)-D M particles are scattered randomly. Each particle corresponds 
to the respective N-dimensional data point. The particles interact one with another via 
two-body potential dependent on Z)„ and ru and equal to V^ZX,^). The particles 

move according to Newton's laws of motion. The friction force assumed removes the 
kinetic energy from the particle system, which stops moving eventually when the 
potential energy (1) reaches global minimum. The positions of particles reflect the 
final result of mapping (see Fig.l 1). 
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6   Conclusions 

In the paper it is shown that the MD model can be treated as a natural solver which 
has broad scope of use in different fields. The application of MD simulation in 
mesoscopic scales for studies of collective movement of particles can be a valuable 
supplement for classical, continuous models. For studies of nonlinear phenomena such 
as Rayleigh-Taylor instability, which has their origins in microscale, MD can be 
treated as an unique tool for simulation of initial phase of mixing and observation of 
instabilities evolution. Moreover, MD algorithms yield a simple and effective parallel 
computational code, which can be treated as a "backbone" for other more 
sophisticated particle based methods such as dissipative particle dynamics and 
smoothed particle hydrodynamics used in simulations of the macroscopic world 
phenomena. The change of definition of a particle from single atom to the cloud of 
matter and changes in the interaction potentials assumed, does not affect the structure 
of the parallel codes used for pure MD formulation. The MD model can be also 
applied for animation purposes of macroscopic objects giving an impression that the 
objects dynamics is in good agreement with physical laws, though detailed physics 
may be considerably simplified. 

The encouraging results of tests of MD applications in global optimization 
problems such as vehicle navigation problem and search of global minimum of 
multimodal and multidimensional functions show that miscellaneous branches of 
science are subordinated to the similar, general and universal rules, while the 
computer science plays the important role in their extraction and dissemination. 
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Abstract Ihe goal of this paper is to propose cost-performance criteria which 
can be used to take co-design decisions. Ihe criteria are simplified with some 
assumptions, and are used to modify the hardware design of a fine grain 
multiprocessor architecture. Ihe modifications optimize the execution time of 
the elemental operations (addition, substraction, comparison and product). Ihe 
criteria are a trade-off measure between Ihe hardware complexity and the 
execution time of the elemental operations. The modifications improve the 
system efficiency while the cost is maintained. 

1 Introduction. 

When some modifications should be done in a hardware design, and the cost of the 
system is important too, one main question is: the performance increase justifies the 
cost increase?. However, parallel architectures allow the interchange between the 
processor element complexity and the number of processor elements of the system 
while the total cost of the system is maintained. This means that, for the same total 
cost, we can have more complex processor elements, but a lower number of them, or 
we can have less complex processor elements, but a higher number of them. It is 
obvious that there will exist a trade off between the processor element complexity 
(unitary cost) and the system size that makes maximum the system performance for a 
given cost. So, the new question is: the hardware modification increases the system 
performance while maintaining the total cost?. It is clear that if the answer is yes, the 
modification can be immediately accepted, otherwise the modification will be 
accepted or not depending on the cost goal. 

This paper proposes cost-performance criteria that allow to decide if a 
modification can be immediatelly accepted or not. The criteria are used to evaluate 
hardware modifications which try to decrease the execution time of the software 
instructions for elemental operations. 

But, what was the problem that led us to this point?. Some time ago, we 
designed a vision oriented SIMD architecture [1], but it is well known the saturation 
effect that SIMD architectures show: in most cases, the slope of the performance 
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function decreases as the number of the processor elements increases for 
intermediate and high level vision algorithms. We have demonstrated in previous 
works [1] that the reconfiguration of the datapath width palliates this problem. 

The reconfiguration consists in the interchange between the number of processor 
elements of the system and their datapath width. So, we can have a system integrated 
by n processor elements with 1-bit datapath width and we can reconfigure it to a 
system integrated by n/B processor elements with B-bit datapath width. The problem 
ansed when we evaluated the speed of the hardware for elemental operations in 
reconfigurated mode. This speed was low, and hardware modifications became 
necessary for a high performance in reconfigurated mode. 

Then, in order to have objective parameters to measure the convenience of a 
hardware modification, we proposed the cost-performance criteria which are 
explained in this paper. 

Other works have been developed in the literature about this theme. References 
P], [3] give general ideas about the hardware-software co-design. However only 
general criteria are shown in [4] and [5]. In [4] are presented optimization criteria 
which can be applied to architectures that show a linear cost in their communication 
network (i.e. a processor element can always communicate with the same processor 
elements for all system sizes). In [5] the criteria take into account a non-linear 
dependence on the cost with the interconnection network and can be applied to more 
complex connection patterns. 

2 Cost-performance criteria. 

The total cost of a system may be very difficult to model: hardware, software and 
penphencal circuitry, among others, are different parts of the cost. In order to obtain 
reliable models, [4] and [5] take into account the hardware cost due to the silicon 
area, which is the most important in most cases. 

We have used the criteria described in [4] because in our SIMD architecture 
every processor element can communicate with the same neighbours (North, East, 
South, West) without dependence on the system size. Reference [4] gets the 
condition which a modification has to verify: 

^L>[l+toop(Ai)x(R-l)]x 

P-
Tpoop(Af) 

E(Ni,Ai) 
E(NfAf) (1) 

WAi)  ' (2) 

to»(Ai)-       ToqPiAi). 
nioop "'"T00p(Ai) 
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Where: 

Ay{ = Initial/final area, before/after the modification. 

Ni/f = Initial/final number of processor elements. 

E(Ni/f, Ai/f) = Initial/final system efficiency. 

Tpoop (Ai/f ) = Time per optimized operation in the initial/final conditions. 

Tnoop/oop = Time which is needed by a processor element to execute the non 

optimized/optimized operations of the task. 

If the modification implies a higher area for the processor element, then 

normally E(Ni,Ai)/E(Nf,Af)>l and a harder condition, which is easier to 
verify, is: 

^->[l+toop(Ai)x(R-l)]. (4) 

The simplified procedure to evaluate the convenience of a modification is the 
following (we suppose that initial conditions are known): 

a) Calculate the final area Af. 

b) Obtam the final time per optimized operation Tpoop (Af). 
c) Get the reduction factor R. 
d) Find the time relation between the optimized operation and the total task in 

the initial conditions toop( Aj). 

e) Check the eq. (4). If it is verified and the modification has increased the 
processor element area, then the modification can be accepted, else it is 

necessary to evaluate the final efficiency E(Nf, Af) and to check the eq. (1). 

3 Criteria application to the addition operation. 

Figure 1 shows an addition example the data 1 is added to the data 2 and the result is 
obtained This type of addition (reconfigurated mode) presents two main problems: 

a) The carry generated by the most significant processor element should be 
communicated to the least significant processor element. Besides, the 
communication path depends on the number of processor elements rows that 
integrate a multibit processor (see fig 2). For an even number of rows, it is 
necessary a horizontal communication followed by a vertical one, while for an 
odd number of rows, it is only necessary one vertical communication. 
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b) The least significant processor element receives zero in its ALU carry input 
for the first sum, and for long data (more than one word), it receives the carry 
from the most significant processor. 

DATA1 

PR1   PK2   PRJ   PR4 

DATA 2 

PR1   PR2   PR3   PR4 

RBSULT 

P1U    MB   MU   MU 

1 1 1 0 

— m an, am 
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■7 « ■n KT4 

0 0 1 1 

■m -r. ■oa m 

1 1 1 1 

■n „. art mm 

PRl   PR7   PR«   PRS PM   PR7    PR*   PR5 

PRl    PR3   PRJ   PR4 

IKK VI ■ri 

™" 

PRt   PR7   PR6   PK3 

1 1 0 0 

m Kri an MI* 

1 0 0 0 

■n H» am. -ru 

1 1 1 0 
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Figure 1. Muhibit addition example. 

These and other considerations makes the multibit addition no efficient. It is 
clear that for a 100% of efficiency these two terms should be equal: 

a) Number of clock cycles to execute one monobit addition. 
b) Number of clock cycles to execute B multibit additions. Remember that B is 
the datapath width in the reconfigurated work mode. 

Brro am Bin Biro Bin sm am 

BIB RIT4 Bin am BIT« BITS BIT4 

BIT« am BITS sm BIT» Birio Birii 

t BIT15 Brri4 BTT13 arm 

Figure 2. Communication carry path depending on the number of processor element rows. 

Actually, a multibit processor is integrated by B processor elements, so a fair 
comparison is to evaluate the clock cycles for the same number of operations in both 
work modes (monobit and reconfigurated). This implies the previous equality 
because B additions are executed in parallel in monobit mode, and their time cost is 
the number of clock cycles for one monobit addition, so B additions should be 
executed in multibit mode. It is clear that because of the bit paralellism and for 100% 
efficiency, every multibit addition should execute in 1/B times the number of clock 
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cycles of one monobit addition. However, due to the hardware design and the 
difference between the datalength and the datapath width of the architecture the 
efficiency will be lower than 100%. 

Figure 3 shows the efficiency for the addition operation with the initial hardware 
design. In order to increse its efficiency we have modificated the hardware design 
The modification allows the carry communication between the most significant 
processor element and the least significant processor in a single clock cycle 

■MTAU90IH 

Figure 3. Efficiency (%) for the multibit addition respect to the monobit addition without 
hardware modification. 

The hardware modification adds one input to the output multiplexer and to the 
ALU carry input multiplexer. Figure 4 shows the efficiency with the hardware 
modification included in the design. Note that the efficiency has been duplicated. 
This means that the execution time per multibit addition has been reduced to half 

IMIAUMJra 

Figure 4. Efficiency (•/.) for the multibit addition respect to the monobit addition with 
hardware modification. 
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The increase on the processor element area due to the modification is 2% using 
ES2 library for 0,7um double metal CMOS technology. 

Once we have the time relation and the area relation, we can evaluate the eq. 4. In 
this case: Aj/Af =0.98 andR= 0.5 . 

So, from eq. 4, 1^(^)^3.9% . This means that, for the modification 
acceptance, at least the 3.9% of the total execution time of the task, in the initial 
conditions, should be dedicated to addition operations in reconfigurated mode. 

A global vision task is normally divided into different subtasks. Every subtask 
may have part of the object code that is executed in monobit mode, and other part 
executed in reconfigurated mode. Besides, not all operations are additions in 
reconfigurated mode. So, depending on the vision task, the hardware modification 
will be or not accepted. 

4 Conclusions. 

Cost-performance criteria have been proposed in this paper that can be applied to 
multiprocessor architectures with no cost dependence on the interconnection network 
(the number of interconnections per processor element does not depend on system 
size). The criteria have been simplified to make the equations easier to evaluate and 
one example has been explained. 

The example demonstrates that the criteria can be extended to other hardware 
modifications. The criteria measure the interchange between the processor element 
complexity and its unitary cost, while the total cost of the system is maintained. 
However, this interchange allows to maximize the system performance. This means 
that for a given total cost, we can obtain the processor element design that 
maximizes the system performance. 
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Abstract. We present an enhanced data availability I/O Subsystem 
model for ParFiSys, a Distributed and Parallel File System. We evaluate 
the application of data redundancy at the different levels of the I/O 
hierarchy. A virtual distributed and redundant device, known as VRAID, 
is used as the basis to achieve both I/O accesses parallelism and better 
fault tolerance. 
Keywords: Parallel, file system, data availability, redundancy. 

Introduction 

ParFiSys [2] is a Distributed and Parallel File System l devoted to exploit as 
much as possible the I/O Subsystem on architectures where several I/O nodes 
are interconnected by a high performance network. ParFiSys early design was 
focused on improving I/O performance, and data availability problems due to a 
large number of underlying devices [9] were not taken into account. 

In this paper, we describe a new redundant I/O Subsystem model for ParFiSys 
that should be able to offer data availability even on underlying device failures. 
We detail the algorithms used to improve performance by minimizing both, the 
impact of redundancy management on communications, and the reconstruction 
phase overhead. We evaluate the model over a massively parallel architecture 
simulator that has also been developed [10,12,13]. 

1    I/O Subsystem Model 

The I/O Subsystem (Fig. 1 is built on the I/O hardware of a massively parallel 
machine with a high performance interconnection network. The physical storage 
devices are distributed over several I/O network nodes. Additionally, two logical 
storage devices are defined, one per I/O node server (SERV), that manages 
remote accesses to any other storage device of the node, and a single virtual 
redundant storage device known as VRAID, that distributes the data all over 
the SERV devices of the whole system. • 

* Thanks to Professor De Miguel for his technical advice. 
1 ParFiSys was developed at the Polytechnical University of Madrid, under the ES- 

PRIT project P5404 funded by European Union. 
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Fig. 1. I/O Subsystem Architecture 

The Raids and VRAID can be configured as level 0, 4 or 5 [4,3]. Usually the 
redundancy unit is known as stripe-unit, and is composed of one storage unit of 
each underlying device, one of which (the parity unit) contains the exclusive-OR 
calculation of all the others. It is important to note here that at any time the 
parity unit contents must be consistent with the rest of the information stored in 
the stripe, so a locking mechanism must be used to organize concurrent accesses 
involving parity units. This means that we will need to use locks at every access 
but when reading a free of fault device. 

VRAID Distributed Lock Management In the VRAID, the parity calculation is 
done at the node that makes the I/O request, so a lock mechanism is required 
to ensure the correct order between any number of parallel remote accesses. 

We have chosen to locate a lock service at SERV, and to lock only the parity 
units involved. Therefore, the distribution of locks will follow the same mapping 
as those of parity units. This means three things: a) this distributed consensus 
will ensure per stripe-unit consistency, b) this will not suppose a bigger bottle- 
neck than the access to the parity unit itself and c) there will also be a unified 
distributed consensus on the new lock server to use in case that the device goes 
to degraded state. 

Improving Performance Depending on its size, an I/O action could correspond 
to a huge number of subactions over a (possibly sparse) set of individual storage 
units of the underlying devices (i.e. Fig. 2). In order to reduce the amount 
of individual subactions and to optimize underlying device access, this set is 
reordered by joining subactions that are logically contiguous: 1) they refer to 
the same underlying storage device, 2) they are of the same action type (lock, 
read, xor, write or unlock) and 3) they concern to a set of contiguous units. 
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Fig. 2. Raid level 5. Write from 4 to 12 decomposition 

The resultant set of actions ordered is processed running in parallel actions 
for each device, but doing it in the following order: all locks, all reads, the internal 
xor calculation, all writes and finally the unlocks. This method has the following 
properties: a) ensures consistency between data and parity of each concerned 
stripe-unit, b) minimizes the final number of actions and therefore, (in the case 
of VRAID) the network traffic, b) the final per device action is more compact 
and could be done faster. 

2    System and Workload Characterization 

All the performance analyses in this paper have been made over a simulation of 
a massively parallel machine characterized as shown in table 1. The File System 
is feed by workers distributed over the nodes in a round robin way. Each worker 
executes I/O operations continuously from the selected synthetic workload (Tab. 
2). We use enough workers to make the system to perform at its limit. 

We have done experiments in order to determine the system scalability and 
its behavior on different combinations of redundancy levels and VRAID states 
(fault-free, degradated and during the reconstruction phase). 

Table 1. Systems Evaluation Parameters 

Network        crossbar topology with 100 MB/s links 
Nodes 2 to 32 (plus one for VRAID type 4 or 5) 
VRAID Levels 0, 4 and 5. Unit of 64KB or 4KB for OLPT 
RAID Levels 0, 4 and 5. Unit of 4KB. 

With 4 disks (5 for levels 4 and 5) 
Disks "Seagate Elite3", 2627 cylinders * 21 tracks * 99 sectors 

5400 RPM and seek times 1.7 min., 11.0 avr. and 22.5 max. (ms) 
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Table 2. Synthetic Workloads Parameters 

OLPT SSIM 
Online Transaction Processing [6,11]. 

80% reads of 4KB, 16% writes of 4KB 
2% reads of 24KB, 2% writes 24KB. 

All uniformly distributed. 

Scientific Simulation. 
50% sequential 1MB accesses to one 100MB file 

(90% reads, 10% writes) 
50% uniform 512KB accesses to 10 5MB files 

(10% reads, 90% writes) 

3    Results Analysis 

In Fig. 3 we show comparative performance for different system sizes running 
with VRAID level 5 in fault-free, degradated and recovery states. 

OUTUHXOoMnVnMIMimtui ■»•MMnHlMHUai 

Fig. 3. Performance in Different VRAID States 

We observe that the performance in degraded state shows a better scalability 
for OLPT than for SSIM. Whereas the overhead of degraded accesses grows with 
the number of involved nodes, the probability that an OLPT operation does not 
concerns the failed node also grows. This is not true for SSIM accesses, that 
affect all nodes, so for each write, a previous read of the parity information is 
needed. 

During the reconstruction phase one special worker recovers the failed device. 
This implies an added overhead. To improve performance recovery is done in 
chunks which are put to normal service as soon as recovered. As Fig. 3 shows 
the mean bandwidth during recovery phase is improved over the degraded one. 

648 



VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing 

FS bandwidth for OtPT workload 

Fig. 4. Comparative Performance for Different Redundancy Models 

In Fig. 4 we show a 32 node system with different models of redundancy both 
for VRAID and Raids. 

Our results show that SSIM workload gives around 160MB/s peek bandwidth 
whereas OLPT gives 25MB/s. SSIM is not affected very much by the redundancy 
model, because large operations involving contiguous blocks on all disks, are done 
much more efficiently. Obviously VRAID level 0 gives the best bandwidth, but 
does not protect us from a node failure, it is given for comparison. 

The OLPT workload involves very small size operations (4KB and 24KB), 
so the redundancy management overhead is more significant than in SSIM. Nev- 
ertheless combination VRAID 5 - Raids 4 has very similar performance than 
VRAID 5 - Raids 5. 

4    Conclusions and Future Work 

Given the observed system behavior, we can conclude that the systems scales 
very well, and systems of 128 nodes or more are possible. For small systems (32 
nodes or so) we suggest configurations with VRAID level 5 and Raids level 0, 
this allows for the same recovery procedure from a node or a disk failure. 

The recovery time for a disk failure using the VRAID redundancy at is im- 
practical in larger systems. Therefore, we suggest the use of level 5 redundancy 
at both VRAID and Raids levels. 

We are now including the effect of different caching alternatives on the above 
results. 
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Abstract. In this paper we propose a system with an architecture capable of 
parallel processing. Also, due to its computational power, the system is able 
to handle complex algorithms. This structure is applied to an AC motor 
vector control system, formed by two control loops which are running 
simultaneously: a speed control loop and a motor model parameters (needed 
by the speed controller) identification loop. This architecture allows the 
experimentation of new control algorithms in this field. Some results are 
presented that show the system's performance. 

1   Introduction 

The new control algorithms experimentation requires the availability of a system 
with an architecture that allows the easy reprogramming of their elements separately 
and the execution of complex algorithms, which can be executed simultaneously. 
Also, many industrial controls are based on a multi processor architecture, that use 
two or more low cost processors instead of one complex (expensive) processor. In 
this paper we present an architecture based in two processors that will allow the 
experimentation of the control techniques that we have previously studied 
analytically and/or simulated, which will be afterwards implemented in a 
multiprocessor configuration. 

2 Proposed system architecture 

The implemented system architecture is shown in figure 1. The system has two 
processors: a 486 (PC) and a Digital Signal Processor (32 bits floating point DSP). 
The DSP is placed in a PC ISA bus slot, which acts as the physical interface. The 
data exchange between the two processors is done using a Dual Port RAM 
(DPRAM), which can be accessed simultaneously by both processors. The DPRAM 
allows fast information exchange between the PC and DSP without disrupting the 
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processing of either device. If it is necessary, the DSP is able to interrupt the PC by 
means of the IRQ3 line; also the PC can interrupt the DSP using one of its four 
interrupt lines (INT3). The PC is able to control and monitor the DSP by means of 
an I/O mapped interface. The communication of the system with the external world 
is done by means of the following devices, which are connected to the DSP: an A/D 
converter module with four 16 bit channels, with a maximum sampling speed of 50 
kHz, and a digital I/O board, with 32 user configurable I/O channels. This 
configuration is clearly being used in many fields [1]. The PC is programmed using 
C language (Borland C). The DSP is programmed using either Assembler and C 
language. In the latter, the routines that are time critical are programmed using 
Assembler to control precisely the execution time. 

PC/C32 

0 $ 

DPRAM 
( 1KX32) 

PC MEMORY 
INTERFACE 

AJSA 

DA JGHTER MOC III f 

PC 
(486) DSP 

TMS320C32 

INT 0 

AM/D160S 
(A/0 4X16! 

1 

I— 
IRQ 3 

IN1 » 

0 3 
CONTROL ANO 

STATUS 
REGISTERS 

PC I/O 
INTERFACE 

*— 
^sp 

V2 
INKN 

V 
010 32 

Fig. 1. System architecture 

3 AC motor control system 

The block diagram of the AC motor adaptive vector control system that we have 
implemented is shown in figure 2. This control system has two loops which are 
running simultaneously: the speed control loop, that actually controls the motor 
speed, and the parameters identification loop that tunes the FAM controller 
parameters. 

3.1   Speed control loop 

This loop controls the AC motor speed. It has the following elements: 

Speed Controller. It computes the torque setpoint (T) from the speed error (Ew). 
This controller algorithm has been implemented using fuzzy logic, due to its major 
robustness faced by system changes (inertia, load) [2]. 
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FAM Controller. It computes the voltage (V) in amplitude, phase and frequency 
that has to be applied to the AC motor from the torque setpoint (T). It uses the Field 
Acceleration Method, that maintains the motor magnetising flux constant, thus 
avoiding electromagnetic transients. To achieve this it is necessary to tune the FAM 
controller parameters precisely in accordance with the AC motor [3], which is 
performed by the other loop. 
Inverter Controller. It generates every 100 fis the control signals for the inverter 
gates from the desired voltage (amplitude, phase, frequency). Is based in a vector 
modulation algorithm that takes into account the necessary inverter dead times, and 
it uses an accumulated error algorithm to improve its performance (harmonic 
distortion). 
Inverter. It is the power device that supplies the voltage and current consumed by 
the AC motor.  This device  includes  the  logic  necessary  to protect  it  from 
overvoltages and overcurrents. 
AC motor. It is the machine whose speed (and torque) we control. 

PC DSP 
r 

SPEED 
CONTROL 
(FUZZY) 

TORQUE 
CONTROL 

(FAM) 

l_ 3^ 

w 12-18 b 
V 10 b 

i 1»  , 

r 
IS II 2x16 b 
W 1*12 b 

PARAMETERS 
IDENTIFICATION 

(M, Rs. Rf) 

INVERTER 
CONTROL 3 

P 

PROTECTIONS 

INVERTER 

J 
IS II 2X 16 b 
W    1 X 12b 

A/D 
(MINIMUM t X 12 bits 

2X 16 bits) 

Fig. 2. AC motor control system, formed by two loops 

3.2   Parameters identification loop 

This loop modifies the FAM controller parameters. It is formed basically by the 
Model Reference Adaptive Controller (MRAC), which is the block that performs the 
parameters identification that the FAM controller needs, by means of an algorithm 
programmed using fuzzy logic. To perform this task the MRAC controller compares 
the intensity that the AC motor consumes with that estimated by the FAM model; as 
a result of the comparison, an amplitude and phase error are obtained, from which 
the MRAC algorithm calculates the parameters' new values. This algorithm has 
been programmed from the study of the parameters variation effect over the 
amplitude and phase intensity consumed by the motor. 
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3.3 Tasks assignment 

The tasks assignment is presented in figure 2. As can be seen, the DSP executes the 
inverter controller and the MRAC controller algorithms. The DSP main task is the 
MRAC controller, and is interrupted every 100 \is by the inverter controller 
algorithm, whose output signals can't be delayed. The 486 executes the speed 
controller and the FAM controller algorithms, monitors all the system and stores 
system variables (speed, torque, voltage,...). The AC motor speed and the current 
consumed are acquired using the A/D acquisition board. The control signals for the 
inverter gates are generated using 7 lines (6 gates, 1 enable) of the digital I/O board. 
With this task assignment, the 486 discharges the DSP computing load, allowing the 
experimentation of more complex algorithms. 

3.4 Data exchange 

The data exchange can be easily made by means of the DPRAM. The DSP provides 
the PC with the motor speed acquired by the A/D converter module, and the new 
AC motor parameters obtained by the MRAC controller. The PC provides the DSP 
with the desired voltage (amplitude, phase, frequency) that has to be applied to the 
motor. As one processor writes to the DPRAM without interrupting the other, this 
data exchange is made with no interaction between them. 

4   Results: discussion of performance 

To demonstrate system's performance, we have studied the control system's 
response to a ramp, using the FAM controller with its parameters not properly tuned 
(stator and rotor resistance, Rs and Rr respectively). In these experiments, the 
parameter identification loop (MRAC controller) is tuning the model parameters 
(_Rs, _Rr) that the FAM controller uses, meanwhile the speed control loop is 
controlling the motor speed. As we can see from the graphical results (figure 3), the 
MRAC controller tunes the model parameters (JR., _Rr) to the real ones (R, Rr)'in a 
few seconds. It works properly even during transients in the speed control system. 
Furthermore, the parameters identification loop improves the system's performance, 
because it obtains the real AC motor parameters that the FAM controller needs. As 
we mentioned before, the parameters identification algorithm compares the real 
current consumed by the AC motor with that one estimated using the model. In 
order to measure the phase of the real intensity, a zero-pass detection circuit is used, 
which interrupts the system every cycle. This means that, at most, is possible to 
execute an identification cycle each period of the power supply signal. If we use a 
single processor, the system won't be able to execute the parameters identification 
algorithm so often, while is executing all the other control routines (that have to be 
executed to avoid the degradation of the control system performance), and the 
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identification time will be longer compared with that one of a parallel processing 
system (figure 4). 

Fig. 3. Speed (co) and torque (T) control system response to a ramp during parameters 
identification (R,, Rr) with two processors 
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Fig. 4. Speed (a>) and torque (T) control system response to a ramp during parameters 
identification (R^ R) with one processor 

5   Conclusions 

We have presented a parallel processing architecture with two processors running 
simultaneously: a 486 (PC) and a DSP. The latter is placed in the ISA bus, giving an 
interface with enough immunity to conducted and radiated interferences. This 
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architecture solves the data exchange between processors and allows the 
experimentation of an AC motor control system with two loops that have to be 
executed simultaneously: the speed control loop and the parameter identification 
loop. The main advantatge of this system is that we can reprogram the algorithms 
that one processor executes without changing the ones executed by the other 
processor. Also the system is capable of acquiring external signals (current 
consumed by the AC motor, DC bus voltage) and generating digital output signals 
(inverter control). The results presented show that the system formed by the two 
processors is able to control the AC motor speed and, simultaneously, tune the 
motor model parameters used by the FAM controller. 
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1    Introduction 

In this paper we will discuss an industrial design problem, we will show the 
difficulties encountered and why a parallel approach was needed. Furthermore 
the parallel algorithm will be described, and the performance obtained also will 
be presented. 

Industrias de Optica S.A. is the biggest Spanish lens manufacturer, the flag- 
ship product of the company is the progressive lens. This kind of lens is used to 
compensate the presbiopya, resulting from the aging of the eye. This product is 
growing its market share. 

A progressive lens has three different vision zones, in one of them the user 
can see distant objects, in the second (intermediate vision zone) a progressive 
change of optical power is made in order to allow the wearer see all distances. 
The last zone is used in near vision. It is known that there is no analytical 
solution that gives the best possible progressive lens, so it is mandatory to use 
an optimization algorithm. [2] 

In addition to these three zones, used in phoveal vision, there is a fourth 
zone, the lateral zone. All the effort in the optimisation process is devoted in 
reducing the astigmatism in this zone, improving the overall lens performance. 
In figure 1 the different zones can be observed. 

In the Progressive Addition Lens design process, it is necessary to optimize 
the lens surface in every performed trial. This being an iterative process, it is 
very important to use the fastest possible algorithm. This is the motive that led 
us to a parallel approach. 

Also in Industrias de Öptica S.A. 
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Far Vision Zone 

Intermediate Vision zone 

Lateral Zone 

Near Vision Zone 

Fig. 1. Progressive Addition Lens vision zones 

2    Mathematical approach 

2.1    Lens Modeling 
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2-2    Optimization Algorithm 
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Newton and Newton deepest Descent, Conjugate Gradient, Quasi- 
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With this modification the calculation time for a Hessian was reduced enough 
to make the Newton algorithm preferable to a Quasi-Newton approach. [6] [4] 

3    Parallelization approaches 

The targeted platform was a workstation cluster, so we choose PVM as the mes- 
sage passing environment for the new application. [8] 
In order to start the parallelization a profile of the algorithm sequential version 
was performed. As a result of this profile it was clear that the biggest part of 
the CPU time was spent on building the Hessian. Those routines where the first 
ones to be parallelized. With the first parallel program, performance measure- 
ments were done to study its behaviour. We used the analysis tools available 
on the CEPBA (European Center for Parallel Computing of Barcelona) [7], the 
Dimemas and Paraver tools, to perform those tests. 

3.1     Objective Function Parallelization 

The numerical test revealed that a very important part of the calculation time 
was spent in computing the objective function. Furthermore, the most impor- 
tant part is the Hessian computation. So, the first parallel approach faced the 
reduction of this time. 

The Hessian is computed by finite differences of the gradient. In order to 
improve the performance, an analytical gradient routine was implemented. It is 
notable that mathematical packages like Mathematica or Maple failed to com- 
pute this analytic derivative. 

In order to obtain a finite difference Hessian approach, it is necessary to cal- 
culate n +1 ( n is the problem dimension) function gradients. Those calculations 
are independent, so they are splitt among the different available processors. A 
master-slave approach is used. The other computations needed by the algorithm, 
the linear search and the linear equations system, are computed by the master. 
In table 1 the speed-up results of different problem sizes are shown. The tests 
were performed for 2,4,8,12 and 16 processors in order to study the algorithm 
scalability. 

Studying the code and profiles, it was clear that the algorithm bottleneck 
was the linear solver. The traces obtained in our performance analysis tool cor- 
roborate this conclusion. In order to improve the scalability, the parallelization 
of the linear system solver was decided upon. 

3.2    Linear Solver Parallelization 

In order to achieve a better scalability we parallelized the linear solver. We used 
preconditioned Krylov subspace iterative methods as linear solvers (Conjugate 
Gradient and GMRES(m)). The selected preconditioners are a set of different 
Incomplete Factorizations. The parallelization of the linear solvers is based on a 
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Table 1. Parallel Speed-Up with Function Parallelisation 

Dimension 2 Proc 4 Proc 8 Proc 12 Proc 16 Proc 

70 1.69 2.63 3.75 3.38 3.95 
140 1.85 3.16 5.00 6.13 6.96 
390 1.92 3.56 6.12 8.10 9.18 
1390 1.95 3.78 6.90 9.08 12.39 

Domain Decomposition data distribution. [1] The main bottleneck of the linear 
solver is the solution of the sparse triangular linear system arising from the pre- 
conditioned The communication requirements of this operation depend on the 
block structure of the triangular factors. In order to minimize this bottleneck 
two strafptrioc oro itco^. two strategies are used: 

1. Control the fill-in at the block level with a different criteria than at the 
element level. 

2. Perform a coloring of the domains which minimizes the fill-in at the block 
level and ensures the maximum parallelism. 

Because the granularity of the Hessian assembly and the linear solver is quite 
different, we use a different number of processes in each phase. This means that 
additional communications are required to redistribute the data before and after 
the linear system solution phase. We must find for each problem size the optimum 
number of processes of each part in order to obtain the minimum execution time 
in this way we can improve the scalability of the whole application. 

The results are shown in table 2 and table 3. The results with the smaller data 
sets are not shown because due to their size they did not achieve any reasonable 
speed-up. 

Table 2. Parallel Speed-Up with Function and Linear Solver Parallelisation  Using 2 
processors in the Linear Solver. s 

Dimension 2 Proc 4 Proc 8 Proc 12 Proc 16 Proc 

390 1.84     2.91     4.08      4.63       4.20 
1390        1.97     3.58     6.06      7.88       9.27 

Surprisingly, we achieve no increases in speed in parallelising the linear solver 
Analysing the results and the code, we find two reasons for this behaviour: 
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Table 3. Parallel Speed-Up with Function and Linear Solver Parallelisation. Using 4 
processors in the Linear Solver. 

Dimension 2 Proc 4 Proc 8 Proc 12 Proc 16 Proc 

390 1.73     2.58     3.45      4.02       3.34 
1390 No convergence 

- As we use an iterative method, the number of iterations needed in order 
to solve the linear system is a key parameter. The parallelisation, involv- 
ing a matrix reordering increased the number of iterations. Futhermore, in 
the bigger case (when we expected some performance improvements), the 
reordering affected the algorithm convergence in such a way that made it 
diverge. 

- With the solver parallelisation, the number of communications is greatly- 
increased. In the Hessian parallelisation there are two communications, at 
the beginning and the end of the parallel phase. With the linear solver, there 
is comunication in each linear solver iteration. 

Summarising, the linear system involved in the optimisation algorithm is too 
small and too badly conditioned to be solved with a parallel iterative method. 

4    Conclusion and Future Work 

The speed-ups obtained are satisfactory for the industrial process. It is not ex- 
pected to use more than 12 machines at the same time. In fact INDO is installing 
a network of 6 DEC Alpha workstation with a Fast Ethernet switch. Taking the 
previous results into account, with the targeted platform, the first parallel ap- 
proach is the most suitable for the company. 

It is also interesting to remark that the problems with the parallel linear 
solver. In our previous experience with linear systems from numerical simulations 
we have never found such a bad conditioned problem. In order to overcome this 
behaviour we are thinking about new reordering methods. 

The future work includes an upgrade of the basic sequential algorithm, and 
the changes needed by this improved approach. We also want to study the pos- 
sibilities of Quasi-Newton approaches to our problem. 
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Abstract Finite Difference Time Domain (FD-TD) is a numerical technique 
widely used to evaluate the electromagnetic field distribution in 
geometrically complicated devices. The explicit formulation and the 
intrinsic parallel structure of the FD-TD algorithm suggest the possibility to 
increase the code performance, particularly in terms of computation time 
reduction, using parallel architectures. In this paper, advantages in the 
design process of domestic microwave ovens via FD-TD on massively 
parallel computers are described and commented. Comparisons between the 
simulation times required using different workstations and the Cray-T3D 
parallel computer are finally reported. 

1   Introduction 

In the design of microwave ovens, overall performances in terms of heating 
uniformity of the load and energy conversion efficiency, user's safety and device cost 
reduction must be taken into account and optimized. The availability of a CAD tool is 
fundamental for oven designers. In fact, this allows not only to obtain improvements 
in heating uniformity and efficiency, but also to prevent possible microwave leakage 
and abnormal heating or arcing in the feeding system. 
The Finite Difference Time Domain (FD-TD) method is a numerical technique that 
can be profitably used to investigate the electromagnetic (e.m.) behavior of a 
microwave heating applicator [1] [2]. Because of the complexity of the overall 
equations, and also the generally complicated geometry of the heating devices, the 
determination of the e.m. field distribution inside the oven could require many days of 
simulation on ordinary Personal Computers or Workstations [3]. To reduce the 
mathematical dimensions of the problem, some approximations can be taken into 
account, but this could introduce unacceptable loss of accuracy. 
This bottleneck can be overcome using modern parallel computers. However, to 
obtain the best results from this architecture, the simulation code must converted in 
parallel form and correctly optimized. The FD-TD approach [4], being based on 
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explicit formulation with an intrinsic parallel structure of the solving equations  is 
well suited to take full advantage on this kind of architecture 
In the following after a short introduction to the algorithm, the code parallellization 
will be discussed and its performances presented, showing the computation time 
reduction obtained on the CINECA's 128 processors Cray-T3D system 
This program will be used as the basic kernel for an European Community HPCN 
project a demonstration action devoted to the introduction of High Performance 

i ™PUterS m thC design pr0cess of domestic microwave ovens. The project is 
named POPCORN (Production Of Parallel Computer Optimized micRowave S 
and is managed by a consortium composed by De' Longhi, CINECA and D.E.I.S. 

2   The numerical approach 

The electromagnetic field inside a metallic microwave cavity representing the oven has 
been described by the Time Domain Maxwell's curl Equations. Differential operators 
have been written in difference form following the Yee's scheme [4]. The resulting 
equations for all the 6 field components (electric and magnetic) have the same form 
and differ only from the values of the multiplication coefficients, that are evaluated 
according to the dielectric properties of materials in each cell of the computational 
domain. As an example, the equation of the E, field component can be written as: 

E7%J,k) = C(iJ,k)E:{i,j,k) + 
c«M)[Ärx(/+i.y+i.t)-Är4+i.y-i,t)]+ 

^(u4H;y'(i+ijMi)-„^{i+iJ>k_^ 
(1) 

where n is the iteration time step, (/, ;, k) represents the generic node of the discrete 
computational domain and the coefficients C;, C2 and C} are functions of both the 
local values of the dielectric properties and the spatial step increments along y and z 
These equations are well suited to be solved on a parallel computer. In fact, as it'is 
easy to observe, the three electric field components do not depend from each other, but 
are only functions of the previous value of themselves in the same cell and of the 
magnetic field components in the surrounding cells. A similar result holds also for all 
the three magnetic field equations. 

3   The parallel implementation 

The Cray-T3D is a massively parallel system that integrates commodity 
microprocessors with a proprietary system interconnection network and high-speed 
synchronization mechanisms. Each Processing Element (PE) consists of a processor 
the associated logic and a connection to the interprocessor communication network 
The processor is a DEC Alpha chip 21064, a 64-bit RISC architecture with dual- 
issue, pipelining instruction stream, that provides 150 Mflop/s peak performance 
bach PE is equipped with a direct-mapped cache of 8 Kbyte for the data, and with a 
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DRAM local memory of 8 Mwords (64-bit words). The global memory subsystem is 
a directly connected shared distributed memory architecture in which memory is 
globally addressable but physically distributed. The interconnection network is a 3D 
torus which operates asynchronously and independently from the PEs to access and 
redistribute global data. The 3D toms topology ensures short connection paths and 
high bisection bandwidth( 300 Mbytes/s in every direction). 
The original FD-TD code has been parallelized on the Cray-T3D using the CRAFT 
work sharing paradigm. A preliminary version of the parallelization scheme is reported 
m [5]. CRAFT is a Cray proprietary parallel programming model, similar to HPF, 
that allows the use of a global address space and supports the SPMD (Single Program 
Multiple Data) programming style. The same program is loaded and executed in all the 
PEs, but controlled by processor number and data. CRAFT is based on directives to 
the Fortran compiler, to express data and work distribution among the PEs, and it is 
efficient and easy to use. Unfortunately the portability is restricted only to the Cray- 
T3D massively parallel systems [5]. One of the tasks of the POPCORN Consortium 
is to overcome this limitation. In order to accomplish this task, the FD-TD code will 
be parallelized also using the MPI message passing paradigm, a more general and 
portable parallel programming model than the work sharing one. In this way the 
program will be ported on different parallel architectures to investigate the 
performances that can be reached even on a cluster of PC's, thus making this tool 
practically useful for the Research and Development division of an industry. 

4   Results 

In the structure of the developed FD-TD simulator three main sections can be 
identified: pre-processing, field evaluation and data output. 
Data input and initialization of all variables are the activities of the first section. 
Information related to the physical structure of the computational domain (dimensions, 
e.m. properties of the considered materials, used mesh, etc.) are obtained reading ä 
binary file produced by an external program used for the modeling. Then, once all the 
dielectric properties of each mesh point are known, values of all the variables used for 
e.m. field evaluation can be prepared. The second section contains the field 
computation procedures, based on the Yee's algorithm for the inner domain and 
boundary conditions for the outer faces. Also field excitations is performed in this 
section. Output binary files are used for final post-processing procedures. 
As an example, the FD-TD approach has been used to simulate the behavior of a 
domestic microwave oven represented by 32 x 32 x 32 cells and for a temporal 
evolution of 1000 time steps. Simply adapting the existing code to the parallel 
machine, we have observed that the simulation times in all the parallel regions scale 
very well with the number of the used processors. However the global performances 
are always limited by the unoptimised sequential I/O procedures, which shown an 
almost random contribution to the overall simulation time. The solution to this 
problem has been obtained modifying the I/O routines, increasing the number of data 
associated to each I/O request (Fig. 1). 
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1PE 16 PE 32 PE 64 PE 128 PE 

Fig. 1. Comparisons between the computation  times (Log scale) requited by the I/O 
procedures of the parallel FD-TD simulator before and after the optimizations. 

300 

200 
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1PE 16 PE 32 PE 64 PE 128 PE 

Fig. 2 Computation times before and after the optimizations of the field evaluation section 
using different number of PEs. 

Other optimizations have also been introduced to increase the computation speed on 
the Cray-T3D parallel computer. This has been done modifying the data structure of 
the coefficients used in the Yee's field equations, avoiding the so called cache miss 
phenomenon. With this solution we have doubled, in terms of Mflop/s, the 
performances of each PE. For the main computational part of the code the 
improvements shown in Fig. 2 have been obtained. 
The speed-Up of each section of the code as a function of the used PEs is reported in 
Fig. 3. This speed-up has been evaluated as the ratio between the simulation time 
required to perform a given procedure on a single PE and the time required to perform 
the same part of the code in parallel. As it is possible to see, parallel procedures 
(Yees coefficient preparation (PrepcY) and field computations (Calc)) scale 
accordingly with the number of used PEs, confirming the good implementation of the 
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code. Loss of efficiency results for operation defined over data subspaces (as, for 
example, those related to preparation of coefficients for the boundary conditions, 
indicated as PrepcB, and those related to field excitation and boundary field evaluation, 
which influence the behavior of the Calc procedures). The resulting performance, 
however, can be considered satisfactory. 

PrepcY 

Calc 

PrepcB 

1    16   32 

Fig. 3. Speed-Up of the different procedures of the FD-TD simulator vs the used PEs. 

CRAY       64 PE»   157 

97.57 

0    10   20   30  40   50   60   70   80   90 100 

Timing-Ratio 

Fig. 4. Timing ratio of the 128 PEs Cray-T3D system respect the same system with 
different number of PE and some SUN workstations. 

Using this code, the behavior of a more complicated microwave domestic oven with 
different load situations has been simulated [6]. For a 7500 time step run of a 
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64 x 64 x 64 mesh and 128 PEs, the overall CPU time has been reduced to 215 s 
respect to the about 9 h and 3.5 h required respectively by a Sun SPARCStation 20 
and a Sun ULTRA 1 workstations. Obtained Speed-up are reported in Fig. 4. 

5   Conclusions 

In this paper, advantages in the design process of domestic microwave ovens using 
massively parallel computers have been described and commented. Comparisons 
between simulation time required by different workstations and the Cray-T3D parallel 
computer have been reported, to show the obtained performance increments. Speed-up 
of 59 and 154 have been shown comparing Cray-T3D 128 PE and Sun's ULTRA1 and 
SPARC20 workstation's results. This code will be used as the basic kernel for the 
POPCORN European Community project. The FD-TD simulator will be ported to 
the new CINECA's Cray-T3E parallel computer and on a PC cluster using the 
message passing paradigm (MPI), to investigate the level of performance that can be 
reached and to make this tool available for industrial Research and Development 
divisions engaged, for example, in domestic microwave oven design. 
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Abstract. The paper describes a general purpose tool for the debugging of 
message passing parallel applications. The basic components of this tool are the 
trace/replay mechanism, the graphical user interface and the central component, 
called visualization engine. The engine, which plays the central role during the 
replay phase, can be used with different message passing environments and 
different graphical interfaces. This is a significant step to ensure a wider range 
of usability. Also relevant is the fact that this engine is able to learn how to 
detect predicates. 

1   Introduction 

Debugging sequential programs is not an easy task and it is common knowledge that 
the insertion of print statements is one of the most popular debugging techniques. 

Henry Lieberman calls debugging "the dirty little secret of computer science" and 
concludes that it is still, largely, a matter of trial and error [10]. The fact that the April 
97 issue of "Communications of the ACM" is entirely dedicated to debugging, proves 
how relevant the subject is. The debugging problem has largely been ignored what 
contrasts sharply with the remarkable progress in software development over the last 
thirty years [3]. 

Debugging parallel applications is even more difficult than debugging sequential 
programs due to non-determinism caused by race conditions. These conditions happen 
since processes in a parallel application must communicate with one another. 

That is why our tool focuses on communication events. The tool includes a replay 
mechanism and a graphical interface. Between these two components, a central 
component, the visualization engine, makes the tool easily adaptable to different 
message passing mechanisms and different graphical environments. 
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2   Comparing Similar Tools 

In November 1993 a group named Parallel Tools Consortium ' was established 
whose "mission is to take a leadership role in defining, developing, and promoting 
parallel tools that meet the specific requirements of users who develop scalable 
applications on a variety of platforms". According to this consortium, parallel program 
debuggers, execution trace visualizers, and tools for performance tuning," are 
subgroups that form a larger group named Execution Analyzers. Besides this, there are 
two more groups: Source code analyzers which are used to analyze and convert serial 
programs to parallel code and Parallel languages and libraries. 

The usage of execution analysis tools is mandatory for programmers to obtain 
correct and tuned parallel programs and it takes place after the usage of any tool from 
the other groups. Among those, debuggers have to be used before execution trace 
visualizers and tools for performance tuning. There are myriades of tools of these 
sorts, therefore, one can only mention a limited number of them. 

Among execution trace visualizers and tools for performance tuning we can 
mention AIMS2, mp2sddf2, ntv2, Pablo2, VT2, Paragraph [6], Forge2, XProfiler2 

Paradyn\ PATOP\ Poet [7]. The following belong to the group of debugging tools' 
xpdbx2, TotalView2, DETOP3, Xmdb\ 

Our tool is intended to be independent of the message passing software. However 
it is being tested for PVM applications so, it makes sense to mention execution 
anahzers exclusively applicable to this message passing system: Xpvm2 Hence4 

PVaniM [11], Xab3J, DBPVM-\ TAPE/PVM\ DDBG [4] and TOOL-SET [12]. The 
last one comprises a set of integrated tools, among them the debugger DETOP and the 
performance analyser PATOP, previously mentioned. 

A complete description of all these tools and a detailed comparison with the one 
described here, is outside the scope of this paper. Nevertheless, it is possible to 
identify two of its distinctive features. First, it incorporates both a replay mechanism 
and a graphical representation, and second, its basic component, the visualization 
engine, builds an object-oriented model of the message passing application. Taking 
full advantage of inheritance and polymorphism, the tool becomes easily adaptable to 
different message passing softwares and/or to different graphical representations or 
graphical softwares. 

Besides, due to the adoption of the object-oriented paradigm, the tool is flexible 
enough to acquire an important additional skill: predicate detection. 

1 http://www.ptools.org 
2 Links to a site containing information about this tool can be obtained in 

http://www.tc.cornell.edu/Parallel.TooIs/exec-analysis-tools.htmI 
-1 Links to a site containing information about this tool can be obtained in 

^ http://www.cse.ogi.edu/DISC/projects/mist/related-work/monitoring.html 
Links to a site containing information about this tool can be obtained in 
http://www.henceedp.com/ 

670 



VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing 

3   Our Tool 

As explained before, the tool includes three components: a replay mechanism, a 
graphical interface and a centra! component named visualization engine. 

The replay mechanism makes a particular execution repeatable, allowing cyclic 
debugging, a frequently used technique in sequential programs. The replay mechanism 
adopted is similar to the one described in [9] for applications based on the shared 
memory paradigm. Assuming that the individual processes in the parallel application 
do not contain nondeterministic statements, this mechanism is based in the principle 
that if each process is supplied with the same input values, in the same order, during 
successive executions, it will exhibit the same behaviour each time. The mechanism 
includes two distinct phases: trace phase and replay phase. In the trace phase, minimal 
information is stored in order to minimize the probe effect. Although minimal, the 
stored information is enough to assure that, during the replay phase each process will 
consume the same messages, in the same order. 

It should be emphasized that it is not necessary to modify the code of a parallel 
application to use this debugging tool. The monitoring code is inserted in the standard 
libraries of the message passing software, which should not be modified by the 
common user. In the trace phase, the application under study must be linked with one 
modified library (trace library); for the replay phase, it must be linked with a second 
modified library (replay library). 

During the replay phase, the visualization engine builds an object-oriented model of 
the application. The model provides the necessary semantic feedback to answer most 
of the questions the user may ask about the application, during and after replay. 

The engine contains two sorts of classes: classes that define the building blocks of 
the model (namely, class Process and class Message) and management classes. In this 
last group, the most important classes are class Manager and class Agent. 

There is one Agent executing in each machine that is running processes of the. 
replaying application. Each Agent receives information from the local processes and 
sends it to the object in charge of building the object-oriented model of the 
application and maintaining its coherence along the replay. This object is an instance 
of a class derived from Manager. 

In order to support different graphical representations or different graphical 
environments we take profit of inheritance, a major property of object-oriented 
models. A Graphical Interface Manager (GIManager), derived from Manager, 
contains the knowledge necessary to deal with the graphical interface. Similarly, the 
model contains classes GIProcess, derived from Process, GIMessage, derived from 
Message and so on. 

In this way, data and code that depend on the graphical interface are encapsulated 
inside GI classes. On the other hand, everything that depends on the message passing 
software used by the parallel application, is encapsulated inside class Agent. Agents 
must be able to understand the message passing "dialect". 

Inheritance will be adopted again, this time to teach the model how to detect 
predicates [2]. In order to achieve this feature, for each specific predicate new specific 
classes, subclasses of the classes in the model, will be defined. 
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These classes inherit the behaviour of their superclass(es) and additionally know 
how to detect that predicate. For each predicate, particular information has to be 
collected and processed. Therefore, those classes must contain specific attributes and 
methods. Some of these methods will be overridden methods giving rise to 
polymorphic behaviour. 

Two granularity levels for the observation of a parallel application are defined- 
Level 1: external events level 

External events, that is, communication events, are observable. 
Level 2: internal events level 

Internal events, concerning each individual process, are observable, together with 
communication events. 

Our tool directly supports level 1. However, it is prepared to support level 2 as 
long as a sequential debugger is integrated. This kind of integration has been 
accomplished in similar tools [4]. 

A message has a source, one or several destinations', a tag and a body 
Accordingly, the sort of bugs that an user is able to detect, using a tool which support 
level 1, are: r 

- Bugs concerning one message 
- On the source side 

wrong destination; 
wrong tag; 
wrong body. 

- On the destination side 
wrong source; 
wrong tag. 

- Bugs concerning all messages 
race conditions. 

- Bugs concerning communication primitives 
wrong type of primitive. 

Each of the following examples illustrates one of the previous sort of bugs- a 
process disturbs the application's expected behaviour because it has sent a message to 
the wrong destination (this one is a bug concerning one message, on the source side)- a 
process waits for a message that will never arrive, meanwhile the correct message has 
arrived and will not be consumed (this is a bug concerning one message, on the 
destination side); the programmer intended to develop a race-free application but in 
tact he did not (this is a bug concerning all messages); the user intended to use a 
blocking receive and instead used a non-blocking one (this is a bug concerning 
communication primitives). 

A source or a destination is a process identity. 
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With level 1 tools, detectable predicates are those properties that depend 
exclusively on variables associated with communication events. For instance, suppose 
that process PI processes a n-dimensional matrix, and after having processed each line 
sends it to process P2; the property " has process P2 received exactly n messages from 
process PI ?" is a detectable one. 

General predicates will be detectable as long as the level 2 of granularity 
observation is guaranteed. 

The tool has been tested with PVM applications [1] (PVM [5] supports message- 
passing paradigm); C++ was used to develop the visualization engine and OSF-Motif 
for the graphical interface. 

Although our debugging tool is easily adaptable to different graphical interfaces, 
we have started with a rather simple representation, the time space-diagram [8]. We 
made this choice because we think that a complex representation disturbs user's 
attention. He spends more time trying to understand all the symbols than focusing his 
mind in what really matters: the parallel application. 
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Abstract. In this paper we present a simple parallel algorithm for en- 
semble-averaged molecular dynamics simulation of non-stationary trans- 
port processes in Lennard-Jones systems on distributed memory MIMD 
multicomputers. This algorithm has been used for simulation of shock 
wave in two- and three-dimensional solids and calculations of ensemble- 
averaged particle distribution functions of kinetic and potential energy as 
well as the pair correlation functions for several cross sections within the 
shock layer. The algorithm is based on parallel simulation of independent 
systems from a canonical ensemble on different processors allowing a 
computation of the ensemble-averaged structural and thermodynamic 
properties. We have implemented the algorithm in the PVM program- 
ming environment and performed simulations on various multicomputers. 

Keywords: parallel computing, molecular dynamics, shock wave, PVM. 

1    Introduction 

The molecular dynamics (MD) is a powerful simulation tool for studing struc- 
tural and dynamical properties of liquids and solids. Recently, more attention 
has been focused on understanding the molecular mechanisms of nonstationary 
macroscopic processes such as shock wave [1, 6], detonation [8], fracture and 
failure [3], partly due to the advent of massively parallel computers. 

In the present work we apply the MD method for simulation of a planar shock 
wave in Lennard-Jones solid. The principal limitation to such simulation is that 
the shock layer properties can vary significantly within a few lattice spacings. In 
the most general case, both the space- and time-dependences of all the dynamical 
quantities need to be considered. Thus, sufficiently large cross-sectional area is 
required to reduce large nonphysical fluctuations. Up to now, the number of 
atoms per transverse plane was typically 102 - 103 which is not sufficient for 
reducing the fluctuations considerably. Owing to these fluctuations, important 
characteristics of the shock layer, such as the evolution of velocity distribution 
function across the layer, have not been well studied. One way to improve the 
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Cristöväo - SE, Brazil, e-mail: zybin@sergipe.ufs.br. This research was supported 
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quality of simulation is to take a time average, but it is possible for modeling 
only steady shock waves. It has been employed in [1] through the use of special 
potential configuration, which makes it possible to generate a steady shock wave 
at rest in the laboratory frame. Recent advances in parallel computers provide 
a means for multi-million atoms simulations of such nonstationary processes 
[2, 3], which enables one to extend considerably the cross-sectional area. How- 
ever, the implementation of message-passing multi-cell MD on massively paral- 
lel computers [2, 9] usually involves intensive interprocessor communications on 
each time step and possible non-uniform workload of processors. It complicates 
the implementation of spatial-decomposition technique on less sophisticated 
and cheap heterogeneous multicomputers such as network-connected clusters 
of workstation or PC-clones coupled with free PVM/Linux software. 

Here we implement an alternative ensemble-decomposition approach that 
consists in taking a statistical average over canonical ensemble by repeating 
the shock wave simulations with different initial conditions. An advantage of 
this approach is a straightforward implementation on parallel computers with 
virtually no interprocessor communications, where each processor is responsible 
for independent simulation. It has been applied in modeling a shock wave in 
Lennard-Jones crystal with 102 - 103 atoms in the cross-sectional area and 102 

simulation runs. The time-dependent profiles for density, velocity, mean square 
fluctuations of the longitudinal and transverse velocity components, internal 
energy and pressure tensor were obtained. We also measured the velocity distri- 
bution functions, the probability density for the potential energy and the pah- 
correlation functions in several transverse planes within the shock layer. 

2    Parallel ensemble-averaged MD algorithm 

We have developed a parallel algorithm of ensemble-averaged MD method 
in the PVM programming environment for simulation of shock wave in the 
fee lattice composed of atoms interacting via Lennard-Jones (6-12) potential 
U{r) = Ae[{<x/r)12 - (a/r)6}. The program was initially developed in the PVM 
on distributed shared memories machine CONVEX SPP-1000 and then adapted 
on IBM SP2 RS/6000 and the network-connected PC-clone. The algorithm has 
the "master-slave" parallel structure presented by the following scheme 

Master 
1.Initialization: Compute initial data and send to A' Slaves 
2.The beginning of parallel computations 

for n=l to number of simulation steps pardo 
receive from Slaves binned profiles of variable ak, Jk = 1 A' 
compute ensemble average (a; /) = £ £t ak (or by Metropolis procedure) 

end pardo 
3.Repeat the step 2 if required 
4.Kill Slaves and finish the computations 

676 



VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing 

Slaves 
1.Initialization: Receive from Master initial data 
2.Computations in Slave k (k=l,...,K) 

for n=l to number of simulation steps do 

compute forces f(r"~1)=-J2jla^f^, move atoms to new positions r? 
compute binned profile of dynamical variable a* 
send eck to Master 

end do 
3. Repeat the step 2 if required 

The algorithm consists in concurrent simulations of different systems from a 
canonical ensemble generated by randomization of the initial velocities of atoms. 
From time to time, the binned spatial profiles of a dynamical variable a are 
calculated in each simulation subtask. Then the averaging over K systems of 
ensemble is performed yielding the expectation value (a;f) for a distribution 
function /. The theoretical speed-up for the algorithm presented above is 

Speed-up = (jtompK)l(Tcomp + Tcomm/Nx), 

where Nx is the number of atoms in cross-sectional area, rcomp, Tcomm - 
the parameters responsible for computation and communication time. As the 
computational experiments show, the communication time is negligible small in 
comparison to the comüutation time (see Fieure IV 
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SPP-1000,  Nx=100 

SPP-1000,  Nx=20 

IBM   SP2,  Nx=100 

tljljlilijjlil    IBM  SP2, Nx=20 

PE 
1 2 3 4 5 

Number of processors 
Fig. 1. The speedup obtained on different computer architectures: (a) single hypernode 
of the CONVEX SPP-1000 (4 processors), (b) 4 IBM RS/6000 POWER2 networked 
workstations (for different numbers Nx of atoms in cross-section). 
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It should be noted that any standard MD program optimized for sequential 
execution can be readily implemented in this algorithm with minor changes 
However, there are two cases where its use becomes impracticable- when it is 
necessary to use a large system size (due to the memory limitations on the 
number of atoms) and when the simulation time is longer than can be realistically 
achieved using a single processor (due to the large update time per atom) In such 
situations the best approach is the parallel spatial-decomposition MD technique. 

3    Simulation results 

The algorithm has been used for a simulation of shock wave in a lattice composed 
of argon atoms (m = 40 a.u., a = 3.4Ä, e/kB = 120 °K). The rectangular 
simulation cell had the length of 100 - 150 unit cells (200 - 300 planes of atoms) 
in the z direction of shock propagation. The transverse x dimension was usually 
50 - 100 unit cells with periodic boundary conditions imposed along the x axis 
The initial density n0 was chosen to be 0.93-1.03 and the temperature T0 = 0.1. 

A planar shock wave is initiated by causing a few atom planes to move 
with a constant piston velocity up in the z direction. During a simulation the 
piston atoms are constrained to remain at their moving lattice sites. The time- 
dependent profiles for velocity, density, mean square fluctuations of the longitu- 
dinal and transverse components of atom velocity ("kinetic temperature" compo- 
nents), internal energy, and pressure tensor were obtained. We also measured the 
pair correlation functions, the distribution functions of the velocity components 
and the probability density for the potential energy in several planes z = const 
within the shock layer at different times for describing the evolution of the lattice 
structure during the shock compression. 

The simulation cell is divided into bins along the z direction to obtain the 
shock-wave profiles. Typically the number of bins was equal to twice the number 
of unit cells in uncompressed lattice, giving a bin width Q.87o--0.96cr. The local 
properties at a point are obtained by taking a spatial average over a bin around 
point and an average over the systems of an ensemble. We have followed the 
approach [4] based on the formulas given in [7] for the expectation value (Q/) 

of dynamical variable a over an ensemble having distribution function /. It is 
assumed that a local property dependent directly on atomic position, such as 
the mass density, is given by 

n(v,t) = Y,{miA(ri-r);f},    A(rt - r) = f1/^^ f " ¥ < * < - + U. 
,: (0 ptherwise, 

where d is the bin width, S is the area of cross section of MD cell, and A(n - r) 
is the localization function (in [7] the Dirac's «-function was used). For a'local 
property dependent on interatomic separation P0-, such as the stress tensor the 
interaction of atoms on the opposite sides of S are taken into consideration 

'(r.O = -D^(vv-u)(vi-u^(r<-r);/)+i2/£iffli^i!^ia(ri_r):/' 

678 



VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing 

where u(r,t) is the mean velocity in the bin centered about r. All the generated 
systems are accepted for taking ensemble averages, implying the constant dis- 
tribution function. The fluctuations of internal energy measured for different 
systems of an ensemble were sufficiently small in the simulation. Besides, one can 
use the canonical distribution function by introducing a Metropolis procedure 
to accept or reject the new realization at a given time t as in [5]. 

Figure 2 shows some simulation results of typical example of shock wave in 
2D lattice with 100 atoms in the cross section. The parameters of simulation (pis- 
ton velocity uP/c0 = 0.7, where Co - longitudinal zero-temperature sound speed, 
Mach number M = 3, compression ni/n0 « 30%) are representative for rather 
strong steady shock wave. The simulation makes it apparent that the fluctuation 
of the longitudinal velocity component, Tn ~ J2i(vit ~ u*)2> Srows faster tnan 

the fluctuation of the transverse component Tt ~ X^fe - uT)
2. A similar 

phenomenon has been observed previously [1, 6]. The difference between Tn and 
Tt leads to the anisotropy of pressure within the shock layer and to the effect 
similar to the surface tension [1]. The evolution of the velocity component tu 
distribution function across the shock layer reveals significant deviation not only 
from the Maxwellian equilibrium distribution but also from the corresponding 
bimodal distribution. The virial terms of normal P'n and tangent P[ components, 
and the difference between them are also presented as well as the evolution of 
potential energy distribution function across several planes z = const within 
the shock layer. The simulation results were obtained for 200 systems from an 
ensemble showing a considerable reduction in statistical fluctuations. 

The experiments on network-connected multicomputers in PVM environment 
confirm an efficiency of the algorithm for obtaining ensemble averages of the 
time-dependent dynamical variables. The three-dimensional ensemble-averaged 
MD simulation of a shock wave in solid states are currently in progress. 

The computational resources were provided by the Keldysh Institute of 
Applied Mathematics of Russian Academy of Sciences and the National Center 
of Supercomputing of the Federal University of Rio Grande do Sul. I would like 
to thank S.I.Anisimov and V.V.Zhakhovskii for encourangement, support and 
many useful discussions concerning this work. 
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Fig. 2. a) Spatial profiles of mean-square fluctuations of the longitudinal Tn and trans- 
verse Tt velocity components with corresponding profiles of the density n. b) Spatial 
profiles of normal (Pn) and tangent (Pt') components of potential contribution to the 
pressure tensor. Distance * from the piston is given in a units, c) Distribution func- 
tions of the longitudinal v, velocity component in different layers normal to S-axis 
d) Distribution functions of the potential energy in different lavers normal to -axis 
Layers are numbered from upstream to downstream. Piston velocity «p = 0 7c0 (r0 

- longitudinal zero-temperature sound speed). Shock velocity is 3.0 c0 , compression 
«i/tio is 307c. The data were averaged over 200 systems from an ensemble 
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Abstract The Bulk Synchronous Parallel Model, BSP has been proposed by 
Valiant to predict the performance of current parallel systems. In the BSP 
model the computation is divided in supersteps. The fundamental assumption of 
the BSP model is the /i-relation hypothesis. This states that the communication 
time of a given superstep is proportional to the maximum number h of packets 
communicated by any processor. This paper makes a brief survey of the BSP 
parallel computational model and studies the validity of the A-relation 
hypothesis using current standard message passing parallel software and current 
standard network technology. We measure the influence of the communication 
pattern on the time invested in an /i-relation. The conclusion is that a linear 
model based in the /t-relation hypothesis can be used to predict the execution 
time for a wide set of algorithms written using Standard Message Passing 
Libraries. 

1     Introduction 

Among the plethora of parallel computational models proposed, PRAM, Networks, 
BSP and LogP are the most popular. The PRAM model [3] has been widely used to 
represent the complexity of parallel algorithms. The model is simple and useful for a 
gross classification of parallel algorithms but is unrealistic because all processors 
work synchronously and inter-processor communication is free. It assumes a single 
shared memory where each processor can access any cell in unit time and neglects 
contention caused by concurrent access to different cells within the same memory 
module. In a Network Model [6], communications are only allowed between directly 
connected processors; other communications are explicitly forwarded through 
intermediate nodes. Many algorithms have been created which are perfectly matched 
to the structure of a particular network. However these elegant algorithms lack 
robustness, as they usually do not map with equal efficiency onto interconnection 
structures different from those for which they were designed. 

Many of current parallel computers consist of a collection of complete computers 
connected through a network interface to a multistage interconnection network. Culler 
et al. [2] believe that this hardware organization is going to dominate commercial 
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Massively Parallel Computers in the near future. The LogP Model, [2] characterizes a 
parallel hardware/software platform by four parameters: the number of processors (P) 
the gap (g), the latency (L) and the communication overhead o. The model also 
assumes that if a processor attempts to transmit more than [L/g] not consumed 
messages, it will stall until the message can be sent without exceeding the limit 
Although the model encourages the careful scheduling of communication and 
overlapping of communications and computations, there is a concern that a complete 
LogP analysis for non-trivial algorithms is in not few cases almost unfeasible 

Section 2 introduces the BSP model. Section 3 measures the influence of the 
communication pattern on the time invested in an A-relation. Section 4 concludes that 
the linear model approach proposed in section 3, can be used to predict the 
performance of PVM [4] and MPI [11] bulk synchronous programs. 

2     The Bulk Synchronous Parallel Model. 

The BSP model [12] tries to provide a simple but accurate interface between the 
domains of parallel architectures and algorithms. In the BSP model, a parallel 
machine consists of a set of processors, each with its own private memory and an 
interconnection network that can route packets of some fixed size between processors 
The computation is divided in supersteps. In each superstep, a processor can perform 
operations on local data, send packets, and receive packets. This local computation 
must depend only on data present in the local memory of the processor at the 
beginning of the superstep. A packet sent in one superstep is guaranteed to be 
delivered to the destination processor at the beginning of the next superstep 
Consecutive supersteps are separated by a global synchronization of all processors 

The two basic BSP parameters that model a parallel machine are: the gap g which 
reflects per-processor network bandwidth, and the minimum duration of a superstep 
L, which reflects the latency to send a packet through the network as well as the 
overhead to perform a global synchronization. Let be A the maximum number of 
packets a processor communicates (the sum of the packets received and sent) in a 
superstep (such a communication pattern is called an A-relation). The fundamental of 
the BSP model lays on the A-relation hypothesis introduced by Valiant. It states that 
the communication time spent on an A-relation is given by 

Communication Time = gh n\ 

Let denote by W the maximum time spent in local computation by any processor 
during the superstep. The BSP model guess that the running time of a superstep is 
bounded by the formula: v 

Time Superstep = W + g A   + L n\ 

In consequence, the design of algorithms under the BSP model tries to minimize 
the number of supersteps, the maximum number of operations performed by any 
processor Wand the maximum number A of packets communicated. A virtue in BSP 
of having barriers available as a primitive is that analysis is simplified by assuming 
the processors exit the barrier in synchrony. Special libraries have been built to 
support the BSP style of programming [8], However, such software is not still widely 
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extended. There is no doubt that MPI and PVM constitute the facto current standards 
for distributed computers. 

3     Checking the Validity of the h -relations Hypothesis 

The experiments were done in the IBM Scalable POWERparallel SP2 [1]. In this 
distributed-memory parallel computer, processors or nodes are interconnected through 
a High Performance Switch (HPS). The HPS is a bi-directional multistage 
interconnection network. The computing nodes are Thin2, each powered by a 66MHz 
Power2 RISC System/6000 processor. All the algorithms were implemented in PVMe 
[5], the improved version of the message-passing software PVM. 

The /i-relation hypothesis does not consider the influence of communication 
patterns. For example, independently of the number of pairs, processors 
communicating according to a PingPong algorithm fall in the same A-relation class. 
That is h = n, where n is the size of the outgoing packets. Their cost under the BSP 
model matches the cost of a single couple of communicating processors: g *n. This h- 
relation class appears for the exchange pattern for packets of size n/2. When p- 
processors are involved, the personalized OneToAH and AllToOne communication 
patterns fall into the same former class of ^-relations for packets of size m = nJ(p-i). 
The same /i-relation appears under the personalized AHToAll communication pattern 
when the size of the outgoing messages is m = n/2*(p-l). Each processor sends (p- 
l)*m packets and receives the same number (p-l)*m. The number of communications 
performed by any processor is 2*(p-l)*m = n = h. The actual times spent on these 
five patterns for their respective packet sizes have to be similar if the /i-relation 
hypothesis holds. 

Table I shows the influence of the communication pattern in the time spent in an h- 
relation. Experiments were carried out for each pattern with the /i-relation size 
between 420 and 13762560 bytes and the number of processors between 2 and 8. For 
the PingPong and Exchange, 2, 4, 6 and 8 communicating couples were used. For the 
others, experiences involved 4, 6 and 8 processors. For each fixed number of 
processors, 500 experiences were performed. The entry in each column shows the 
average time in seconds. The Exchange pattern is the fastest due to the maximum 
parallelism it achieves. On the Exchange pattern the two processors in each couple 
simultaneously send their messages. On the other extreme, the PingPong 
communication pattern is the slowest since it implies the most sequential case of 
sending (receiving) by one processor the h bytes implied in the /j-relation. The time 
for any other pattern is in the range between these two. An straightforward 
implementation of the personalized OneToAH is to consecutively send "the whole 
message to each of the other processors. The policy we propose is to divide the 
message in packets and proceed to apply to each packet the former algorithm. This 
policy is optimal using a packet size of 32KB. The best policy for the AHToAll 
pattern for /t-relations under 430080 Bytes is to start sending all the messages 
according to a processor permutation. From this size on, the network becomes 
saturated and it is better to consume the incoming messages. Although the values do 
not appear in Table I, for all the patterns, the dependency of times in the number of 
processors was negligible (under 0.2% for /i-relations larger than 215040 bytes). 
Observe that, the times for Exchange, OneToAH, AllToOne and AHToAll keep closer 
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among them than the PingPong time. The maximum difference percentage max, {( 
max(ti(/!))-min t.(A) )/min{timek(A)} / i,j,k * PingPong} is 21%, reached for "h = 
13762560 bytes. 

PingPong Exchange OneToAll AllToOne AllToAll AvErr MaxErr 
420 0.000114 0.000114 0.000269 0.000157 0.000352 40.30 202.94 
840 0.000139 0.000121 0.000286 0.000169 0.000362 37.51 188.03 
1680 0.000191 0.000153 0.000313 0.000206 0.000380 34.19 141.69 
3360 0.000259 0.000217 0.000356 0.000265 0.000439 27.89 100.63 
6720 0.000394 0.000306 0.000442 0.000377 0.000527 17.57 62.21 
13440 0.000659 0.000470 0.000659 0.000596 0.000689 7.44 25.47 
26880 0.001168 0.000855 0.001081 0.000993 0.001088 0.46 20.75 
53760 0.002239 0.001553 0.001939 0.001822 0.001887 -3.73 26.11 
107520 0.004820 0.003105 0.003745 0.003562 0.003492 -1.79 32.48 
215040 0.009418 0.006418 0.007508 0.007080 0.006883 -0.75 29.61 
430080 0.018768 0.012684 0.015016 0.014222 0.013685 -0.36 30.27 
860160 0.037199 0.025448 0.030131 0.028558 0.026845 -0.39 29.26 
1720320 0.074260 0.050447 0.060469 0.057548 0.053980 -0.10 29.46 
3440640 0.148477 0.100577 0.121139 0.115967 0.106736 -0.09 29.62 
6881280 0.297393 0.201113 0.241496 0.232967 0.212628 -0.06 29.89 
13762560 0.593549 0.402237 0.487938 0.467001 0.422079 0.03 29.61 

(3) 

Table 1. Pattern Communication Times and Error Percentage for different Ä-relation 
sizes. 

To obtain the general linear approach to the /j-relation time we have computed the 
least square fit of the average times of the five patterns. This gives L = 1.06* 10-4 and 
g = 3.45*10-. Compare these BSP-PVM values with the obtained using the Oxford 
BSP library: g' = 35*10", L' = 4.62*104 for the same machine [7]. Columns labeled 
Av. Err. and Max. Err. respectively show the average and maximum errors defined as: 

AvErrih) =]00{( I JßVSHgh+L)}/^ Tß)/5): i in the set of patterns}. 

MaxErr(h) =1001 max ^TßHgh+Ljl /min J T/h): i, j in the set of patterns}. 

Negative numbers in the Average Error column correspond to cases in which the 
model time is larger than the actual time. For h larger than 26880, the Average Error 
is under 4%. From 13440 on, the Maximum Error keeps almost constant around 30%. 

4     Conclusions. 

The collective computation provided by MPI fits the Bulk Synchronous Programmin« 
Methodology. Extensions of PVM like La Laguna C [9] make PVM a tool suitable for 
the expression of BSP algorithms. Based in the A-relation hypothesis, a linear model 
approach to predict the performance of PVM/MPI bulk synchronous programs has 
been  presented.  The  maximum  error  incurred  by   neglecting  the   influence  of 
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communication patterns is under 30% for medium and large /i-relation sizes. A more 
accurate prediction can be achieved by using the values for g and L obtained for each 
pattern [9]. 
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Abstract. In this paper we study theoretically two different one-sided 
block Jacobi algorithms for solving the Symmetric Eigenvalue Problem. 
Sequential and parallel versions of the algorithms are analized and com- 
pared with a two-sided block Jacobi algorithm. The main advantage of 
the one-sided algorithms is that they are better suited to parallel com- 
puters, and when computing eigenvalues and eigenvectors on multicom- 
puters a more reduced execution time is predicted for the one-sided al- 
gorithms than for the two-sided algorithm. 

1 Introduction 

In this work we studied the design of two one-sided block Jacobi algorithms 
for the Symmetric Eigenvalue Problem. The algorithms are designed using as a 
basic the two one-sided Jacobi algorithms proposed in [1]. 

We begin by explaining how a two-sided block Jacobi method works [2], and 
after that the two-sided method will be compared with two one-sided block Jac- 
obi methods. The main goal of the comparison is to conclude if one-sided block 
Jacobi algorithms can be designed maintaining the high degree of parallelism 
of the algorithms not working by blocks, and the one-sided methods can be 
competitive with two-sided block algorithms. 

2 A two-sided block Jacobi algorithm 

The method works over two matrices: the matrix A and a matrix V where 
the rotations are accumulated. Matrix V is initially the identity matrix. Both 
matrices .4 and V are divided into columns and rows of square blocks of size 
s x s, and these blocks are grouped to obtain bigger blocks of size 2s x 2s. 

* Partially supported by Comisiön Interministerial de Ciencia y Tecnologia, project 
TIC96-1062-C03-02; Consejeria de Cultura y Educaciön de Murcia, Direcciön Gen- 
eral de Universidades, project COM-18/96 MAT; and Accion Integrada Hispano- 
Lusa HP1996-0007. 
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Jacobi methods work by constructing a matrix sequence {At} by means of 
-4/+1  = QiA,Q\ , / = 1,2  where Ax = A. In a non block version of the 
method, Q, represents a plane rotation and each product QiAiQ) annihilates a 
pair of nondiagonal elements, ay and ajt, of matrix Ai, but in a block version 
each Qt represents a set of rotations that nullify elements in a block of At. In each 
block the algorithm works by making a sweep over the elements in the block. 
The subdiagonal elements belonging to diagonal blocks will not be zeroed. To 
correct this, blocks corresponding to the first Jacobi set are considered to be 
of size 2s x 2s, adding to each block the two adjacent diagonal blocks and the 
symmetrical block. The work over each block can be performed using level-1 
BLAS. The corresponding rotations are accumulated to form a matrix Q of size 
2s x 2s. Finally, the corresponding columns and rows of blocks of size 2s x 2s 
of matrix A and the rows of blocks of matrix V are updated using Q. These 
matrix-matrix multiplications can be effected using level-3 BLAS. 

After completing a set of blocked rotations, a swap of column and row blocks 
is performed, according to the order we are using. The odd-even order will be 
used, [3], because it simplifies a block based implementation of the sequen- 
tial algorithm, and allows parallelization. If n = 8, numbering indices from 
1 to 8, and initially grouping the indices in pairs {(1,2), (3,4), (5,6), (7,8)}. 
the sets of pairs of indices are obtained as follows: {(1,2 ,(3 4) (56W7 SU 
{2.(1,4),(3,6),(5,8),7U(2,4),(1,6)!(3,8),(5,7)}).... M '  M "   "' 

This data movement brings the next blocks of size s x s to be zeroed to the 
subdiagonal, and the process continues similarly to operations performed in the 
first step. However, in this case the elements to be nullified are in square blocks 
of size s x s inside diagonal blocks of size 2s x 2s. This data movement will imply 
data transferences in the parallel version of the algorithm. 

The cost per sweep is: 

8^3n
3 + (12^1-16Ä;3)n.2s + 8/fe3ns2   flops, (1) 

where h and k3 represent the cost of an arithmetic operation performed usins 
BLAS 1 or BLAS 3, respectively. 

2.1     A parallel algorithm 

It is possible to obtain a balanced algorithm for a ring. Grouping blocks of size 
2s x 2s of matrix A and V in bigger blocks A(j and V{j of size 2sk x 2sk we 
assign to each processor Pit with p = § and ^_ = q< rows of b]ocks • and 

q-l-i of matrices A and V. Therefore, each processor P,- contains blocks 4,-, 
and .4,.1-i,j, with 0 < j < i, and Vtj and K„_i_i,j, with 0 < j < q. 

Due to the data movement between odd and even steps, it is necessary to 
reserve some additional memory, and (2s*+s)(2n+2s*+2s) positions of memory 
are reserved on each processor. 

The arithmetic cost per sweep when computing eigenvalues and eigenvectors 
is: 
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8A-3—+ (12*i-8fc3) —+ 12*!—  flops. (2) 
J> P P 

And the cost per sweep of the communications is: 

n         (                     2n2\ 
ß(p+Z)- + r(8n2 + 2ns -J    , (3) 

where ß and r represent the start-up and the word-sending time, respectively. 

3    A one-sided block Jacobi algorithm. First version 

We analized the first one-sided Jacobi algorithm in the paper [1]. The algorithm 
works on matrices B0 = A and W0 = I, obtaining Br+\ = VrBr, Wr+1 = VrWr, 
with Vr the rotation matrix nullifying a non-diagonal element of matrix Ar = 
Brw*r = v;_! v;_2... VoBoWM... v;_v 

To nullify a,j it is necessary to compute a,-,-, ajj and ct,j, because the al- 
gorithm works on matrices Br and Wr, and not on matrix Ar. These elements 
are obtained with three dot products. After that, rows i and j of BT and Wr 

are updated. If the diagonal elements are stored in an auxiliary vector, it is not 
necessary to compute a,-,- and ajj every time, and the cost per sweep is: 

7n3 _ _n. + _     fhps (4) 

We propose a one-sided block Jacobi algorithm by combining the ideas of the 
two-sided block algorithm and the ideas of the one-sided algorithm. 

Matrices B and W, of size n x n, are divided in blocks of size s x n, and 
blocks of ,4 = BW are treated using the odd-even ordering. 

Initially the ^ blocks corresponding to the first Jacobi set are treated, mak- 
ing a two-sided sweep on blocks of size 2s x 2s of matrix A and accumulating 
rotations. These operations are done using BLAS 1. 

After that, matrices B and W are updated multiplying the rotation matrices, 
of size 2s x 2s, by the corresponding blocks of B and W, of size 2s x n. In this 
case matrices B and W are not symmetric. 

In the two-sided algorithm a movement of rows and columns of blocks is 
performed in order to have the blocks grouped according to the next Jacobi set. 
This movement can be include in the updating of the matrix if it is done on the 
rotation matrix before updating A. In the one-sided algorithm the movement of 
rows of blocks of B and W can be done in the same way (figure 1). 

In successive steps it is necessary to compute An, Ajj and Ajj, because the 
work is not done directly with matrix A. If we call Bi and W, the i-th row of 
blocks of B and W in figure l.a), Au =BiW,f, Ajj = BjWj and A{j = BtWj. 
If the diagonal blocks are stored it is not necessary to compute An and Ajj. 

After the blocks An, Ajj and Aij are computed, a matrix of size 2s x 2s is 
formed, and a two-sided sweep is performed on this matrix, accumulating the 
rotations. 
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Fig. 1. Distribution of matrices ß and W on the first one-sided block algorithm: a) 
initially, b) after application of the first set of rotations. 

2sl 
W 

Fig. 2. Initial distribution of matrices B, D and W in the system of processors for the 
first one-sided parallel block algorithm. 

The cost per sweep is: 

9k3n
3 + [12ki-9k3)n2s     flops. (5) 

3.1    A parallel algorithm 

It is possible to assign to each processor A; consecutive blocks of size 2s x n, with 
n = 2skp, of matrices B and W (figure 2). In the figure the distribution of the 
matrices is shown, but also in this case it is necessary to reserve some additional 
memory to store data in sucessive steps of the algorithm. The quantitv of memorv 
reserved in each processor is (2k+ l)sn to store elements of B, the same quantity 
to store elements of W, and (2* + \)s2 to store elements of D. 

The arithmetic cost per sweep is: 

9*3- + 12/^ + 12*!—     flops. 
P P P (6) 

It is not necessary to broadcast the rotation matrices because each pro- 
cessor updates the rows of blocks it contains. The only communications are 
those between steps to group data according to the next Jacobi set. In odd steps 
blocks of size s x 77 of 5, and W, and a diagonal block of size s x s are sent from 
Pi to P,-_i, with ?' = 1,2,.. .,p- 1, and in even steps the same communications 
are done from P^x to />■. Therefore, the cost per sweep of communications is: 

2-ß+{4n2 + 2ns)r s ' (<: 
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2s: 

Fig. 3. Initial distribution of matrices A and D in the system of processor for the 
second one-sided parallel block algorithm. 

4    A one-sided Jacobi algorithm. Second version 

The second one-sided Jacobi algorithm proposed in [1] has the advantage of a 
lower execution time, but also has the disadvantage of a worse precision [4]. 

The method works by diagonalizing matrix B = A2 but without explicitly 
form B. Rotations V nullifying elements 6,j of B are applied to A If initially 
-4i = A and Bx = AiA\, we will have Ar+1 = VrAr, and A must be updated 
only by one side. Because BT = ArA

f
r, it is necessary to perform dot products 

to obtain ba, bjj and &,•_,-, which are needed to obtain the next Jacobi rotation. 
The cost per sweep is approximately 4n3 flops if the elements of the diagonal 

are stored. 

The method has some problems derived from the fact that the eigenvalues 
computed are those of A'J, but not the eigenvalues of A [1, 4]. 

To design an algorithm by blocks matrix A is divided into consecutive blocks 
of size s x n. 

Before each subsweep on a block 5,-,-, Bjj and Bijt are computed (or only 5,j 
if the diagonal blocks are stored). Even if the diagonal blocks are stored, in the 
first step all the blocks must be computed, because the algorithm works with A 
and not with B. 

The cost per sweep is: 

bk3n
3 +[12^-5k3)n

2s     flops. (8) 

4.1    A parallel algorithm 

The distribution of matrix A and matrix D, where the diagonal blocks are stored, 
can be that shown in figure 3. Also in this case it is necessary to reserve some 
additional memory. The size of memory reserved on each processor to store data 
from matrix A is (2k + l)sn and to store data from matrix D is [2k + l)s2. 

The arithmetic cost per sweep is: 

5A-3—+ 12A-!—+ 12*!—     flops. 
P P P (9) 
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Table 1 Predicted execution time of different parallel block Jacobi algorithms. 

n = 1024 P = l p = 2 p = 4 p = 8 p= 16 p = 32 p= 64 p = 128 
tivo — sided 412.3 217.5 108.9 54.6 27.5 15.9 9.4 
one — sided, versionl 463.8 246.5 123.6 62.1 31.3 16.0 9.3 5.2 
one — sided, version'2 257.6 143.1 71.7 36.0 18.1 9.2 5.2 2.9 

The only communications are those produced by the data movements between 
steps. In odd steps s(n + s) elements are sent from P, to P,_!, and in even steps 
the same quantity is sent from Pt- to Pi+1. The cost per sweep of communications 
is: 

—/?+(2n2 + 2n«)r (10) 

5    Comparison and Conclusions 

The first version of the one-sided algorithm has a higher cost than the two-sided 
method, but the difference is smaller in the algorithms working by blocks than 
in the algorithms not working by blocks. The second one-sided algorithm has the 
lowest cost, but has worse precision. Communications are less costly in the one- 
sided algorithms because it is not necessary to broadcast the rotation matrices 
Also in the communications the second one-sided algorithm is better because 
it works with one matrix and only half of the data must be transferred Table 
1 shows the execution time predicted on the Touchstone Delta for matrix size 
1024 and a variable number of processors. The estimated values of the constants 
are ([2]) k, = 0.137/i«, *3 = 0.048^5, 0 = 61//s and r = 0.149/z.s. We can see the 
behaviour of the one-sided algorithms is better when the number of processors 
increases. This is why it could be interesting to implement the algorithms here 
anahzed and to compare them experimentally. This is what we are doing now. 
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Abstract. In this paper we set out to study the performance of par- 
allelization of iterative method on shared memory multiprocessor using 
different data distributions. We start with the study of block and cyclic 
distributions, and then propose a mixed distribution which combines ad- 
vantages of both. 

Keywords: Conjugate Gradient, Data Distribution, Distributed Shared 
Memory Systems, Sparse Systems. 

1 Introduction 

This work tackles the parallelisation of the non-stationary iterative Conjugate 
Gradient method [1,6], which is used to solve sparse linear equation systems. 
This type of operation frequently appears during the resolution of partial differ- 
ential equations, and one of its characteristics is that the matrix of coefficients 
must be symmetric and positive-defined. The results obtained can be generalised 
to other iterative methods, due to the fact that all of them use the same kind of 
computations. 

The system on which the parallelisation of the algorithm was implemented 
was the distributed shared memory multiprocessor Origin 2000 by Silicon Graph- 
ics, which consists of 8 MIPS R10000 processors using a hardware cache coher- 
ence protocol based on the directory [4]. 

2 Data distributions 

We used the data-parallel programming paradigm which, as well as being easy 
to program, presents high complexity in the establishment of optimisations. The 
programming language used was fortran77. The parallelization is expressed by 
means of parallelization directives [5], which direct the compiler in the generation 
of calls to the low level libraries in the multiprocessors. The elements of a vector 
can be allocated in the memory of the system using two distributions: block and 
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cyclic. By means of a block distribution, the elements of a vector of size N are 
divided into P blocks of size B = N/P (where P is the number of threads) In 
a cyclic distribution, the elements are divided into pieces of size L (in our case 
L - 1), and then they are distributed cyclically over the threads. 

On the Origin 2000 two techniques can be used to carry out these distribu- 
tions, regular and reshaped. In the regular scheme the elements to be distributed 
have to be pages of 16Kb. In the case in which data must be allocated in dif- 
ferent memories are in the same page, the compiler will not be able to resolve 
the conflict, and will place the whole page in one of the memories. This causes 
a great number of conflicts of false sharing, especially for cyclic distributions, as 
at the level of cache line consecutive elements will belong to different threads. 
This is reflected in a strong increase in the number of operations of coherency, 
like invalidations or exclusive to shared transitions in cache lines 

BP1
OCKP?IS1SIBUTI°^ CCLIC DISTRIBUTION 

Jl Ti •" PP PI   P2   P3    ...   Pp PI   P2   P3   ...   pp 

RESHAPE L RESHAPE 
Pp P3   P2   PI __B  !p~p— 

Fig. 1. Reshaped scheme over a vector. 

In our case we use the reshaped scheme illustrated in figure 1, with which 
the compiler can reorganize the size of the blocks in the storage structure of 
the memory to obtain the desired distribution. This can be achieved by storing 
consecutively the array elements that corresponds to each local memory. Using 
the reshaped scheme, both the cyclic and block distributions obtain similar values 
in the number of coherency operations. 

3    Computations 

The parallelization of the algorithm is based on two types of operations which 
represents the greatest computation costs: sparse matrix-vector products and 
vectorial operations [3]. ' 

The sparse matrix-vector product is carried out by accessing the matrix by 
columns, which is the same as reading its rows, as the matrix is symmetric. In 
this way it is possible to parallelize the product so that each processor computes 
the value of the different elements of the resulting vector, thus eliminating pos- 
sible conflicts in writes. The format for accessing the matrix is the Compressed 
Column Storage, by means of which the matrix is characterised by just three 
vectors [1]. 

The algorithm also uses some vectors to carry out various intermediate op- 
erations to compute, the residue, the successive approximation to the solution 
and the search direction. With these vectors two types of operations are carried 
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out: linear combinations of vectors and dot products. These operations have 
great influence over the efficiency of the parallel program. Moreover, the perfor- 
mance does not depend on the type of distribution, due to the use of the reshape 
technique. 

4    Results 

Initially two different distributions were evaluated: the block and the cyclic ap- 
plied to all of the vectors, including those which characterise the matrix. Then, 
a new distribution was tested, which we will call hybrid block-cyclic in which 
the vectors that characterise the sparse matrix are distributed in blocks, and the 
rest of them cyclically. 

Table 1. Matrices used as benchmark. 

matrix bcsstkl4 bcsstk!7 zenios random 

order    1806 
nnz       63454 

10974     2873    10000 
428650   21842 110576 

In our analysis we used sparse matrices of different sizes and patterns. All 
of these, come from the Harwell-Boeing collection [2], in addition to one matrix 
generated randomly. The characteristics of them are shown in table 1. 

Number of processors Number of processors 

■«pwdup^ilqch   —1—spwduthcydic  —A—spwdup^iytrid ...»■■■ Btm^lodt  ■■■&---Tlmfrcydic  ■ • ■ A-• • • time^iybiKl 

Fig. 2. Speedup and run time per iteration. 
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In figure 2 the speedups and run times for iteration are shown. Note that the 
best results have been obtained for the block distribution, whereas in the cyclic 
case there are irregularities in these values due to an increase in the number 
of cache misses. These irregularities are eliminated with the use of the hybrid 
distribution. 

The performance of the parallelization of this algorithm will depend mainly 
on the management of the memory, an important factor being the volume of 
data accessed by each processor. The pattern of access to the data in the sparse 
matrix-vector product in each processor is shown in figure 3, and is determined 
by the distribution of vector Y. In other words, each processor will access those 
parts of the matrix which correspond to their elements of vector Y. 

A. 

IB 
Y  - 

m    : ff=ff 
E3 mm\ 

(a)   BLOCK (b)  CYCLIC 

Fig. 3. Pattern of access in sparse matrix-vector product. 

Note that, in the block distribution the access to the matrix is performed on 
adjacent columns. In this way, as the number of processors increases, each one 
must access a smaller number of pages and cache lines. In the case of a cyclic 
distribution of vector Y, it is necessary to access practically all the pages of the 
matrix. This is reflected in the large number of TLB misses. For matrix bcsstkll 
the number of pages it occupies is more than the number of TLB entries, so that 
in a single processor a great number of misses is generated as they have to access 
the whole matrix. When the number of processors increases, in the block case the 
number of TLB misses decreases, whilst in the case of the cyclic distribution it 
remains almost the same. However, the main problem with the latter distribution 
is that the consecutive elements of the matrix belong to different cache lines, so 
that the number of lines accessed by each processor is much larger than in the 
block case. 

Figure 4 shows the number of cache misses. In a block distribution the lowest 
values in cache misses are obtained. With a cyclic distribution a marked increase 
in the number of cache misses in the case of four processors can be observed. 
The reason is that in this case all the lines read by each processor do nor fit in 
its cache, thereby producing a large number of operations of replacement. In the 
next iteration these replaced lines are demanded again, thus provoking capacity 
misses in the cache. By means of a hybrid distribution it is possible to solve 
this problem to a great extent, as consecutive elements in the matrix will be 
consecutive in memory (except if they are assigned to different processors) and 
therefore will probably belong to the same cache line. In this way it is possible to 
reduce the number of accesses to cache lines, and then the replacement problems 
have been eliminated. However, these values will always be larger than in the 
case of block distributions, given that it is necessary again to access a greater 
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memory space than in the block case, due to the cyclic distribution of the vector. 
The higher the number of non zero elements the greater will be this effect. Thus, 
in the case of the matrix zenios, as it has a small number of non zero elements, 
the results archived in the run time for iteration are similar for all distributions. 
The size of matrices bcsstkl7 and random is higher than that of the secondary 
cache and this produces a large number of capacity misses when the algorithm 
is executed in a single processor. This also produces superlineal speedups for the 
matrix bcsstkl7. 

bcsstkU 

Z soo 

2 < 6 

Nol;toe«MK 

,„■    bcsstkt7 

3 * 
c 
f 

Jl 
0 
Z 

ix 

'"■°*.n.'»'.        . 
2*61 

zenios random 
IOOO—i          1 1 

■00 |                \\        J 

mi 

2000 \    /...*-.......; 

j' 

Lai'-«-l-4--0'-l[ 

Nofpncoun 
2 t < 

NofpraenuN 
t        i        t 

Nolpiouusrs 

— B- -BLOCK — ♦- -CYCUC --•• -HYBRO 

Fig. 4. Cache misses. 

The main problem of this distribution arises when matrices with non uniform 
patterns, such as zenios, are used, as they cause a load unbalance between the 
processors which operate over the densest parts as against those that operate 
over the sparsest parts. This can be noted in figure 5, which represents the load 
unbalance given by B = Cmax/Cmed, where Cmax is the number of floating point 
operations of the thread which has the greater work load, and Cmed is the average 
value. High values of B limit the value of the speedup when a high number of 
processors is used. By means of the use of a cyclic distribution, the problem of 
load unbalance is then solved. Note that speedup for the zenios matrix is more 
scalable for the hybrid distribution. 

BLOCK-RESHAPE 

s1- 

BCSSTK14 
BCSSTK1? 
ZENIOS 
RANDOM 

Number of processors 

CYCLIC - RESHAPE 
1 J 

I.4S 
-^ BCSSTKU 

BCSSTK17 
ZENI05 

1.35 

■ •>. RANDOM 

« 
(O 1.3 

3 1 25 

t ? 
a .IS 

1.1 n >-i 
.05 _.<r.. - s ""^"*'' 

Number of processors 

HYBRID - RESHAPE 

Number of processors 

Fig. 5. Load unbalance. 
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5    Conclusions 

The use of regular distributions is inefficient in sparse systems, given that in 
these cases the pattern of the matrices is not known at compile time. By using 
a hybrid distribution the advantages with regard to the load balancing of the 
cyclic distribution are maintained, and the execution times per iteration are 
similar to the block distribution. In this way, the results using matrices with 
regular patterns are similar to the block distribution, and faced with matrices 
with irregular patterns, the load unbalance is resolved. 
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Abstract. We present an approach for designing synchronized parallel 
algorithms to update RedBlack trees. The resulting algorithms update k 
keys with k processors on trees of size n in time 0(logn +logk) which 
is very close to the optimal speedup of 0(log n) (sequential time for one 
search or update). The algorithms are designed as a pipeline of waves 
of processors, which are created at the bottom of the tree and flow up 
to the root. The design is made following the E.W.Dijkstra approach by 
first choosing the invariant properties and then the rules to update the 
tree. 

Keywords: Synchronized parallel algorithms, PRAM algorithms, Red- 
Black trees. 

1    Introduction 

The so called Synchronized parallel algorithms are those that manage data types 
in a synchronized manner (PRAM algorithms [Akl89]). They can be envisaged 
as many sequential algorithms running simultaneously and executing the same 
sentence at the same time. Therefore, it may happen that several processes read 
or write on the same memory location at the same time. Our goal is to avoid 
these concurrent accesses. 

The first synchronized parallel algorithms on search trees were designed by 
W. Paul, U. Vishkin and H. Wagener for 2-3 trees in 1983 [PVW83]. They proved 
that the time needed to search or update Ar elements with k processors on a tree 
with n keys is 0(logn + log k) which is very close to the optimal speedup of 
O(logn). 

They designed parallel algorithms to dynamically maintain a parallel dic- 
tionary working simultaneously with many keys. The algorithms first hang the 
keys from the leaves (search phase), and later rebalance the tree (rebalancing 
phase) using pipelines of processors. These pipelines can be envisaged intuitively 

* This work has been partially supported by ESPRIT LTR Project, no. 20244 — 
ALCOM-IT and DGICYT under grant PB95-0787 (project KOALA). 
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in terms of traveling plane waves. Assume, for instance, the basic insertion case 
in which every leaf incorporates at most one new key. Something like a wave of 
processors is generated at the bottom of the tree, namely a plane wave, because 
all leaves of a 2-3 tree have the same depth. This wave is sent up in further 
iterations until it disappears. Note that the wave goes to the root and at each 
iteration it strictly increases its height and decreases its depth. The life-time of 
each wave i.e. the number of steps taken by a wave before it disappears, is an 
open problem, but some preliminary results [BYGM97] strongly suggest that it 
is logarithmic on k. 

In the general insertion case, in which a packet of many new keys can hang 
rom a single leaf, a pipeline of waves is generated to get something like harmonic 

traveling waves. Each new wave is created as follows: some iterations after the 
last wave has been created, the packets are split, the middle key of each one 
is attached as a new leaf and the remaining left and right subpackets are hung 
from the new leaf. This set of new leaves created by the middle keys constitute 
the new wave. 

This rebalancing phase synchronizes the processors that belong to the same 
wave, and these processors locally manage the data and test the conditions to 
become inactive or to continue one step more. For this reason we say that pro- 
cessors are controlled by Local Rules. These are sequential algorithms composed 
by a small and fixed number of sentences that access a small number of neighbor 
nodes. The rebalancing phase can be written: 

While there are active processors do 
For all waves do 

For all active processors of a wave do 
Select and apply rules 

endforall 
endforall 

endwhile 

These ideas were applied on B trees by L. Higham and E. Schenk [HS941. on 
Skip lists by J Gabarro, C. Martinez and X. Messeguer [GMM96], and on AVL 
trees by J. Gabarro and X. Messeguer [GM96]. 

The RedBlack trees are an important basic data structure, namely a balanced 
binary search tree, which implements the dictionary abstract data type The bal- 
ancing criterion differentiates RedBlack trees from 2-3 trees, because it does not 
force the tree to be perfectly balanced: it is possible to deal with RedBlack trees 
whose leaves have significantly different depth. Therefore, it could be difficult to 
synchronize the processors of a wave because there is no obvious way to create 
plane waves. 

We address in this paper the design of the synchronized insertion paral- 
lel algorithm on RedBlack trees with the same cost O(logn + log*), and the 
exclvsive-read and exclusive-write policy (EREW [Akl89]). 

700 



VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing 

We omit the search phase of the update algorithms because it is well known 
(see previous references). We only design the rebalancing phase of this algorithm 
in which k keys are updated with k processors. The deletion algorithm can easily 
be designed using the same technique. 

We prove the algorithm correctness following the approach developed by 
E.W.Dijkstra, in which the proofs are based on the preservation of some proper- 
ties, called invariants, at each iteration, and the strict decreasement of a function, 
called variant function, at each iteration. This approach, very common in basic 
sequential algorithmic courses, has not been applied yet on parallel algorithms 
on balanced search trees. 

The rest of paper is organized as follows. Section 2 recalls RedBlack trees. 
Section 3 addresses the synchronized insertion algorithm. Finally section 4 shows 
the local rules of the algorithm. 

2    RedBlack trees. 

Following [CLR90], each node n of a RedBlack tree stores a key, denoted key(n), 
and each internal node has three pointers left(n), right(n) and parent(n) point- 
ing respectively to its sons and parent. A RedBlack tree satisfies the following 
properties: 

Pi : Every node is either red or black. 
P2 : Every leaf (NIL) is black. 
i>3 : If a node is red then both its children are black. This is equivalent to, no 

path from the root to a leaf contains two consecutive red nodes. 
P4 : Every simple path from a node to a leaf contains the same number of black 

nodes. 

The last condition P4 allows the definition of the function called black-height in 
[CLR90]: 

blackh(n) = the number of black nodes on any path from, 

but not including, a node n to a leaf. 

We recall the sequential insertion algorithm: 

Search phase. The key to be inserted falls until it is attached to a new red 
node n at the bottom of the tree. As this new node n is red, the property 
Pi is maintained. 
Rebalancing phase. If the parent of n is black P3 holds and the insertion 
is over. Otherwise, n and parent(n) are red and the bottom-up rebalancing 
phase really starts. By performing rotations and node recoloring, the redness 
of consecutive nodes disappears or rises up. Finally, if the root becomes red 
it is colored black. Figure 1 depicts the local rules applied in this phase. 
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Fig. 1. The three basic local rules (under symmetry) of the sequential algorithm. The 
first rule (a) propagates up the redness and the Mowing two rules, (6) and (c), rotate 
down the blackness. 

3    Synchronized parallel insertion 

Assume that the parallel search phase has ended and that the packets of kevs 
hang from the leaves. We force each iteration of the rebalancing phase to hold 
the following invariants: 

h: Properties Pu P2 and P4 of RedBlack trees. 

h: Only those red nodes whose parent is also red have an active processor. We 
identify the node with its processor, then we sometimes talk about ''active 
nodes". Therefore, when there are no active nodes property P3 holds, and 
by /j the tree is a. RedBlack tree. 

h: All active processors of a wave have the same black-height, 

Vp,9 € wave : blackh(p) = blackhfa). 

This property allows us to define the black-height of a wave w: 

blackh(w) = blackh(p) for any p such that p 6 w. 

h: The black-height of the last created wave is at least two. This property 
means that if the black-height of every wave gets increased by one unit at 
each iteration, then between two consecutive waves there is at least one black 
node. Therefore, if an active node has a grandparent gr, then gr is black. 

The variant, function involves the number of keys hanging at leaves, denoted 
AKEYS, and the sum of the depths of all existing waves, denoted DEPTH. 
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(a) Two active nodes that are brothers (b) All other cases (e.g.: four active nodes 

Fig. 2. The two basic new local rules (under symmetry) of the parallel algorithn 

Namely, it is denned by the ordered pair (NKEYS, DEPTH). It strictly de- 
creases at each iteration because new keys are attached to the tree, and when 
there are no keys, we force waves to strictly increase their black-height. 

Each iteration is composed of two separate actions: (i) the creation of a new 
wave and (ii) the moving up of all waves. 

(?) A wave is created by selecting the middle key of each packet and attaching 
it into a new red node, so Ix holds. Each new red node n is controlled by 
an active processor pn. Then active processors test their parents color and 
become inactive if it is black, so I2 holds. As all nodes of the last created 
wave satisfy blackh(n) = 1 (black leaves hang from them), 73 holds. 

(ii) Active processors run local rules which will be showed in the following 
section. We design them so they satisfy the the previous invariant and so 
they increase the black-height of all waves. Finally, we again update the 
active nodes. 

4    Local rules for insertion 

Let us deal now with the rules we apply to make the waves go up. If there are 
active nodes without a grandparent, we simply turn the root black. For each 
active node n with a grandparent (that is black, by I4) we consider the area 
defined by its grandparent gp, and the sons and grandsons of gp. In this area we 
can have active nodes other than n, but in any case they are all grandsons of gp 
and belong to the same wave, by IA. Depending on the number of active nodes 
in the area we apply one rule or another. 

If the grandparent of an area has only one active grandson we are in the same 
situation as the sequential case so we can try the same rules (see [CLR.90]) and 
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check if they satisfy the invariants. If the grandparent has more of one active 
grandson we are in a specifically parallel case so we need new rules. For every 
area in this situation we need to select one representative of its active nodes so 
we can apply the rules with only one processor. Note that counting the active 
nodes in an area and selecting a representative may lead us to a concurrent read 
situation. We avoid that possibility by just properly sequentializing that process. 

In the sequential case we have three rules (see Figure 1): in (a) we move the 
wave up just by recoloring. Note that the number of black nodes of each path 
does not change but the variant function decreases, because the black-height 
of the wave (whose only node is now the grandparent.) is one unit higher than 
before. In (b) and (c) we need both rotations and recoloring. The number of 
black nodes of each path does not change and the active nodes become inactive. 

In the parallel case we find two new situations: if we have two active nodes 
that are brothers (Figure 2(a)) we need one rotation and recoloring; otherwise 
(Figure 2(b)) recoloring is enough, because both parents are red. Again the wave 
moves up one level without changing the number of nodes of any path. 

Summing everything up, in all cases the active nodes of a wave move up one 
level (their black-height increases one unit) or they become inactive, which means 
that the variant function actually decreases and I3 holds. The last created wave 
has now black height two (I4). We also guarantee that every path from every 
node to a leaf has the same number of black nodes, so we preserve Ir. Finally, 
as we keep updating the active nodes, we also satisfy I2. 
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Abstract. In this paper we try to show that speeding up Geographical 
Information Systems (GIS) by their process in parallel architectures is 
possible. A spatial data partitioning and subdivision scheme is proposed, 
to process GIS data in a distributed memory parallel machine. We also 
provide solutions to classical problems in GIS systems and parallel pro- 
cessing, such as data boundary matching, and how to distribute and 
assign data among different processors to optimize both results quality 
and communication time. Finally, we show results obtained with different 
kind of hardware platforms: a net of computers organized in a cluster, 
and a massive parallel machine. 

Key words: parallelization, data partitioning, Geographic Information Sys- 
tems (GIS), massive parallel processors (mpp), multicomputers 

1    Introduction 

Geographic information is characterized by its distribution over terrain surface. 
This data organization makes their projection over an horizontal plane a good 
data model to be recorded and handled. We also must realize that most of process 
with these data is done considering parameters related with terrain surface [6]. 

A great deal of GIS algorithms (visualization, data interpolation, DTM gen- 
eration from contour lines, intervisibility, shapes, planning, analysis, scheduling, 
retrievals, etc) do calculations on data representing a terrain characteristic, and 
therefore, easily structured as information data layers. 

Both retrieval and data process of this information layers will be done on 
a delimited area of terrain surface, considering only spatially close data. This 
data neighbourhood property allows their process in parallel in a distributed 
system with not many communication requirements. Tasks may be distributed 
following data partitions of terrain surface, in such a way that partitions may 
be close to the proper subset of processors, though is not to others. A good 
data partitioning scheme among processors will allow parallel work with certain 
autonomy distributed memory multiprocessor). 
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2    Geographic Information Systems (GIS) 

Geographic Information Systems handle spatial information with a particular 
behaviour. Geographic information includes cartographic or graphic elements 
but also alphanumeric attributes. Main conceptual models in GIS are: vector 
and raster models. Vector format uses line as graphic primitive, while raster 
format uses point. 

A vector representation of a geographical information uses points, lines poly- 
lines and polygons as geometrical primitives. Attributes are linked to the geom- 
etry. In a raster representation, the information is projected into a grid, each 
grid-point defining the location and the attribute of the location. 

Raster representation usually requires more memory, but on the other hand 
yields a spatial distribution more homogeneous. This format has been more used 
than vector one, due to the fact that most algorithms to be applied to this kind 
of data are more efficient with this format. 

Consequently, a classic problem in GIS is the huge requirements of memory to 
storage geographical data, with all their consequences: high access times, memory 
bandwidth saturation, concurrency problems, etc. These disadvantages would 
be considerably reduced with several processors working in parallel, following a 
distributed memory scheme [9]. 

3    GIS algorithms parallelization 

The presented solution is based on spatial parallelism, partitioning data domain 
in square or rectangular partitions. Every rectangular partition is assigned to 
a virtual process node. This kind of data distribution is also named domain 
decomposition [2]. Work to be done is assigned to the the processor whose data 
are sited in, and that processor may communicate its neighbours as necessary. 

An optimal data partition will optimize communications among different pro- 
cess virtual nodes. But these processors should communicate others when they 
require data sited on others. In general purpose applications, this communication 
overhead becomes a great and serious bottleneck. 

3.1     Communication requirements 

Communications requirements due to data partitioning in a distributed Geo- 
graphical Information System are: 

- Initial data partition distribution 
- Data boundary partitions matching problem 
- Connectivity and neighbourhood algorithms 

Some geographic data analysis may be done in parallel on different data 
partitions with some autonomy. But connectivity and neighbourhood analysis 
evaluate characteristics over an area that may cover several adjacent partitions 
Therefore, processors may require data from adjacent nodes. 
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Choosing the partition grain size is very important and not trivial. Partition- 
ing grain must allow enough number of partitions to get the benefits of paral- 
lelism, but also partitions must be big enough to provide a minimum autonomy 
of work in case of connectivity or neighbourhood algorithms. Communications 
will be limited to the subgroup of adjacent nodes. 

We propose a parallelization scheme that reduce this communication and 
solve the data boundary matching problem, trying to get the most benefit of 
parallelism. The proposed scheme minimizes communications even with a fine 
grain of parallelism.The solution is based in what we call the search area. 

3.2    Search Area 

The search area is a set of data surrounding every partition which is sent to a 
processor to help calculations near partition boundaries. Data and process of 
search area is really assigned to other processor, and are for read only to the 
partition which is around. 

The search area is in fact an overlapped region replicated in several process- 
ing nodes. But only one processor should write on it. A synchronization and 
communication protocol is needed to guarantee data coherence and atomicy. 

The spatial parallelization scheme includes search area management, cre- 
ation, and updating, as schematically showed in the following steps (fig. 3): 

1. Data assign and distribution among virtual processing nodes 
2. Search area creation 
3. Local process in parallel of the partitions considering each processing node 

its partition and its search area. 
4. Search area updating, considering results already obtained in adjacent nodes. 
5. Optional boundaries data correction at each partition, considering search 

area already updated 

312x462 625x924 1250x1849 2501x3699 

Oata«iz* 

Fig. 1. Execution time in T3E with increasing data sizes. 
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4    Results 

We have implemented our proposed parallelization scheme in different parallel 
hardware platforms because we wanted to propose a general scheme, indepen- 
dent of the hardware: a cluster with several computers, and a massive parallel 
processor. 

Our main goal with this implementation is not only to demonstrate our par- 
allelization scheme works properly, but also showing that contiguity and neigh- 
bourhood algorithms may also be parallelized without loosing information and 
therefore without significantly communication overhead. We have concretized 
our tests for spatial interpolation from contour lines, one of the most represen- 
tative neighbourhood algorithm in GIS. 

We have also studied influence in time and quality results of different pa- 
rameters in partitioning scheme, such as: size and number of data partitions, 
number of real processor nodes, search area size, etc. 

We have tested the following two hardware platforms: a cluster with 4 RS6000 
(programming model PVM); and a massive parallel processor: T3E (Cray), with 
up to 32 processors (programming Model of shared variables (HPF)). 

In both platforms we have analyzed both quality of results and the execution 
time. 

Analyzing results quality, we studied the proper search area size and the par- 
titioning grain (partitions size). Obviously, we obtained the same results quality 
at both hardware platforms. 

We established that the search area size depends on data distribution. For 
spatial interpolation, we estimated that the search area size should obey the 
following expression: 

1 _ psa* > 08 

where sas is the search area size expressed in number of data rows, and P is 
the density of points with known latitude in input data. 

This minimum search area size guarantees quite similar results quality near 
boundaries partitions than in sequential processing. 

We also got that with this search area size, partitioning grain could be fine 
to get the benefits of parallelism. Therefore, the best partition size is determined 
by the number of available real processors. 

About execution time, results were rather different in the two platforms. Tests 
in the cluster show that time processing heavily depends on the network load. 
This network may become soon a bottleneck, and speed up with 4 processors is 
not really spectacular for small files. 

But our tests also show that speed up improves as data size grows up (fig. 1). 
This is important, as these systems (characterized by managing huge quantities 
of data) are involving more an more data. 

Execution times with the mpp of Cray are quite better, with a high speed up, 
thanks to a higher number of available real processors, and a better and dedicated 
communication links. However, due to the fact that I/O was in this machine 
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sequential, total speed up is very influenced by sequential I/O. Considering just 
interpolation time, excluding I/O operations, the speed up for 16 processors were 
near 11, what is good (fig. 2 and 3). 

Time (sec.) paterpokfion^me («c) foreje9 (1090x1720)1 

2Pr. 

■ u*>4 Baaa>1S alus-30 

■» ■ March ana «la (n. rown) 

itiai 
sas-0 294 149 75 46 26 
sas-15 301 151 76 47 27 
sas-30 302 152 77 47 28 

«Pr. 16 Pr 

;.- Speed upifor*je9 (1090x1720) 

—•— Spatial interpolation apMd up 
— - Total tlnw apead up (*VO) 

■lij                     HTM 
Interpolation      1,99     3,92     6,43      10,79 

speedup 

Total speed up    1,59      2,23      2,63       3 02 
(+seq. I/O) 

♦ Pr. SPr. 16 Pr 

Fig. 2. Interpolation times and speed up for Cray T3E. 

5    Conclusions 

A general parallelization scheme based on data partitioning is presented. The 
proposed scheme minimize communication between process nodes, thanks to the 
search area concept introduced and therefore, response times are considerably 
reduced. The proposed scheme also presents solution to classical problems in 
GIS, such as data boundary matching in spatial subdivision, the influence of 
partitioning grain in quality and time of results, and data assignment to the 
different processor nodes. Execution times are significantly better in the massive 
parallel machine, where communications are not the bottleneck (in the cluster 
the network is a serious bottleneck). However, a parallel I/O file system is truly 
recommended when massive parallel processors are working. 
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INTERPOLATED DATA 

SEARCH AREA 

Data input 183 185 

First interpolation 1S8 153 

S each area updating nearO 1 

Second interpolation 2 9 

Data output ■236 237 

■ ■■                 Bk_ 

Fig. 3. I/O, interpolation and search area updating times for Cray T3E. 
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Abstract. Current processors use special techniques to improve perfor- 
mance such as pipeline and multiple instruction issue per cycle. 
Using a real pipeline or superscalar computer to teach these concepts is 
actually impractical, because these computers are designed to be pro- 
grammed in high-level languages. 
Hence, we have implemented a superscalar processor emulator, where 
most of the processor parameters can be defined by the student. Its ob- 
jective is to create a set of laboratory works allowing the student to 
observe the execution evolution of his assembly program through the 
different components of the computer, detecting the different kinds of 
hazards and their impact on performance. Then, the student can ap- 
ply some software techniques to avoid them. Moreover, he can obtain 
statistics about caches. 
Keywords: education, pipeline, superscalar, cache memory, emulator. 

1    Introduction 

This paper presents a superscalar processor (MC88110) emulator that we have 
implemented to teach classical and modern Computer Architecture concepts at 
the Facultad de Informätica of the U.P.M. 

The motivation which lead us to develop a new emulator, instead of using 
existing ones, is simple. We wanted an educational tool which could serve us 
to make different practical works in which we could increase the complexity of 
the concepts we want to cover. In a first stage, we want to use the emulator to 
teach assembly programming and later to teach cache behavior, and pipeline and 
superscalar computer concepts. Caches can be inhibited in beginner's laboratory 
works for avoiding memory hierarchy concepts. 

Although some educational emulators which could serve for our practical 
works are available (spim, cl-spim, Dlx, DineroIII and SuperDlx), they are ori- 
ented to specific purposes. We were also looking for a tool running on conven- 
tional Unix stations and on personal computers with Linux. 
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Nowadays, the emulator is being used for laboratory works, to teach assembly 
programming using a RISC approach, cache behavior, pipeline and superscalar 
computers concepts. It is available for Solaris, Aix and Linux operating systems 

The emulator has an embedded debugger. It allows the user to control the 
program execution, and to observe the state of the different components of the 
computer at every clock cycle. The user can set breakpoints, execute the whole 
program or just a cycle, display and modify registers and memory contents and 
display the instructions at the different pipeline stages and the history buffer 
contents. 

The emulator has currently a textual interface, although an X-window based 
interface that will provide equivalent functionality is being finished. 

2    Emulator description 

The system emulates the functional units and behavior of the MC88110 pro- 
cessor. We chose the MC88110 because at the beginning of this project (1993) 
this processor had recently appeared and there was good documentation about 
it. It included the most interesting characteristics of superscalar processors like 
out-of-order completion of instructions, branch prediction, a mix of in-order and 
out-of-order issue, and used shelving for some instructions. 

This superscalar processor can issue two instructions every clock cycle a 
suitable throughput for our purposes. Instructions are issued in the order'in 
which they appear in the program, but they can be finished out-of-order due to 
the different functional units latency. The processor also implements a partial 
out-of-order issue model for branch and store instructions, that can be issued 
even when its operands are not available. 

Instructions are dispatched to ten different functional units that work in 
parallel, although the two graphics units have not been emulated. 

The instruction pipeline is a conventional four stages RISC pipeline: 

- Fetch Two instructions are read together from the instruction cache 
- Decode. The instructions previously read are decoded and their source reg- 

isters are read from the register file. The branch target address is computed 
to perform static branch prediction. 

- Execution. If the operands and functional units are available, both instruc- 
tions are dispatched and executed. At this stage branch instructions compute 
the branch condition while load and store instructions execute their memorv 
accesses. 

- Write back. The execution results are written into the register file. 

Latency is defined to be one cycle for all except for the execution stage. In 
this case it depends on which functional unit is involved. 

The evolution of instructions through pipeline stages can be displaved at ev- 
ery machine cycle, marking explicitly those executed due to a branch prediction 

Instructions dispatching can be stalled due to structural, data or control haz- 
ards. The sequencer dispatches instructions according to the order in which they 
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appear in the program, except for store and branch instructions. In these cases 
their functional units have two reservation stations, avoiding these instructions 
to produce stalls in the pipeline due to data dependencies. 

In order to diminish the overhead produced by structural hazards most of the 
functional units, except divide, are pipelined, and a two writing ports register file 
has been implemented. Also, there are two caches, so implementing a Harvard 
architecture. Most of the cache parameters are also configurable: cache access 
time, whole and line sizes, organization policies and write policy. 

Both the actual processor and the emulated one include the scoreboarding 
mechanism to track RAW and WAW data dependencies. Recent superscalar 
processors include hardware mechanisms to eliminate WAW dependencies by 
register renaming. The inclusion of this hardware mechanism makes tracking 
of program execution harder, which we do not consider appropriate due to the 
academic purpose of the emulator. We deal with register renaming statically, 
that is, at programming time. 

Concerning control hazards, the emulated processor includes delayed branch 
instructions (one slot) as well as static branch prediction in the decode stage. 
This allows the student to use the branch instructions available in the instruction 
set to make their own predictions, comparing performance. The instructions 
fetched due to a branch prediction are tagged (conditionally executed). If the 
prediction was correct, the instructions that have been predicted are untagged 
and they are converted to normal instructions. If a missprediction has been 
detected, tagged instructions are aborted. 

The emulator also implements the MC88110 history buffer, a FIFO queue 
storing the issued instructions in the program order and the previous value of 
the destination register, in order to restore the state previous to their execution 
when there is a missprediction. 

When the first instruction of the history buffer completes its execution, the 
sequencer removes every instruction completed. If the instruction becoming the 
head of the history buffer is a branch whose prediction failed, all the tagged 
instructions are removed and the values of their destination registers are restored 
to those saved in the history buffer. 

3    Program execution debugging and visualization 

We have developed an Assembler which generates the binary files used by the 
emulator. This Assembler allows using a wide instruction subset of the actual 
MC88110, as well as some pseudoinstructions specified in IEEE-694 standard 
(org, res and data). 

Figure 1 shows an assembly program fragment that performs the dot product 
of two vectors (VI and V2). For instance, the instruction bbl.n 3, r3, loop 
branches if the third bit of r3 (r4 not equal rO) is set. This instruction predicts 
that the branch will be be taken. The suffix .n means the following instruction 
will be executed before taking the branch (delayed branch). 
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and r8,  rO,  rO 
loop:     Id r5,  rl,   rO 

Id r6,  r2,  rO 
sub r4,r4,l 
add rl,  rl,  4 
mulu.d r9,  r5, 
add r2,  r2,  4 
cmp r3,  r4,  rO 
add.co r7,  r7, 
bbl.n 3,  r3,  loop 
add.ci r8,  r8,  r9 
st.d r7,  rll,  rO 

error:   stop 

r6 

no 

;r8 contains the dot product 

;r5 y r6 are loaded with an element 
;of both vectors 

;The counter is decremented 
;Vl's pointer is incremented 
;Multiply result is on r9 and rlO 
;V2's pointer is incremented 

;The result of mulu is accumulated 
;if r4 <> 0 then branch to loop 

;End of emulation 

Fig. 1. Assembly program to perform the dot product of two vectors 

The embedded debugger allows the user to control program execution. Every 
time the program shows the prompt to the user, the emulator displays the pro- 
cessor internal state: register contents, status register and pipeline state. Figure 

°WS *^e "lformation Provided by the emulator: current instruction, program 
counter (PC), register file (only selected registers), processor status regLr 
some cache statistics and the pipeline state. Also the contents of the history 
butter at that instant can be visualized. 

PC=64       add     r01,r01,4 
FL=1 FE=1 FC=0 FV=0 FR=0 

R01 = 00000074 h R02 = 0000009C 
R05 = 00000000 h R06 = 
R09 = 00000000 h RIO = 

Instruction cache : 9 accesses 

Tot. Inst: 13  Cycle : 31 

h R03 = 00005998 h R04 = 0000000A h 
00000000 h R07 = 00000000 h R08 = 00000000 h 
00000000 h Rll = 0000006C h R12 = 00000000 h 

3 misses, Hit ratio 66.6 
Data cache : 2 accesses, 1 misses, Hit ratio 50. 

FETCH: 

DEC: 
EXEC: 
WBCK: 

68 
64 

56 
52 
60 

mulu. 
add 

Id 
Id 
sub 

History buffer contents: 

52 Id r05.r01.r00 
56 Id r06,r02,r00 
60 sub r04,r04,l 

r09,r05,r06 
r01,r01,4 

r06,r02,r00 
r05,r01,r00 
r04,r04,l 

Not executed 
Not executed 
Not executed 

R05: 00000000 
R06: 00000000 
R04: 0000000A 

Fig. 2. Emulator state after executing 30 machine cycle 
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c 56 Id r06,r02,r00 
c 52 Id r05,r01,r00 
c 92 St r07,rll,r00 
c 88 add.ci r08,r08,r09 

84 bbl.n 03,1-03,-8 
80 add.co r07,r07,rl0 

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing 

FETCH: 

DEC: 

EXEC: 

WBCK: 

History buffer contents: 

80    add.co r07,r07,rl0 Not executed        R07:  00000000 
84    bbl.n 03,r03,-8 Not executed 

Fig. 3. Emulator state after executing 52 machine cycles 

When the first loop iteration finishes (see Figure 3), the instruction bbl has 
been issued to the branch unit. Previously an effective branch has been predicted. 
So, instructions stored at addresses 52 and 56 are tagged as conditional. As the 
prediction was right, the branch unit will remove that tags at the end of this 
cycle. Furthermore, the tag of the instruction 88 will be removed because it is a 
delayed branch. On the other hand, the instruction 92 will be aborted. The final 
pipeline state is shown in figure 4. 

FETCH: 

DEC: 

EXEC: 
WBCK: 

History buffer contents 

80 add.co     r07,r07,rl0    Not executed   R07: 00000000 
84 bbl.n     03,r03,-8     Not executed 
88 add.ci     r08,r08,r09    Not executed   R08: 00000000 

Fig. 4. Emulator state after executing 53 machine cycles 

4    Conclusions 

This paper presents a superscalar processor emulator for educational purposes. 
Most of the processor parameters are fully configurable, so it may be used to 
teach cache behavior as well as pipeline and superscalar computer concepts. 

64 add r01,r01,4 
60 sub r04,r04,l 
56 Id r06,r02,r00 
52 Id r05.r01.r00 
88 add.ci r08,r08,r09 
80 add.co r07.r07.rl0 
84 bbl.n 03,r03,-8 
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Fig. 5. em88110 emulator X-window interface 

The emulator has currently a textual interface but we are implementing an 
X-window based one (Figure 5 shows the information it will provide). 

Currently we are improving the emulator to allow selecting the number of 
instructions issued per cycle. The student will be able to choose whether one 
or two instruction will be issued, in order to emulate a conventional pipelined 
machine or a superscalar one. 
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Abstract. In this paper we present the results we have obtained after applying 
a parallel genetic algorithm (PGA) to the Multi-FPGA partitioning problem. 
Solutions are based on Xilinx 3000 series FPGA's and satisfy some constraints 
allow the routing within the set of FPGA that constitutes the Multi-FPGFA 
system. To verify our studies we have used circuits from Partitioning 
Benchmark93 at the NCSU CAD Benchmarking Laboratory. The experimental 
results have been obtained using the CRAY T3E. 

1.Introduction 

Nowadays, FPGA systems are widely used because of their prototyping and 
correction capabilities. Every day, new FPGA's are appearing in the market with 
higher density integration and tools with wider capabilities. However, these 
increasing capabilities do not support all the necessities of some designs, so it is 
necessary to distribute these designs among several FPGA's. This is the major reason 
for Multi-FPGA systems [1]. The first step in the design flow is to partition the 
system. In other words, we have to decide how many FPGA's are needed to 
implement the system, their type and their distribution. We present a PGA to solve the 
partitioning problem of Multi-FPGA systems. These algorithms have been 
successfully used in other optimization problems [2]. If the partition process precedes 
the technology mapping, it is called functional partitioning, otherwise it is called 
structural partitioning [3]. 

In the case of structural partitioning of Multi-FPGA systems, this method allows us 
to obtain solutions with a great number of blocks. We can also use industrial tools, 
such as XACT [4], to accomplish the first stages of the design flow. Our partitioning 
algorithm then divides the results obtained after using XACT, on initial system 
specifications. 

In the area of Multi-FPGA system partitioning there are a few tools which involve 
constraints, e.g., Kuznar's research [5][6]. Its major drawback is that this method has 
been designed for heterogeneous systems but the implementation is undertaken on 
homogeneous systems. 

717 



FEUP - Faculdade de Engenharia da Universidade do Porto 

This paper is organised as follows. In Section 2 we describe a parallel genetic 
algorithm. In Section 3 we show its application to the Multi-FPGA system- 
partitioning problem and the experimental results are presented in section 4 The 
paper ends with some conclusions and futures research. 

2. Parallel Genetic Algorithms 

Genetic algorithms [7] are optimization techniques which imitate the way that 
nature selects the best individuals (the best adaptation to the environment) to create 
descendants which are more highly adapted. The first step is to generate a random 
initial population, where each individual is represented by a character chain like a 
chromosome and with the greatest diversity, so that this population has the widest 
range of characteristics. Then, each individual is evaluated using a fitness function 
which indicates the quality of each individual. Finally, the best-adapted individuals 
are selected to generate a new population, whose average will be nearer to the desired 
solution. This new population is created making use of three operators: reproduction 
crossover and mutation. 

One of the major aspects of GA is their ability to be parallelised. Indeed, because 
natural evolution deals with an entire population and not only with particular 
individuals, it is a remarkably highly parallel process [8]. 

It has been established that GA efficiency to find optimal solution is largely 
determined by the population size. With a larger population size, the genetic diversity 
increases, and so the algorithm is more likely to find a global optimum A large 
population requires more memory to be stored, it has also been proved that it takes^a 
longer time to converge. The use of today's new parallel computers not only provides 
more storage space but also allows the use of several processors to produce and 
evaluate more solutions in a shorter time. 

We use a coarse grained parallel GA. The population is divided into a few 
subpopulations or demes, and each of these relatively large demes evolves separately 
on different processors. Exchange between subpopulations is possible via a migration 
operator. In the literature, this model is sometimes also referred as the island Model 
Someumes we can also find the term 'distributed' GA, since they are usually 
implemented on distributed memory machines. 

Technically there are three important features in the coarse grained PGA- the 
topology that defines connections between subpopulations, migration rate that 
controls how many individuals migrate, migration intervals that affect how often the 
migration occurs. 

Many topologies can be defined to connect the demes. We present result using a 
simple steppmg stone model and a master-slave model. In the former, the demes are 
distributed in a ring and migration is restricted to neighboring demes. In the latter 
there is a master population connected to all the slaves. 

Choosing the right time for migration and which individuals should migrate 
appears to be more complicated and a lot of work is being done on this subject 
Several authors propose that migrations should occur after a time long enough to 
a low the development of goods characteristics in each subpopulation[9]. However it 
also appears that immigration is a trigger for evolutionary changes. In our algorithm 
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the migration occurs after each new generation, therefore the algorithm is more or less 
equivalent to a sequential GA with a larger population. 

In our problem, migrants are selected from the best individuals in the population 
and they replace the worst in the receiving deme. The number of migrants may be 
selected at execution time. With this operator, our PGA has better convergence 
properties than the sequential version. 

3. Genetic partitioning for Multi-FPGA systems 

Figure 1 describes the design and implementation flow of a Multi-FPGA system. It 
starts from an initial specification (a netlist or a HDL description), that is used as 
XACT input. It returns the number of CLB's and IOB's. Then, it is necessary to 
determine the optimum distribution of the CLB's on the different available FPGA's. 
An optimum distribution has a minimal cost and guarantee the internal routability of 
each FPGA. For this purpose we use the PGA described in section 2. 

SCH input 

Tedrertnev Manta! * 
XACT 

Fig. 1. Design and implementation flow of a Multi-FPGA system 

The input to our algorithm must include the number of necessary CLB's to 
implement the circuit. In order to evaluate the different solutions, it is also necessary 
to have a FPGA library. It must include the number of CLB's and the cost of each 
FPGA. In our case it has been used the corresponding data to the three simplest 
devices of the series 3000 of Xilinx; XC3020, XC3030 and XC3042. After the 
optimisation, the algorithm returns the number of circuits of each type, the 
distribution of the CLB's and the percentage of utilisation of the FPGA's. 

Our problem has been coded as follows: each individual represents a distribution of 
CLB's in the set of FPGA's. We have supposed we have three different types of 
Xilinx 3000 series FPGA's and we can use as many as necessary [10]. Each 
individual is a chromosome with so many genes as the number of CLB's in the 
original circuit. Each CLB is represented by a gene, which has a different value 
depending on which kind of FPGA it uses. 
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M * S°lVt^e Partit'0n and Placement Problem simultaneously with the routine 
lltlTn s TI 

iS r°Tule WheneVCr the PercentaSe (PO of busy CLB 's does nol 
exceed O.S. This is one of the constraints that our fitness function satisfies as figure 2 
shows. Moreover, it minimizes the final cost (cost) of the circuit, according to 3000 
series specifications and the number of holes (free CLB's). The term penalty that 
appears in the fitness function acts when the system is not routable 

12000 
Penalty function 

10000 ■ 

8000 I 
6000 . 

4000 . 

2000 1 . 
0 ^y 

0 0.2 

F = 

0.4            0.6 

I 

0.8                1 

£ [(hole )■*, + Penalty , + Cost. ] 
1 = 1} 

Penalty , = K, * eKi* pc 

Fig. 2. Cost and penalty functions used in the genetic algorithm. 

The values of GA parameters are the followings: the crossover probability (P ) is 
fn Tn t0?\the, mTi0n Probability (pj is eq"a> «o O.OIS, the population size is set 
to 60 individuals The constants K,, K, and K, have been adjusted experimentally to 
satisfy the constraints. 3 

4. Experimental Results 

The circuits that we have used for testing our algorithm have been obtained from 
the Partit.on.ng Benchmarks 93 suite. The characteristics of these circuits after usin, 
the XACT tool are shown in table 1. 

Table 2 compares our results with those obtained by Kuznar. The comparison is 
made in terms of cost and occupation of CLB's. 

Table 3 compares the sequential algorithms to the parallel versions (usin* 8 
processors ,n the Cray T3E). The results show that the second approach has be«er 
convergence properties due to its non-overlapping replacement characteristic. 
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Circuit 

C3540 
C5315 
C7552 
C6288 
S5378 
S9234 
SI 3207 
S15850 

IVum CLB's 
283 
377 
833 
489 
381 
454 
915 
842 

num lOB's 
72 
301 
64 
313 
86 
43 
154 
101 

Circuit 

C3540 
C5315 
C7552 
C6288 
S5378 
S9234 
SI 3207 
S15850 

Table 1. Characteristic of the test circuits 

AG cost AG Pc     Kuznar cost    Kuznar Pc 
5.20 0.76 4.99 0.77 
6.56 0.79 7.76 0.52 
14.6 0.79 13.66 0.83 
9.40 0.70 7.S 0.85 
7.56 0.71 6.19 0.94 
9.40 0.66 7.98 0.85 
15.96 0.79 16.81 0.81 
14.12 0.83 14.97 0.80 

Table 2. Comparison between the Kuznar and the GA algortihms 

Circuit       Sequential        Ring      Master-Slave 

C5315 

S15850 

PAG 
C3540       19.78 (500)       3.883 

(>2000)        10.298 
C7552   85.31 (725)  11.465 
C6288   61.78(900)  6.682 
S5378   38.75(725)   6.504 

PAG 
3.973 
10.548 

8.525 
15.975 

S9234   57.34(900)  18.574    18.995 
SI 3207  116.627(900)  15.734   28.917 

■ (>2000)  25.980   26.546 

Table 3. Comparison between the sequential and the parallel GA's (time in seconds) 
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5. Conclusions 

The main conclusions of our research can be summarised as follow: (1) The PGA 
improves Kuznar results. Although the cost is not always improved, the routability of 
the system is almost assured in all the cases. We always obtain a cost improvement or 
a routing improvement. (2) The logic blocks distribution that gives us the PGA 
assures the internal routability of the system in 88% of the cases. The cost in dollars 
of the resulting circuit has been reduced also in 45% in the experiments compared to 
the Kuznar results. (3) The sequential version of the GA needs more than 2000 
generations to obtain an acceptable solution, but the 8 processors (in the worst case) 
Ring PGA only needs 225 generations and the Master-Slave PGA 300 generations. 
This result is due to simultaneous search and the implicit non-overlapping 
replacement of the PGA. (4) Finally, it is interesting to note that the Ring PGA gives 
better results than the Master-Slave, due to premature convergence effects. 
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Abstract In his 1978 Turing Lecture[l], John Backus draw the atten- 
tion of the computer science community to functional languages. One of 
the claims he made was that pure functional languages offer a greater po- 
tential for parallelism than other programming paradigms, because their 
property of referential transparency means less interdependence between 
parts of a program. Meeting this promise has been a challenge. This pa- 
per, presents Haskell# a parallel functional language with explicit par- 
allelism based on MPI (Message Passing Interface) for communication 
between functional blocks of code. 

1    Introduction 

Functional languages are a nicer syntax to the A-Calculus, a function theory 
widely used to provide semantics to programming languages of all paradigms[2]. 
The Church-Rosser theorems state that normal forms of A-expressions are unique 
modulo variable renaming and that reductions of the leftmost-outermost re- 
ducible expression at each point of the reduction sequence leads to normal form, 
if it exist[2]. Thus, the reduction can be done even in parallel. This suitability 
of functional languages for parallel processing have led various researchers to 
propose different parallel implementation of functional languages. 

The history of parallel functional programming complies two phases. The 
first period, the 1980s and before, corresponds to the time in which parallelism 
was sought as a way to make functional languages run as fast as imperative ones. 
The second period is the time in which "real" parallel processing can find an 
alternative in functional programming. 

The first attempt to exploit parallelism of functional programs targeted ei- 
ther the evaluation of actual parameters before replacing them by the formal 
parameters or was done at combinator argument level. These strategies lead to 
a very fine grained parallelism. As a result, it was believed that novel archi- 
tectures were necessary to achieve high performance with functional languages, 
and this led to a spate of designs for special-purpose machines, such as ALICE 
(Transputer-based), ICL Flagship, EDS/Goldrush and GRIP. 
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Unfortunately, these experiments proved that hnilHi™ 
ware is costly and, too slow a process tmeet th? ^T       P^ose hard" 
general purpose machines advantages of commercial 

formaT^^^ optional '-guages present per- 

guages, sucL C or FORTRAN in thr„
gnr imPOTtant imperative 'an" 

find a partner in parallel nrnJ!' Z ^^ Paralld Pressing might 

These implementations, lfj^££&^ ™**M- 

# t^>°z:t m otor^'they create specu,ative <■»■ ^y- 
tasks rep^TaT™ managGment °f SPeCUlati- 

* ÄÄSS"emp,oy \higher-level parallel e™- 
system workS' Usr   g   etlyTmf8 f ^^ dependb* °° 
tasks S       nly S°me lndlcatives to potential parallel 

' ^^t^tzztJ \shar1 rgram/data *>*■ - 

•"eÄTn^^ 'a«s, we 
Message PasSln9 InHr/alMP 51 ^ ^? T ^ aü°Catl°n- throu*h 

ming model and will be u ed o LtT T a.|ow-levd Para11^ Program- 
munication between, twks llrth« ^ the

1.
Creat,on' dilution and corn- 

sequential run-t^e systm   FUrtherm°re' each task ™» Possess its own local 

p™Ä:S;s::rris rtainiy not ea- s°™ ap- 
rely on the programmed abihtv fo J? ^ Sranu'a"ty Problem. Some systems 
-ting in paraflel. ^e^^^^TT"1^ ^ "" W°fth ^ 
the language. Other make use 71TIlde .<H?llat ^tracts/annotations into 

1.1    Implicit Parallelism 

»We in ge„erar,„d ,.'i',„°?     ^V ""T^' »^ednes, is „„cl.cid- 
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Despite efforts of several research groups around the world, trying exploit 
implicit parallelism in functional languages, results are still very shy. In our 
opinion this is a direct consequence of communication overhead brought by very 
fine granularity tasks generated for this strategy. 

1.2    Explicit Parallelism 

In explicitly parallel languages - such as Occam[4] - it is up to users setting paral- 
lel tasks. Results of implicit parallel implementations of functional languages as 
well as the belief that the bottom line of any parallel system is raw performance, 
and a program's performance can only be improved if it can be understoodflO], 
led a number of researchers to exploit explicit parallelism. 

Improving a sequential program by partitioning it in parallel tasks is not a 
simple work and requires a complete knowledge of the program as well as the 
architecture it will execute. Annotation for parallelism are usual. Hope+ on 
Flagship employs strictness annotation to control the precise degree of evalua- 
tion. 

2    Haskell 

Haskell is a general purpose, pure functional programming language which incor- 
porates higher-order functions, non-strict semantics, static polymorphic typing, 
user-defined algebraic datatypes, pattern-matching, list comprehensions, a mod- 
ule system, monads, and a rich set of primitive datatypes, including arrays, 
arbitrary and fixed precision integers, and floating-point numbers[3, 9]. Haskell 
has now become de facto standard for the non-strict functional language. 

Among the implementations of Haskell compilers Concurrent Haskell [8] and 
GUM[10] seems to be very promising. 

Concurrent Haskell is a concurrent extension to lazy functional Haskell, which 
provide a more expressive substrate to build sophisticated I/O-performing pro- 
grams, notably ones that support graphical user interfaces for which the useful- 
ness of concurrency is well established. The goal of the designers of Concurrent 
Haskell is to attain implicit, semantically transparent parallelism, but the version 
available now uses explicit parallelism. 

GUM is a portable, massage-based parallel implementation of Haskell. Porta- 
bility is facilitated by using PVM communications harness that is available on 
many multi-processors. GUM is available for both shared-memory distributed- 
memory (network workstations) architecture. Initial performance figures demon- 
strate speedups relative to sequential compiler technology. 

3    MPI 

Message Passing is a paradigm widely used on loosely coupled parallel machines. 
Although there are many variations, the basic concept of processes communi- 
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eating through messages is well understood. Over the last ten years, substantial 
progress has been made in casting significant applications in this paradigm 

I he main advantages of using a message-passing standard are: efficiency 
portability and ease-of-use. In a distributed memory communication environ- 
ment in which the higher level routines and/or abstraction are built upon lower 
level message passing routines the benefits of standardization are particularly 
apparent. Furthermore, the definition of a message passing standard, such as 
ha proposed in [5], provides vendor with a clearly defined base set of routines 

that hey can implement efficiently, or in some cases provide hardware support 
tor, thereby enhancing scalability. MPI also: 

• provides an application programming interface; 

• allows efficient communication: avoid memory-to-memorv copying and al- 
lows overlap of computation and communication and offload to communi- 
cation co-processor, where available; 

• allows for implementations that can be used in heterogeneous environ- 
ments; 

• allows convenient C and Fortran 77 bindings for the interface; 

• assumes a reliable communication interface: the user need not cope with 
communication failures. Such failures are dealt with by the underlying 
communication subsystem; " 

• ?vAr^inierfaCe that iS n0t t0° different from current Practice, such as 
i-'VM NX, Express, p4, etc., and provides extensions that allow greater 
flexibility; ° 

• defines interfaces implemented on many vendors' platforms. 

The parallel programming model supported by our implementation is mes- 
sage passing: a set of tasks, each executing in its own address space, commu- 
nicating via calls to the Message-Passing Library. Such a parallel programming 
model offers a multitude of alternatives: some functions supported by microcode 
on the adapter and some by software on the computing processor; some functions 
executed in user space and some by kernel; trade-offs between more extensive use 
of buffering and data copying and more eager use of interrupts; -push" versus 
pull- protocols; flow control; etc. 

4    Haskell# 

Haskell# is a new language composed by parallel constructors (a subset of MPI 

IRM SPOT rtabl7^ax) and ^notional programs (Haskell programs). An 
IBM SP2 System with 9 (nine) processor nodes was chosen as testbed. 

Baskell# has some important differences from other implementations: 

• an explicit static task allocation is adopted; 
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• MPI is used to manage a coarse task program distribution; 

• each task is actually a functional program, with a local run-time system 
completely independent of the manager task module. 

4.1    Parallel Module 

Now, we will describe the main ideas on using MPI to implement Haskell#. 

Program Structure Communication functions of MPI will be used to express 
the parallelism following the same mechanism present in Occam [4] programming 
language. According to the parallel constructors inserted by the user in a given 
Haskell# program, MPI spawns the required number of processes to the avail- 
able processors. Thus, Haskell# enables an application to be described as a 
collection of processes, where each process executes concurrently, and communi- 
cates with other processes through channels. Each process in such an application 
describes the behaviour of a particular aspect of the implementation, and each 
channel describes the connection between each of the processes. 

Communication Library MPI supports two classes of message passing func- 
tions: point-to-point calls, which send a message from one task to another task, 
and collective communication calls, which establish a communication pattern 
within a group of tasks. 

MPI point-to-point communication includes blocking and non-blocking send 
and receive functions. Use of non-blocking sends and non-blocking receives are 
both safe (in terms of deadlock avoidance) and efficient. Some extra program- 
ming effort is required, since the programmer must determine the status of the 
communication before reusing the buffer (the memory location in the user's pro- 
gram that holds the message data before transmission or after receipt) 

Blocking routines protect naive programmers from accidentally altering mes- 
sage buffer contents. The trade-off can be increased communication cost. Dead- 
lock can occur in cases where a large message volume is being sent. The situ- 
ations most appropriate for blocking routines are those in which there is little 
work that can be done between initiation of the communication and use (or 
reuse) of the buffer. 

In this first approach, Haskell# uses MPI point-to-point call functions. Fur- 
thermore, in order to provide safety and higher performance, we adopt the MPI 
non-blocking communication library. 

4.2    Run-Time System 

The Recife Haskell Compiler (RHC) run-time system was adopted as evalua- 
tion environment of the value expressions executing in a SP2 processor node. 
Each process represents an individual sequential Haskell program, evaluated by 
/JTCMC, an abstract, machine for efficient implementation of lazy functional lan- 
guages.   /yTCMC transfers the control of the execution flow to C, as much as 
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possible, to take advantage of the extremely low costs of procedure calls in mod- 
ern RISC architectures. This yielded a substantial improvement in performance 

Almost all implementations of parallel graph reduction proceeds on a shared 
program/data graph[10], thus a primary function of the run-time system of these 
parallel functional languages is to manage the virtual shared memory in which 
graphs resides. However, in contrast with previous implementations, Haskell# 

do not proceed parallel graph reduction on a shared program/data graph. Here, 
individual task (process) has its own local stacks and heap. As a result, HaskelU 
performs garbage collection locally. 

4.3    Conclusions 

In this paper, we presented the fundamental ideas behind Haskell# and drew 
comparisons with its supposedly competitors. Haskell# is a simple explicit 
parallel functional language where the MPI-based communication combinators 
"glue' together large chunks of pure Haskell code, allowing a hierarchical pro- 
gramming discipline that rescues the ability of reasoning about parallel func- 
tional programs, feature lost by our competitors by including the parallel com- 
binators in the language themselves. 

Reference [7], presents further details of Haskell# language such as its se- 
mantic model of parallelism as well as performance figures for benchmarks run- 
ning on a 9-node IBM-SP2 platform. 
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Abstract The State Estimation is nowadays considered the fundamental element of 
modern electrical power networks control centers. In this paper we develop a theoretically 
robust and computationally efficient state estimator algorithm, to solve the WLS problem 
by using parallel processing. The computational aspects of the parallel processing, was 
analysed and tested using the IEEE 30, 57 and 118 bus systems. Computational 
experiments are compared with standard WLS methods, in the integral and distributed 
version. An evaluation of the degree of natural decoupling in the state estimation problem 
is also performed. The results indicate that a distributed processing for state estimation, is 
the better way to adopt the parallel computing in power systems energy. 

1.    Introduction 

The implementation of robust methods for power system state estimation, which maintain 
performance suitable to the large models encountered in modern control centres is a topic that 
has received significant attention. The estimator processes real-time redundant telemeter and 
pseudo measurements to provide a complete, coherent and reliable system database, which can 
describe the electrical state of the network [l]-[2]. These measurements, which include voltage 
magnitudes, real and reactive line flows and nodal power injections, are measured from the 
network at a certain moment, thus getting an estimate for the respective state vector (vector of 
voltages modules and phases on different buses) [3]. The higher frequency in state estimation 
execution requires the development of faster state estimation algorithms. The larger size of the 
supervised networks will increase the demand on the numerical stability of the algorithms. At 
same time, conventional centralised state estimation methods have reached a development stage 
in which important improvements in either speed or numerical robustness are not likely to 
occur. These facts, together with the technical developments in fast data communication 
network technology, opens up the possibility of parallel and distributed implementations of the 
state estimation algorithms [4]-[5]. The nature geographically distributed of power system 
applications, can benefit from this form of decentralised computer architecture, in which 
several remote processors perform local state estimation in network areas and the results are 
send to a central computer that refines the calculation. The power system under consideration 
may be partitioned into k areas, and each area is supervised by a local control center. The 
measurement data in each area will be collected in each individual local control center that has 
at least one computer system for data acquisition, data processing, and computation [9], The 
computer systems of adjacent areas are connected by fast data communication links, and these 
decentralised computer systems form a computer network. 
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2. WLS State Estimation Problem 

Mathematically, the information model used in power system state estimation is represented by 
the equation: 

z = h(x) + e (1) 

Where z is a (m*l) measurement vector, x is a (n*I) true state vector, h(.) is a (m*l) vector 
of non-linear functions, e is a (m*l) measurements error vector, m is the number of 
measurements, and n is the number of state variables. The static-state estimation problem of a N 
bus power system, is a weight-least-squares (WLS) optimisation problem: 

m 

mmJ(x) = JdWi(Zi-hi(x))2=[z-h(x)Jw[z-h(x)] (2) 
i=i 

Weight w, represent the weight associated with measurement z. Weights are chosen as 
proportional to the accuracy of the measurements: the higher the accuracy of a measurement 
the bigger its weight. The solution of this optimisation problem gives the estimated state X, 
which must satisfy the following optimality condition: 

aJ( * ) T r 
dx       = 0 =»   H T( x )W [z - h( x )]=  0 (3) 

Where 

H(x) = ^l 
ox 

is the Jacobean matrix of the measurement function h(x). The solution of the non-linear 
equation (3) may be obtained by an iterative method in which a linear equation of following 
type is solved at each iteration to compute the correction, 

x'+l =x'+Ax' 

[G(x')kx'=HT(x')w[z-h(x')] (4) 
where G(x) is called the gain matrix and is usually chosen as 

G(x) = HT(x)WH (x) 

Eq.(4) is called the normal equation of the WLS problem. As in loadflow calculations, it has 
been found that state estimation algorithms based on decoupled versions behave adequately for 
the usual power networks [2]. Therefore, the decoupled model that has been mostly adopted is: 

*p = yftW + ep (S) 

zq = hq(6,v) + eq (6) 

where 6» (ne*l) and v (nv*l) are the vectors of true voltage magnitudes and phase angles, p 
and q indicating partitions of vectors and matrices corresponding to active and reactive 
measurements, respectively; 

IIQ=H-\    ;    «V = N, 
N is the number of network nodes. This naturally decoupled characteristic, make this 

method suitable for parallel processing implementation, with a great reducing of the required 
computation time. 
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3.    Parallel and Distributed State Estimation Problem 

If we decompose the power network into "K" areas, connected through boundary buses which 
belongs simultaneously to both adjacent areas, the state estimation problem introduced in (5) 
and (6) can be presented as 

Zk
p=hk

p(dk,Vk) + ek
p, k=l K (7) 

zk
q=hk(dk,vk) + ek, *=,, K (8) 

where Z„ and <, are vectors of active and reactive measurements in area k\ 6 and 
V are vectors of voltage phase angles and magnitudes in area k, including the ones 
corresponding to the boundary buses. The number of boundary buses may be kept to a 
minimum and there are no injection measurements in the overlapping area buses. This is not a 
limitation, because actual injection measurement buses in overlapping areas, can be replaced by 
fictitious buses with no injection measurements connected to the actual buses, now placed 
outside the overlapping area, by zero impedance lines [10]. Then, the problem of distributed 
state estimation is to use the computer network associated with the measurement data collected 
in each local control center to solve the following weighted least square (WLS) problem in a 
distributed way: 

minit;,-^(.)][/?;rt;-^(-)]=o 

(9) 

minf k-h:(.)][RkJ'k-hl(.)]=0 

The iterative solution of above problem, for Jt =1 .......K, is: 

öV/+U=öiY/J+b;)-'[//jr[/?jl-,tj-^fö//;)v,f/jj] (io) 

v*(/+i)=vi(o-rb;]-1[//;n^]-,[z;-^(0,(o,vt(O)] a» 
Where 

""     M" «=~~d?  
are the Jacobean matrix, calculated for the initial conditions and kept constant in the 

iterative process. In the boundary buses, the elements (6, V ) obtained in (10) and (11) must be 
affected with a weight medium of the values calculated in the neighbouring areas k and j [8], 
and take the form, 

A* 

6 (/ + 1) = 0*O- + 1) + A0'(/ + 1) (12) 
A* 

v (/ +1) = v* (/ + !) +A/(/ + !) (13) 
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Where 

Ae;(1 + 1) = 7Tif-Tk(/ + i)-0/o + i)] 8rr   +  g 
(14) 

LV* (I   +  U  =        /;r      ,    [v*a +  1) -  v/(i +  1)] (15) 

S„ and £r
J
r are diagonal elements corresponding to boundary bus r of the inverse aajn 

matrices of the neighbouring area k and;, respectively. 

4. Analysis of Computation Experiments 

The Parallel and Distributed State Estimation methodology analysed in this paper was tested 

HIT-" rthaPVM3-'CPmndVirtualMachine)software-wi*p^am£3n Fortran 77 and running ,„ a DEC Alpha machine with a Ultrix operating system The 
d.stnbuted computer system, connected in a network, used in practice for parallel or distributed 
areas processing, was simulated with recurrence to PVM performances [6], that enable one to 

tuTr t3ThS °n Van°US P™655™'t0 COntr01 message"P^sing between tasks, to synchronise 
tasks, etc. The convergence, accuracy and numerical efficiency of the proposed simulation 
study are presented in the following sections. s.muiation 

4.1 Parallel Processing in the Integral Version 
The algorithm implemented for this integral study version is represented in figure 1 The nature 
decoupled of equation (10) and (11) make the algorithm suitable for parallel implementation 
The algonthm presented in flowchart, calculates the B and v, update at every iteration in a 
synchronous way. The IEEE 30, 57 and 118 bus standard networks were used to perform this 
test. Two levels of global redundancy were specified for each measurement system: normal and 
low level. Table 1 shows the data for each test case. In this table J is the sum of squared errors 
in the estimates of measured variables. 

c 
■Aquisllion Data 
•Network Power 

Informalron      / 

i 
Parallel Processing 

CTrD (      End      ~) (      End       ~) 

Fig. 1. Parallel Processing. Integral version.   Fig. ^Parallel Processing. Distributed version. 

All test simulations converge in 2 iterations for standard WLS method and 8 iterations for 

0 00?n H0UnPnm "ÜT" ^ Md Para"el Pr°CeSSing- The conver?ence is obtained a, 
0.00 pu and 0.001 rad. for module and phase of voltage. From we can see that figure 3 the 
Parallel Processmg in integral version is not so accurate like the MDE method   In a 
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synchronous process, due to idle times, the algorithm has to wait until the state vector is 
updated before it starts a new iteration. If we run the above algorithm in an asynchronous way, 
the precision of state estimation vector will be drastically deteriorated. 

Table 1: Test Case Data 

Tcsl 
Case 

N"»r 
Bus 

Rcdun 
dancy 

WLS MDE P.Pn cess. 
l(s) J its) J Us) J 

A] 30 1.4 0.39 30.5 0.24 32.7 0.57 3 2.7 
A2 30 2.4 1.00 95.0 0.34 97.0 0.69 9 7.0 
B! 57 1.7 5.40 91.5 1.60 100 1.60 100 
B2 57 2.3 9.00 172 2.70 1X5 2.70 185 
Cl I IK 2.3 1 15 419 30.0 425 34 425 
C2 1 IS 3.2 220 802 70.0 806 74 806 

4.2 Parallel Processing in the Distributed Version 
Synchronous computation become too expensive when the processors are geographically 
distributed [7]. So, asynchronous concurrent processing is an attractive alternative. We 
analyzed this fact, dividing the test cases presented in table 1 in some areas and processing the 
equations (10) and (11) for each area, like shown in flowchart of figure 2. For the boundary 
buses, in the end of the asynchronous iterative process, we applied the restriction (12) and (13). 
The convergence obtained for 0.001 pu and 0.001 rad, the processing time, accuracy and 
numerical efficiency are shown in table 2 for WLS version, and table 3 for MDE version. The 
results presented demonstrate that in parallel distributed state estimation, we can get an 
elevated reduction of processing time, for essentially the same number of iterations, compared 
with integral methods showed in table 1. The accuracy of results, generally, is better for cases 
with more redundancy of measurements and for WLS state estimation version. The 
improvement in processing time for MDE method, compensate the small depreciate of results, 
compared with WLS version. In figure 3 we can see the performance of Parallel Processing in 
the Distributed Version (PPD), applicated to test case C2 (118 buses), comparing the 
processing time for standard WLS and MDE state estimation methods and the Parallel 
Processing in the Integral (PPI) and Distributed version, comparing the processing time for 
standard WLS and MDE state estimation methods and the Parallel Processing in the Integral 
(PPI) and Distributed version. 

Table 2: Parallel Processing of Distributed Areas. 
Estimation accuracy for WLS version. 

Tcsl N" of Average error in Average error in 

Case ltcr (s) 
phase angles 
(rad* 1000) 

voltage magnitud 
(pu'1000) 

J 

Al 5;8 0.11 1.88- 10.9 1.31 - 1.79 14.5- 19.1 
A2 5;7 0.13 1.49 - 6.53 0.99- 1.01 39.0 - 57.6 
Bl 6;8 0.37 1.08-2.1 1.45-2.07 38.3-49.1 
B2 5;8 0.54 1.02- 1.9 1.0-0.78 81 -95 
Cl 5; 9; 11; 6 2.00 0.56-2.37-0.30-1.55 0.81-0.97-0.82-0.96 63-75-114-146 
C2 5; 6: 11:5 4.00 0.41-1.85-0.18-0.31 0.95-0.96-0.94-1.08 167-161-228-335 

Table 3: Parallel Processing of Distributed Areas. 
Estimation accuracy for MDE version. 

Test N°of Average error in Average error in 

Case Iter (s) 
phase angles 
(rad» 1000) 

voltage magnitud 
(pu'1000) 

J 

Al 2;4 0.17 1.92-8.27 1.26-1.98 12.8-17.7 
A2 2;4 0.29 1.33-5.13 0.99-1.26 35.8 - 57.8 
Bl 2;3 1.15 0.92-1.90 1.30-2.00 35.5-50.1 
B2 2;3 1.70 0.88- 1.70 0.95-1.06 71 -86 
Cl 2; 2: 2; 4 8.00 0.59-1.69-0.35-1.02 0.81-0.95-0.81-1.29 51-69-111-174 
C2 2: 2: 2; 3 15.00 0.36-0.84-0.18-0.3 1.02-0.95-0.96-0.3 152-143-226-290 
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5. Conclusions 
Fig. 3. Parallel Processing Improvement. 

In this paper some methodologies for parallel state estimation were introduced and tested, 
based in conventional algorithms, like standard WLS version and standard decoupled MDE 
version. The results of computational experiments show that for integral processing of state 
estimation, the parallelism of algorithms does not bring any improvement, compared with the 
conventional decoupled MDE algorithm. A distributed computing is the better way to adopt the 
parallel computing in power systems energy. This fact was simulated tearing the IEEE standard 
test cases in some areas. The PVM software tool, enables the simulation of distribute tasks on 
various processors. The idle times of processors, synchronous computations become too 
expensive when the processors are geographically distributed, so we tested the asynchronous 
processing. For boundary buses, we apply the restrictions indicated in (12) and (13). The 
computational results show that with this distributed methods we get a very high improvement 
in manner of time processing, compared with integral standard version. The only drawback is 
the discrepancy in values of boundary bus state variables estimated using different sets of 
measurements, but in cases with higher redundancy levels, the values of the discrepancies are 
acceptable and the effect on computational efficiency is minimal. 
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Abstract. Linear systems of the form Ax = 6, where the matrix A 
is symmetric and positive definite, often arise from the discretization of 
elliptic partial differential equations. A very successful method for solving 
these linear systems is the preconditioned conjugate gradient method. 
In this paper we study parallel preconditioners for the conjugate gradi- 
ent method based on the block two-stage iterative methods. Sufficient 
conditions for the validity of these preconditioners are given. Computa- 
tional results of these preconditioned conjugate gradient methods on two 
parallel computing systems are presented. 

1    Introduction 

We study the parallel solution of a linear system 

Ax = b, (i) 

where A € lRnxn is a symmetric and positive definite matrix (i.e., A = AT and 
x Ax > 0, for all real x ^ 0) and x and 6 are n-vectors. 

Preconditioned conjugate gradient methods (PCG) can be used for the solu- 
tion of (1). Descriptions of these methods can be found e.g., in Concus, Golub 
and O'Leary [3] or Ortega [9]. The idea of the PCG method consists of applying 
the conjugate gradient method (see [5]) to a better conditioned linear system 

Ax = b, where A = SAS7, x = S~Tx, and 6 = 56. The matrix M = (PSf1 

is called the preconditioner or preconditioning matrix. The PCG method may 
be applied without computing Ä, but solving the auxiliary system 

Ms = r, (2) 

at each conjugate gradient iteration, where r = 6 - Ax is the residual at the 
corresponding iteration. 

One of the general preconditioning techniques is the use of the truncated 
series preconditioning. These preconditioners consist of considering a splitting 
of the matrix A as 

A = P-Q, (3) 
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and performing m steps of the iterative procedure defined by the splitting (Z) 
toward the solution of A» = r, choosing ,«>) = 0. It is well known that the 
solution of the auxiliary system (2) is effected by s = (/ + R + R?+      + 

T+# + .r.'. +h^)-iPcf! mand tHe preC°nditioning matrixis Mm = P(I+ 
It is in these terms that in Section 2, we construct the preconditioner based 

on the two-stage methods and we study its validity. Moreover, in Section 3 
we evaluate the performance of the resulting PCG algorithms on two different 
parallel distributed memory multiprocessors. 

2    Parallel block two-stage preconditioners 

Let us consider the splitting (3), where P is a block diagonal matrix, denoted 

P = ^S(Pu-..,PP), (4) 

and Pj, 1 < j < p> are square nonsingular matrices of order nh YV- = n. 

Note that performing m steps of the iterative procedure defined bythe above 
splitting to approximate the solution oi As = r, corresponds to perform m steps 
of a Block-Jacobi type method. Thus, at each step /, / = 1,2,..., m, of a Block- 
Jacobi type method, p independent linear systems of the form 

^f = (^('-1)+'-)i,     l<i<p, (5) 

with ,£> = 0, need to be solved; therefore each linear system (5) can be solved 
by a different processor. However, when the order of the diagonal blocks A 1 < 
J <p, is large it is natural to approximate their solutions by using an iterativ! 
method, and thus we are in the presence of a two-stage iterative method; see 
e-6-. 14J, loj, 17J, [8J. In a formal way, let us consider the splittings 

Pj = Bj -Cjt    1 <j <p, (6) 

and at each /th step perform for each j, 1 < j < p, q(j) iterations of the iterative 
procedure defined by the splittings (6) in order to approximate the solution of 
(5). That is, to solve the auxiliary system (2) of the PCG method, we use m 
steps of the iteration 

aW=Tsl,-1) + W-1r,    1=1,2,..., m, 

choosing s(°) = 0, where T = H+(I-H)P^Q, W = P{I-H)~\ with P defined 
in (4) and H = Diag^^)^,.... (B^CP)^); see e.g., [7]. Then, the 
updated vector from m steps is given by s<m) = (I + T + T2 + - ■ ■ + Tm-1)W-1r 
Therefore, the preconditioner related to the block two-stage methods is given by 

Mm = W{I + T + T* + -.. + T"1-1)-1. (7) 
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In the rest of this section we check the validity of this preconditioned We 
give sufficient conditions on the splittings to assure that Mm is symmetric and 
positive definite. Given a square real matrix A, the splitting A = P - Q is 
P-regular if and only if PT + Q is positive definite. 

Theorem 1. Let A be a symmetric positive definite matrix. Let A = P - Q 
be a splitting of A, where P = Diag{Plt...,Pp) ts the block diagonal matrix 
defined in (4). Suppose that P is symmetric and Q is positive semidefinite. Let 
Pj = Bj - Cj, 1 < j < p, be P-regular splittings such that Bj is symmetric. 
Then the preconditioning matrix Mm defined by (7) is symmetric. 

Proof. The matrix W~l = (I - H)P-X can be written as 

W-1 = Diag((/ - (B^C^P-1,...,(/- (BP-1CP)'(*>)P-1) 

/«UM ?(P)-I \ 

= Diag     £ (VCO'flr1,...,  £ (B^C.yB^). (8) 
\ «=o ,=o j 

Since Pj and Bj, 1 < j < p, are symmetric, Cj is also symmetric. Then, it is easy 
to see that W x is symmetric. On the other hand, the matrix T can be written as 
Tz=I-W~1A. Then, from (7) it obtains M^1 = (I+T+T2+--■+Tm-1)W-1 = 
m-l 

E 
«=o 
22(1 - W~1A)'W  l. Thus, the matrix A4"1 is a linear combination of terms 
«=o 
of the form {W^AYW1, i = 0,1,..., m - 1, which are symmetric. Then, the 
proof is completed. 

Theorem 2. Let A be a symmetric positive definite matrix. Let A = P - Q 
be a splitting of A, where P = Diag(P1(.. .,Pp) is the block diagonal matrix 
defined in (4). Suppose that P is symmetric and Q is positive semidefinite. Let 
pi = Bi - Cj. 1 < j < p, be P-regular splittings such that Bj is symmetric. 
Then the preconditioning matrix Mm defined by (7) is positive definite. 

Proof. Since Pj -Bj-Cj, 1 < j < p, are P-regular splittings, from Corollary 
3.6 of [2] it follows that the block diagonal matrix W = P(I - H)~l is positive 
definite. On the other hand, from (7) we can write 

M-1W = (I + T + T2 + --. + Tm-1), (9) 

with T = I- W-^A. From Theorem 3.5 of [2] it follows that p(T) < 1, and 
reasoning in a similar way as in the proof of Theorem 3.4.2 of [9] it is obtained 
that the eigenvalues of M^W are positive. Then from Theorem A.2.7 of [9] the 
proof is completed. 

3    Numerical experiments 

In the experiments the problem to be solved comes from the discretization of the 
Laplace's equation, V2u = uss+utt = 0, satisfying Dirichlet boundary conditions 
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on the unit square Q = [0,1] x [0,1]. The discretization of the domain Q, using 
five point finite differences, with JxJ points equally spaced by h, yields a linear 
system Ax = b, where A is block tridiagonal, A = tridiag[-/,C, -I], where / 
and C are J x J matrices, / is the identity, and C = tridiagf-1,4 -1] Note 
that A has JxJ blocks of size JxJ. Clearly, A is a symmetric positive definite 
matrix. 

LetA = P-Q be the Block-Jacobi splitting of A, i.e., P = Dia.g(Au,..., A ) 
Let us consider square diagonal nonnegative matrices Dh of size nj, 1 < j <p 
such that Q + Diag(Di, ...,Dp)]s positive semidefinite. Then, it is easy tolee 
that the splitting A = P - Q, where 

P = Diag(P1,...,Pp), Pj = Ajj + Dj, Q = Q + Diag(£>1 ,...,£>„), (10) 

satisfies the assumptions of Theorems 1 and 2. 
Therefore, in order to ensure the hypotheses of the above theorems we consid- 

ered in our examples a block splitting as in (10), where Ajj = tridiag[-/,C, -/], 

l<j<P,and£> = Diag(   £   Iffyl     £    |^|), with Q = [fyj1<lii<fl. 
T    ., . i=i,i*i j=lj*n 
In these experiments reported here, we use as inner iterative procedure the 

Jacobi method. 

The parallel experiments have been run on two different parallel computer 
systems. The first platform is an IBM RS/6000 SP with 8 nodes. The second 
platform is an ethernet network of five 120 MHz Pentiums. The peak performance 
of this network is 100 Mbytes per second. 

We experimented with different matrix sizes. The matrices were partitioned 
according to the number of available processors . The conclusions were similar 
for all tested matrices. Here we discuss the results for two matrices of size 1024 
and 4096 which correspond to grid sizes of 32 and 64, respectively 

The initial vector used was *«» = (0,0,..., 0)T and the right hand side was 
b - (1,1,..., 1)   . The stopping criterion used was rT ■ r < 10-5  where r is 
the residual at the corresponding iteration. All times are reported'in seconds 
In the results we use the notation 2161 to represent that q(j) = 2, j = 1, and 
?(j) = 6, j = 2. Similar notation is used for other block two-stage PCG methods 

Tables 1 and 2 show the behavior of some PCG methods for the above Laplace 
matrices. We compare these methods with the well-known m-step Block-Jacobi 
PCG method that has potentially excellent parallel properties. In this case the 
subdomam problems are solved by using the Choleski complete factorization'(see 
e.g., [9]). One can observe that the use of two-stage preconditioned gives better 
resu ts than the use of the Block-Jacobi preconditioner. The conclusions are 
similar on both multiprocessors. However, the computing platform has obviously 
an influence in the performance of a parallel implementation. So, the efficiency 
decreases notoriously when the number of processors increases. This fact is due 
to the inadequate use of the processors when the number of processors increases 
for a fixed matrix, because the cost of the operations performed in parallel can 
be smaller than the cost of communications. For example, in the last block 
partitioning of Table 2 using four processors for the cluster of Pentiums it obtains 
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REAL times between 3.04 and 7.21 seconds, however the CPU times are between 
0.68 and 1.54 seconds. Here the network is very slow compared to the network 
in the other computing platform. 

On the other hand we observed that generally the optimal number of steps 
m is two for any size of the diagonal blocks. However, it seems that the choice 
of the number of inner iterations (q(j)} is dependent of the size of the diagonal 
blocks. So, an optimal sequence of inner iterations is that a little greater than 
one producing a priori a load balance based on the block size assigned to each 
processor. 

We have observed, in some cases, that when the number of steps is odd, then 
the number of iterations increases with respect to the previous even number of 
steps. This fact is due to the condition number of the matrix A = SAS7 that 

is similar to the matrix M^A. Then, cond(i) = jlj^jr"}, where Am,-n(rm) 

and \max{Tm) are respectively the minimum and maximum eigenvalues of 7"". 
Therefore, if T has negative eigenvalues and m is odd, the numerator of cond{A) 
is greater than one. However, if m is even, the numerator is always less than one. 
Thus, we must expect a better decreasing of cond(^4) for even values of m. 

Table 1. Parallel implementation of the PCG method on the solution of Laplace 
problems. Size of matrix A: 1024. 

# Proc. 

m 

Block two-stage PCG | Block-Jacobi PCG 
n> </(» It. Time Time 1 It. Time Time 

cluster •pa 1 clatter ipa 

2 1 
1 

i2 

22 
49 
27 

0.95 
0.51 

0.090 
0.050 1 512 

512 1 3* 31 0.61 0.062 
1 A1 21 0.44 0.047 8 1.28 0.71 
2 i2 

25 0.57 0.056 
2 5' 14 0.43 0.051 
2 62 12 0.41 0.050 7 1.13 0.65 

2 1 
1 

l2 

2161 
59 
30 

1.13 
0.58 

0.125 
0.062 11 2.64 1.73 768 

256 2 22 23 0.58 0.066 
2 3'e1 

19 0.54 0.066 6 2.42 1.71 
3 1 

1 
1J 

43 
50 
20 

1.08 
0.49 

0.128 
0.051 11 1.17 0.24 352 

352 2 l3 26 0.66 0.084 
320 2 53 13 0.39 0.053 8 0.93 0.17 

3 I* 28 0.80 0.135 
3 23 16 0.50 0.069 
3 33 17 0.56 0.075 
3 4' 12 1 0.44 0.057 7 0.97 0.18 
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Table 2. Parallel implementation of the PCG method on the solution of Laplace 
problems. Size of matrix A: 4096. 

|| # Proc. 

m 

| Block two-stage PCG | Block-Jacobi PCG | 
ni 9(3) It. Time 

clutter 

Time 

• p2 

It. Time 

cluster 

Time 

•P2 

3 1 
1 
2 
2 

1* 
43 

l3 

43 

102 
47 
52 
32 

5.93 
3.18 
4.12 
3.02 

0.56 
0.31 
0.36 
0.32 

19 

11 

16.47 

16.40 

9.01 

8.06 

1344 
1344 
1408 

4 1 
1 
2 
2 
3 

l4 

44 

l4 

44 

A* 

101 
38 
51 
27 
22 

7.21 
3.04 
4.95 
3.12 
3.36 

0.63 
0.27 
0.41 
0.27 
0.29 

21 

14 
13 

9.58 

9.72 
10.28 

4.01 

4.02 
4.08 

1024 
1024 
1024 
1024 
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Abstract. In this paper we study a sequential version of the Gaussian 
elimination method in which several pivots are used in each reduction 
step. We carry out an error analysis and establish an upper bound for 
the error in the solution. In all our tests (in which we have used ran- 
dom matrices as well as matrices of special types) the numerical results 
produced by an implementation of the algorithm are as good as those 
produced by the classical method. From the point of view of sequential 
processing, the new method is as efficient as the classical method and we 
believe that it has advantages for parallel processing since it allows bet- 
ter load balancing and computation/communication overlap. We develop 
a parallel implementation of the new method in a distributed memory 
system with a ring topology and give a performance analysis of the par- 
allel algorithm based on the study of the load balancing and the cost 
of communication between processors. We present preliminary results of 
some computational experiences with the parallel algorithm. 

1    Introduction 

Much work has been published in the last years on the parallel solution of large 
systems of linear equations. A considerable number of publications treat the par- 
allelization of the old method of Gauss with partial pivoting [3] [5] [6] [7] [9] [11] [12] 
[14][15]. The main problem of any implementation of this method in a multipro- 
cessor machine resides in the need to incorporate partial pivoting to guarantee 
the numerical stability of the method. This happens because, at each step, the 
search for the pivotal row forces the synchronization of the activity of several 
processors and part of the time is spent on communication and waiting. To 
minimize these problems, we propose a modification of the method of Gaussian 
elimination which consists in the use of several pivots in each reduction step; we 
first study a sequential version of the modified method and then proceed with its 
parallelization. Our proposal is significantly different from another variant of the 
method know as "pairwise pivoting" which has been introduced by Wilkinson 
[1] and more recently used by others in the context of parallel processing [3] [5]. 
As it is also the case with pairwise pivoting [2] [4], one possible drawback of our 
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pivoting strategy is that the theoretical upper bound for the error in the solution 
is larger than in the classical method; nevertheless, in our numerical experiments 
the errors produced by both methods were found to be comparable. 

2    Gaussian elimination with several pivots in each step 

Given a system Ax = b with A £ Rn*n non singular, consider the matrix (A\b) 
divided into nB blocks of R contiguous rows. In the process of reducing A to 
triangular form, we consider the kth reduction step (k = l,2,...,n - 1) as a 
sequence of two phases. The first phase occurs at an internal'le'vel' within each 
block and the second phase involves the various blocks. 

/      °i,i 

Q/i.i 

0-1,2 

Qfl,2 
aR+l,l Gfl+1,2 

a2R,l 0-2R,2 

1l,n 

Ofl.n 

h \ 

bR 

°-R+l,n °R+\ 

a-2R,n h '2R 

a(n-R)+i,i a{n_R}+12 ... a{n_R]+hn b{n_R)+i 

a».l an,2 ••• an,n bn        J 

Description of the first step of reduction: for L = 1,2,.... nB select a pivotal 
row, called local pivotal row, let us say row pL where: 

aPL,i  = max a, J 

Next, if aPL,! ^ 0 each row i (i = (L - l)R + 1,..., LR, i # Ph) is replaced bv 
its sum with row ph multiplied by miti = -aitl/aPLA. 

Once these elementary operations are concluded In each block, one still needs 
to annihilate nB-1 elements in the first column. To do this, a global pivotal row 
is selected among the nB local pivotal rows, which is row p, where: 

Assuming that apd / 0, we finalize the first step of reduction by replacing the 
remaining tocal pivotal rows with its sum with the global pivotal row multiplied 
by »V,i = -aPL,i/aP,i (L = l,...,nB and pL ^ p), where one interchanges 
rows p and 1 if p ^ 1, so that in the end the matrix of the system is in triangular 
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form. In the remaining n - 2 reduction steps one proceeds in an analogous way. 
Note that initially the number of local pivotal rows equals the number nB of 
blocks but such number will decrease along the process of elimination, as the 
number of blocks involved in the reduction to triangular form decreases. 

3    Matrix formulation of the method 

A matrix formulation of the method with several pivots in each reduction step 
can be described in terms of products with non unitary elementary matrices 
(Gauss transformations)[18]. Denoting the matrices involved in the local and 
global stages of the kth step respectively by MktL and Mk, we have: 

Mk,L =1- T^eT
kL 

Mk = I- T^eT 

where: 

- kL is the index of the local pivotal row in block L 
- T^) represents the vector of multipliers of used in the local stage, in block 

T .     -      {k-i) tk-i) 
L {mitk = aitk /aklj,k,    i = kL + l, ..., LR) 

~ eIL is the kLth column of the identity matrix 
- k is the index of the global pivotal row 
- r(fc> represents the vector of multipliers used in the global phase 

We will also denote the elementary permutation matrices by Pk<L and Pk 

when referring to permutation of rows in the local phase (i.e., interchange of two 
local rows in block L ) and in the global phase (i.e., permutation of rows from 
two distinct blocks), respectively. Therefore, at the end of step n - 1 we have a 
triangular matrix U given by 

■step(n-l) step (n-R)+l step (n-fi) 

^n-lPn-1 • • • M(n-Ä)+lP(„-Ä)+iM(n_Ä)P(n_Ä)Mn_Ä,nBPn_ÄinB . . . 
• • -MRPRMR^BPR.UB ■ ■ ■ MR,2PR,2 ... MiPiMi^sPi,*!) ■■■M1 ^ XA = U. 
 —. '   > „ :—!_• 

step R step j 

In terms of factorization, we have A = LU where 

L = P1AM-1
1...P1,nBM-1

nBP1Mi-
1 Pn-iM'l, 

is not necessarily a lower triangular matrix. However, if L is required for practical 
purposes, it can be readily obtained as a product of simple matrices, according 
to the previous expression. 
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Example (n=6, nB=2): 

( 1-1-1-1-1-1^ 
-12 0 0 0 0 
-10 3 111 
-10  14 2 2 
-10  12 5 3 

V-l 0  1  2 3 6/ 

( 1 0 0  0  00\ 
-110  0  00 
-1-1  1   0  0 0 
-1-1-14 4 1 
-i-i-i J-}i 

V-i-i-i I    i/ 

/I-I-I-I-I-I\ 
0 1-1-1-1-1 
0 0 1-1-1-1 
0 0 0-2 3 1 
0 0 0 0-23 

\0 0 0 0 0 \j 

4    Error analysis 

A detailed error analysis for the new method is given in [18] where it is shown 
that the calculated solution x satisfies the system: 

(A + E)x = b 
with 

l|£||oo<15nVp||oo+0(U
2) 

In the Gauss elimination method with partial pivoting one has [10]: 

Halloo <8nVP||oo+0(u2) 

Therefore, the limit for the rounding errors in the new method is more pes- 
simist because of the factor 15n4. At this point, one should bear in mind that 
the factor n3 is usually ignored in the discussion of the stability of Gaussian 
elimination. As stated in [10], p.65: "...usually, the bound itself is weaker than 
it might have been because of the necessity of restringing the mass of detail to a 
reasonable level and because of limitations imposed by expressing the errors in 
terms of matrix norms". It is usually considered that the numerical stability of 
the method depends on the size of a growth factor p. We adopted the definition 

max|a (fc)| 
■i,j I 

max|aj ,• 
i,j,k 

given in [16]. Although, in theory, p can be as large as 2n~\ in practice such 
growth is extremely improbable and p is generally of the order 10. Indeed, in 
the computational experiences carried out with both methods, we found p to be 
always of such order of magnitude (see table 1). Based on this, we claim that the 
numerical properties of the new method are comparable to those of the classical 
algorithm. 

744 



VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing 

5    Computational experiences 

We implemented our algorithms (both sequential and parallel) on a transputer 
based machine. In the computational tests we found out that the new method 
and the classical method with partial pivoting produce solutions with the same 
precision, independently of the type of matrix used. This can be appreciated in 
table 1 for random matrices of different sizes. In all cases we have used a vector b 
corresponding to the exact solution x{ = 1 (i = 1, ...,n), so that we can indicate 

the absolute error Hz-xH»,. Also, the execution times are essentially the same 
for both methods, although in the case of our method we are using several con- 
current processes (in this set of experiments we set R - 10, i.e., we decomposed 
each matrix in n/10 blocks of 10 rows each); the transputer hardware handles 
efficiently the execution of concurrent processes and the overhead due to this is 
very small, as it can be better understood for the matrix of size n = 100, since 
in this case a single processor is running 10 concurrent processes. 

n method ||Ai -blU l|a>x||oo P run time (sec.) 
10 Ours 1.78E-15 1.64E-14 1.49 0.00614 
10 Classic 1.78E-15 1.64E-14 1.49 0.00589 
20 Ours 5.33E-15 6.88E-15 1.77 0.0346 
20 Classic 3.55E-15 1.24E-14 2.68 0.0331 
50 Ours 2.13E-14 2.13E-13 6.84 0.398 
50 Classic 1.78E-14 7.37E-14 3.86 0.384 

100 Ours 8.53E-14 2.17E-13 9.81 2.84 
100 Classic 3.55E-14 2.99E-13 ——____ 7.18 2.76 

Table 1: results obtained with the two methods on a single processor. 

To make more clear that the numerical precision of the solution does not 
vary significantly with the number nB of blocks used, and that the execution 
time increases only slightly we tested our method with a certain matrix of size 
n = 100, using successively 1, 4, 5, 10 and 20 blocks. The results are listed in 
table 2. 

nB \\Ax-b\U \\x-xWoo run time (sec.) 
1 6.39£ - 14 6.57£ - 13 2.77 
2 9.95£-14 IA0E - 13 2.77 
4 6.39£-14 1.16£-13 2.78 
5 5.68E - 14 1.26£ - 13 2.78 

10 8.53£-14 2.17£-13 2.84 
20 7.82£ - 14 1.66E-13 2.89 

Table 2: varying the number nB of blocks for a matrix of size n 100. 

6    The parallel algorithm 

In the development of the parallel application we used a ring topology. Paral- 
lelizing the algorithm consists in assigning a block of R contiguous rows of the 
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matrix (A\b) to each process of the ring. In this way, a local reduction is carried 
out concurrently in each process of the ring. Furthermore, the task of finding 
(and broadcasting to the still active processes) the global pivotal row can pro- 
ceed concurrently with the local computation. After this, the processes finish 
"simultaneously" the reduction step. 

6.1 Load balancing 

The load balancing of the parallel algorithm is not predictable since it is not 
possible, in general, to know in advance which process is the owner of the global 
pivotal row in each one of the n - 1 steps. Because of this, we studied two 
extreme cases: the best case occurs when the pivotal row belongs cyclically to 
each process (and all processes will be active almost till the end of the reduction 
to triangular form), the worst case occurs when the first R global pivotal rows 
belong to a particular process (this process will be idle in the remaining n- R 
steps), the next R belong to another process, and so on. In this respect it is 
interesting to note that for matrices generated randomly the load balancing is 
always near to the ideal situation (see [18] p.69-72). 

6.2 Efficiency and speedup 

A theoretical study of the speedup S:=T(1)/T(P) and efficiency E := S/P of 
the parallel algorithm, was carried out for the extreme cases described before; 
we obtained the following expressions: 

best case: 

g~!    /W+Zn\P+2)-n(P*-6P+12) (     P(n_1)+2n     ^ 
/   [ (4n'+9n*-7n)P + U(f (P ~ *) [(4J+9nL7n)P) ad + 

worst case: 

C~1    /r-2n3(3P2-l) + 3n2(4P2-Pl-7nP2        . ^ , -       ^(     P(n-l)+2n     \ 1 

/[ (4n<+9n'-7n)P3 + 12° (P ~ V \{4n*+9n*-7n)p) <*« + 

where: 

- 9 represents the number of flops per second 
- ad is the start-up time 
- ßd is the time required to send a floating-point number through a physical 

link. 

In any case, the efficiency and speedup increases when n grows and P remains 
fixed and decreases when P is grows and n is kept constant. Using the values 
6 = 106, ad = 2.6/is, ßA = 4.5/is given in [13] for the T800 transputer and 
considering P = 4 and n = 100,200,300,400,600, one obtains from the previous 
expressions the estimated values given in table 3. 
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S~T(4)       E~4{%) 

n best case worst case 
100 
200 
300 
400 
600 

3.14(78,5%) 
3.56(88,9%) 
3.70(92,6%) 
3.78(94,4%) 
3.85(96,3%) 

2.33(58,3%) 
2.53(63,3%) 
2.60(64,9%) 
2.63(65,7%) 
2.66(66,5%) 

Table 3: estimated values for the speedup and efficiency with 4 processors. 

In computational experiences applied to problems of dimension n = 100 and 
using 4 processors we obtained the values for the speedup and efficiency given 
in table 4. 

Matrix -* seq V^eC .J ■*■ par^SGC .) ■->—J- seql -Lpar E=S/4 
Moler 2.39 1.39 1.72 43,0% 
Frank 2.44 1.40 1.74 43,6% 
Border 3.48 1.72 2.02 50,6% 
Dingdong 2.61 1.46 1.79 44,7% 
Random 2.78 1.24 2.24 56,0% 

Table 4: execution times, speedup and efficiency of the parallel algorithm (with 
4 processors). 

The best results were obtained with random matrices, as expected, since the 
load balancing of the parallel algorithm was found to be good for such matrices, 
as mentioned before. 
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