
.v;i kl

.98 3rd internacional meeting on
vector and parallel processing

Faculdade de Engenharia
da Universidade do Porto

^fri*'>vs:5 ie.- oft

;•« M Ä

»r-fc'

is
feSirHviviii.oE. Ü:.ffi

Proceedings
Part II (June 22)

rxj

fD ■ff*1 f'TT/

fl<j>FW- /4- ^5

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

10 August 1998

3. REPORT TYPE AND DATES COVERED

Conference Proceedings

4. TITLE AND SUBTITLE

VECPAR 98 3rd International Meeting on Vector and Parallel Processing

6. AUTHOR(S)

Conference Committee

5. FUNDING NUMBERS

F6170898W0009

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Faculdade de Engenharia da Universidade do Porto
Seccao dos Bragas
Porto Codex 4099
Portugal

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 802 BOX 14
FPO 09499-0200

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CSP 98-1006

11. SUPPLEMENTARY NOTES

Consists of three volumes.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 words)

The Final Proceedings for VECPAR 98 3rd International Meeting on Vector and Parallel Processing, 21 June 1998 - 23 June 1998

This is an interdisciplinary conference. Topics include parallel and distributed computing, image processing and synthesis, real-time and
embedded systems.

14. SUBJECT TERMS

Computers, Signal Processing, Mathematics, Modelling & Simulation

15. NUMBER OF PAGES

1088
16. PRICE CODE

N/A

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19, SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

298-102

VECPAR'98
3rd International Meeting on

Vector and Parallel Processing

1998, June 21-23

Conference Proceedings
Part II

(Monday, June 22)

FEUP
Faculdade de Engenharia
da Universidade do Porto

Table of Contents

PARTI

Invited Talk 1
• Some Unusual Eigenvalue Problems 1

Zhajun Bai and Gene Golub (USA)

Technical Session 1
• Parallel Preconditioners for Solving Nonsymmetric Linear 17

Systems
Antonio J. Garcfa-Loureiro, Tomas F. Pena, J.M. Lopez-
Gonzalez and LI. Prat Vinas (Spain)

• Parallel Preconditioned Solvers for Large Sparse Hermitian 31
Eigenproblems
A. Basermann (Germany)

• Comparisons of Parallel Algorithms to Evaluate Orthogonal 45
Series
R. Barrio (Spain)

Technical Session 2
• Coarse-grain Parallelization of a Multi-Block Navier-Stokes 59

Solver on a Shared Memory Parallel Vector Computer
P. Wijnandts and M.E.S. Vogels (The Netherlands)

• Using Synthetic Workloads for Parallel Task Scheduling 73
Improvement Analysis
Joäo Paulo Kitajima and Stella Porto (Brazil)

• Influence of the Discretization Scheme on the Parallel Efficiency 87
of a Code for the Modelling of a Utility Boiler
P.J. Coelho (Portugal)

Technical Session 3
• Parallel Implementation of Edge-Based Finite Element Schemes 99

for Compressible Flows on Unstructured Grids
P.R.M. Lyra, R.B. Willmersdorf, MA.D. Martins and A.L.G.A.
Coutinho (Brazil)

• Parallel 3D Air Flow Simulation on Workstation Cluster 113
Jean-Baptiste Vicaire, Loic Prylli, Georges Perrot and Bernard
Tourancheau (France)

• 2D Pseudo-Spectral Parallel Navier-Stokes Simulations of the 127
Rayleigh-Taylor Instability
E. Fournier and S. Gauthier (France)

Technical Session 4
• A Unified Approach to Parallel Block-Jacobi Methods for the 139

Symmetric Eigenvalue Problem
D. Gimenez, V. Hernandez and A. M. Vidal (Spain)

• Solving Large-Scale Eigenvalue Problems on Vector-Parallel 153
Processors
David L. Harrar II and Michael R. Osborne (Australia)

• Solving Eigenvalue Problems on Networks of Processors 167
D. Gimenez, C. Jimenez, M., J. Majado, N. Marin and A. Martin
(Spain)

Invited Talk 2
• Parallel Domain-Decomposition Preconditioning for 181

Computational Fluid Dynamics
Timothy Barth, Tony Chan and Wei-Pai Tang (USA)

Technical Session 5
• Parallel Turbulence Simulation: Resolving the Inertial Subrange 209

of Kolmogorov's Spectra
Thomas Gerz and Martin Strietzel (Germany)

• A Systolic Algorithm for the Factorisation of Matrices Arising in 217
the Field of Hydrodynamics
S. G. Seo, M. J. Downie, G. E. Hearn and C. Phillips (UK)

• The Study of a Parallel Algorithm Using the Backward-Facing 227
Step Flow as a Test Case
P.M. Areal and J.M.L.M. Palma (Portugal)

• High Performance Cache Management for Parallel File Systems 239
F. Garcia, J. Carretero, F. Perez and P. de Miguel (Spain)

Technical Session 6
• Parallel Jacobi-Davidson for Solving Generalized Eigenvalue 253

Problems
Margreet Nool and Auke van der Ploeg (The Netherlands)

• A Level 3 Algorithm for the Symmetric Eigenproblem 267
Dieter F. Kvasnicka, Wilfried N. Gansterer and Christoph W.
Ueberhuber (Austria)

• Synchronous and Asynchrounos Parallel Algorithms with 277
Overlap for Almost Linear Systems
Josep Arnal, Violeta Migallön and Jose Penades (Spain)

• Spatial Data Locality With Respect to Degree of Parallelism in 291
Processor-and-Memory Hierarchies
Renato J. O. Figueiredo, Jose A. B. Fortes and Zina Ben Miled
(USA)

PART II

Technical Session 7
• Pardoning Regular Domains on Modern Parallel Computers 305

M. Prieto-Matfas, I.Martfn-Llorente and F. Tirado-Fernändez
(Spain)

• A Performance Analysis of the SGI OriginlOOO 319
Aad J. van der Steen and Ruud van der Pas (The Netherlands)

• Parallel Computing over the Internet with Java 333
Hernäni Pedroso, Luis M. Silva, Victor Batista, Paulo Martins,
Guilherme Soares and Telmo Menezes (Portugal)

• The Parallel Problems Server: A Client-Server Model for 345
Interactive Large Scale Scientific Computation
Parry Husbands and Charles L. Isbell (USA)

Technical Session 8
• A Thread-level Distributed Debugger 359

Joäo Lourenco and Jose C. Cunha (Portugal)

• New Access Order to Reduce Inter-Vector Conflicts 367
A. M. del Corral and J. M. Llaberia (Spain)

• Multilevel Mesh Partitioning for Aspect Ratio 381
C. Walshaw, M. Cross, R. Diekmann and F. Shlimbach (UK)

• Visualization ofHPF Data Mappings and of their 395
Communication Cost
Christian Lefebvre and Jean-Luc Dekeyser (France)

Invited Talk 3
• Parallel and Distributed Computing in Education 409

Peter Weich (UK)

Technical Session 9
• An ISA comparison between Superscalar and Vector Processors 439

Francisca Quintana, Roger Espasa and Mateo Valero (Spain)

• Implementing the Time-Warp Simulation Model in Java 453
Pedro Bizarro, Luis M. Silva and Joäo Gabriel Silva (Portugal)

• Evaluation of High Performance Fortran for an Industrial 461
Computational Fluid Dynamics Code
Thomas Brandes, Falk Zimmermann, Christian Borel and Marc
Bredif (Germany)

Technical Session 10
• Automatic Detection of Parallel Program Performance Problems 481

Antonio Espinosa, Tomas Margalef and Emilio Luque (Spain)

• Registers Size Influence on Vector Architectures 495
Luis Villa, Roger Espasa and Mateo Valero (Spain)

• The Adaptive Restarted Procedure for ORTHOMIN(k) Algorithm 507
Takashi Nodera and Naoto Tsuno (Japan)

Invited Talk 4
• Reconfigurable Systems: Past and Next 10 Years 519

Jean Vuillemin (France)

Technical Session 11
• A Method Based on Orthogonal Transformation for the Design of 541

Optimal Feedforward Network Architecture
Bachiller P., Perez R.M., Martinez P., Aguilar P.L., Calle J.E.
(Spain)

• Preprocessor Based Implementation of the Versatile Advection 553
Code for Workstations, Vector and Parallel Computers
Gabor Töth (Hungary)

• A Parallel N-Body Integrator Using MPI 561
Nuno S. A. Pereira (Portugal)

• Efficient Molecular Dynamics on a Network of Personal 575
Computers
Giuseppe Ciaccio and Vincenzo Di Martino (Italy)

Technical Session 12
• Limits of Instruction Level Parallelism with Data Speculation 585

Jose Gonzalez and Antonio Gonzalez (Spain)

• Simulating Magnetized Plasma with the Versatile Advection 599
Code
R. Keppens and G. Töth (The Netherlands)

• Parallel Grid Manipulations in Earth Science Calculations 611
W. Sawyer, L. L. Takacs, A. da Silva, P. M. Lyster (USA)

• Molecular Dynamics as a Natural Solver 625
Witold Dzwinel, Jacek Kitowski, J. Moscinski and D. Yuen
(Poland)

Posters
• Co-Design Decisions for High Performance Parallel 639

Architectures
J.C. Moreno and A. Alcolea (Spain)

• Achieving Data Availability on Parallel and Distributed File 645
Systems
Francisco Rosales and Raimundo Vega (Spain)

• PC and DSP based A C motor adaptive vector control system 651
David Juan Bedford Guaus, Antoni Arias Pujol, Emiliano
Aldabas Rubira and Jose Luis Romeral Martinez (Spain)

• Parallel Optimisation for Optical Lens Design . 657
Enric Fontdecaba Baig. Jose M. Cela Espfn and Juan C. Dürsteier
Lopez (Spain)

• Supercomputer Opnmisrd Microwave Domestic Oven Design via 663
FD-TD
Gaetano Bellanca. PJOIO Bassi, Giovanni Erbacci, Gianni de
Fabritiis and Ruggcro Roccari (Italy)

Debugging Message Passing Parallel Applications: a General 669
Tool
Ana Paula Claudio, Joäo Duarte Cunha and Maria Beatriz Carmo
(Portugal)

Parallel Ensemble-Averaged Molecular Dynamics Simulation of 675
Shock Wave on Distributed Memory Multicomputers
Sergey V. Zybin (Russia)

The Influence of Communication Patterns in the h-Relation 681
Hypothesis in the IBM SP2
J.L. Roda, C. Rodriguez, F. Almeida, D.G. Morales (Tenerife,
Spain)

One-sided block Jacobi methods for the Symmetric Eigenvalue 687
Problem
D. Gimenez, J. Cuenca, R. M. Ralha and A. J. Viamonte (Spain)

Efficient sparse data distribution for the Conjugate Gradient on 693
distributed shared memory systems
D.E. Singh, F.F. Rivera and J.C. Cabaleiro (Spain)

Synchronized Parallel Algorithms on Red Black trees 699
Xavier Messeguer and Borja Valles (Spain)

Parallelization of GIS algorithms based on data partitioning 705
M. Luisa Cordoba Cabeza and Antonio Perez Ambite (Spain)

Emulating a superscalar processor to teach pipeline and 711
superscalar concepts
Santiago Rodriguez de la Fuente, M. Isabel Garcia Clemente,
Rafael Mendez Cavanillas and Jose M. Perez Villadeamigo
(Spain)

A Parallel Genetic Algorithm for Solving the Portioning Problem 717
in Multi FPGA Sxstems
J. I. Hidalgo, M Prieio. J. Lanchares and F. Tirado (Spain)

HaskelW: A Functional Language with Explicit Parallelism 723
R.M.F.Lima and R I) Lins (Brazil)

Parallel and DistnhutrJ Algorithm in State Estimation of Power 729
System Energy
J. Beleza Carvalho jnd K Maciel Barbosa (Portugal)

Parallel Block T*<<-Slum- Preconditioners for the Conjugate 735
Gradient Method
M. Jesus Castel. Violctj Migallön and Jose Penades (Spain)

• Parallelization of a Direct Method for Systems of Linear 741
Equations
M.F. Costa and R.M. Ralha (Portugal)

PART III

Technical Session 13
• Parallel Genetic Algorithms for Hypercube Machines 749

R. Baraglia and R. Perego (Italy)

• Parallel Quadric Rendering with Load Balancing Strategy 763
Dana Petcu (Romania)

• Efficient Parallelization Approaches for the SAI Representation 111
A. Sanchez, S. Campos and A. Rodriguez (Spain)

• Parallel Implementations of Morphological Connected Operators 791
Based on Irregular Data Structures
Christophe Laurent and Jean Roman (France)

Technical Session 14
• Dynamic Load Balancing in Crashworthiness Simulation 805

H.G. Galbas and O. Kolp (Germany)

• A Parallelization Strategy for Power Systems Composite 813
Reliability Evaluation
Carmen L.T. Borges and Djalma M. Falcäo (Brazil)

• Parallel Paradigms applied in a Fluid-Dynamic Problem to 825
model a Glass Manufacturing Process
J. Vinuesa, R. Menendez de Llano, V. Puente and B. Torön
(Spain)

Vll

Technical Session 15
• Neural Classifiers Implemented in a Transputer Based Parallel 839

Machine
J. M. Seixas, A. R. Anjos, C. B. Prado, L. P. Calöba, A. C. H.
Dantas and J. C. R. Aguiar (Brazil)

• Algorithm-Dependant Method to Determine the Optimal Number 851
of Computers in Parallel Virtual Machines
J.G. Barbosa and A.J. Padilha (Portugal)

Technical Session 16
• Behaviour Analysis Methodology oriented to Configuration of 865

Parallel, Real-Time and Embedded Systems
F.J. Suärez, D.F. Garcia (Spain)

• Epsilon Balanced Decomposition for Power System Simulation N.A.
on Parallel Computers
Felipe Morales S. Hugh Rudnick V. D. W. Aldo Cipriano Z.
(Chile)

Invited Talk 5
• High Performance Computing for Image Synthesis 879

Thierry Priol (France)

Technical Session 17
• Modeling Snow Transport by Wind. A Cellular Automata 895

Alexandre Masselot and Bastien Chopard (Switzerland)

• Some Concepts of the software package FEAST 907
Christian Becker, Susanne Kilian, Stefan Turek and John Wallis
(Germany)

• Dynamic Routing Balancing in Parallel Computer 921
Interconnection Networks
D. Franco, I. Garces, E. Luque (Spain)

Technical Session 18
• Calculation of Lambda Modes of a Nuclear Reactor: a Parallel 935

Implementation using the Implicitly Restarted Arnoldi Method
Vicente Hernandez, Jose E. Roman, Antonio M. Vidal, Vicent
Vidal (Spain)

• Stochastic Control of the Scalable High Performance Distributed 949
Computations
Zdzislaw Onderka (Poland)

• Direct Linear Solver for Vector and Parallel Computers 963
Friedrich Grand (Germany)

Invited Talk 6
• The Design of an ODMG Compatible Parallel Object Database 977

Server
Paul Watson (UK)

Technical Session 19
• Parallel Query Processing in a Shared-Nothing Object Database 1007

Server
L.A.V.C. Meyer M.L.Q. Mattoso (Brazil)

• High Performance Computing of a New Numerical Algorithm for 1021
an Industrial Problem in Tribology
M. Arenaz, R. Doallo, G. Garcia and C. Vazquez (Spain)

• Distributed Simulation Strategies of Graphite Electrode Forming 1035
Process
M. Danielewski, B. Bozek, K. Holly, G. Mysliwiec, J. Sipowicz
and R. Schaefer (Poland)

Technical Session 20
• Experimental Analysis of a Parallel Quicksort-Based Algorithm 1049

for Suffix Array Generation
Autran Macedo, Elaine Spinola Silva, Denilson Moura Barbosa,
Marco Antonio Cristo, Joäo Paulo Kitajima, Berthier Ribeiro,
Gonzalo Navarro and Nivio Ziviani (Brazil)

• A Low Cost Distributed System for FEM Parallel Structural 1063
Analysis
CO. Moretti, T.N. Bittencourt and L.F. Martha (Brazil)

• Low Cost Parallelizing, a Way to be Efficient 1077
Marc Martin and Bastien Chopard (Switzerland)

VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing

Partitioning Regular Domains on Modern Parallel
Computers

Manuel Prieto-Matias, Ignacio Martin-Llorente and Francisco Tirado-Fernändez

Departamento de Arquitectura de Computadores y Automatica
Facultad de Ciencias Fisicas

Universidad Complutense
28040 Madrid, Spain

mpmatias@eucmos.sim.ucm.es, {llorente,ptirado}@eucmax.sim.ucm.es

Abstract. It has become apparent in recent years that the performance of
current high performance computers, from powerful workstations to massively
parallel processors, is strongly dependent on the behaviour of the memory
hierarchy. In fact, it does not only affect the computation time but the time
consumed in performing communications. In this research, the impact of the
memory hierarchy usage on the partitioning of multidimensional regular
domain problems is studied. We use as an example the numerical solution of a
three-dimensional partial differential equation in a regular mesh, by means of a
multigrid-like iterative method. Experimental results contradict the traditional
regular partitioning techniques on some present parallel computers like the Cray
T3E or the SGI Origin 2000: a linear decomposition is more efficient than a
three dimensional one due to the better exploitation of the spatial data locality.
For similar reasons, computation-communication overlapping increases also
execution time.

1. Introduction

The performance of current parallel computers, composed of up to hundreds of
superscalar commodity microprocessors, presents an increasing dependence on the
effective usage of their hierarchical memory structures. Indeed, the maximum
performance that can be obtained in current microprocessors is limited by the memory
access. The peak performance of the microprocessors has increased by a factor of 4-5
every 3 years by exploiting the increasing integration density, reducing the clock
cycle, and by implementing architectural techniques to take advantage of the multiple
levels of parallelism. However, the memory access time has been reduced by a factor
of just 1.5-2 over the same period. Thus, the latency of memory access in terms of
processor performance grows by a factor of 2-3 every three years. This situation
seems likely to continue over the next few years and it has been suggested that such

305

FEUP - Faculdade de Engenharia da Universidade do Porto

trends may result in a "memory wall" in which application performance is entirely
dominated by memory access time [1][2].

The common technique to bridge this gap and hide the problem is by using a
hierarchical memory structure with large and fast cache memories close to the
processor. As a result, the memory structure has a strong impact on the design and
development of a code, and the programs must exhibit spatial and temporal locality to
make efficient use of the cache memory and so keep the processor busy. The
effectiveness of data locality has been well demonstrated in the LAPACK project, and
major research has just begun to develop cache-friendly iterative methods [3] [4].
However, to the best of the authors' knowledge, the impact of the memory hierarchy
usage on the partitioning has not previously been studied.

In this research, we have studied applications where the main computational
portion of the program belongs to a class of kernels known as stencils. A stencil is a
matrix computation in which groups of neighbouring data elements are combined to
calculate a new value. This type of computation is common in image processing,
geometric modelling and solving partial differential equations by means of finite
difference or finite volume. The simplest approach to parallelizing these kinds of
regular applications distributes the data among the processes, and each process runs
essentially the same program on its share of the data. For three-dimensional
applications, decompositions in the x, y, and/or z dimensions are possible.

During the last decade, a d-dimensional mesh of processors has been considered as
the best partitioning to split a d-dimensional regular domain because in this way the
interconnection network is more efficiently exploited [5][6]. Furthermore,
communication-computation overlapping techniques are performed to keep the
processor busy and so improve the parallel efficiency. However, our results show that
in modern parallel computers it is more important to make effective use of the local
memory hierarchy than to reduce the overheads due to network delay cost. The
interconnection systems have also taken advantage of the increasing integration
density offered by the integrated circuit processing technology and the effective
bandwidth and latency are now hundreds of times faster than ten years ago.

This paper is organised as follows. In Section 2 we describe the sample code that
has been used in our research. The effect of spatial locality on message sending is
described in Section 3. Based on this analysis, the choice of an optimal partition is
presented in Section 4. The influence of overlapping computations with
communications is presented in Section 5. The paper ends with some conclusions to
guide the partitioning of regular applications in current parallel computers.

2. Sample Code.

In this research, we are only interested in a qualitative description of the most
important aspects that affect the performance, and that should be considered for
making informed design decisions. As a sample problem, we have studied the
numerical solution of a time-dependent partial differential equation, the three-
dimensional Bose-Einstein equation [7], in a regular mesh subject to Dirichlet

306

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

boundary conditions. The problem is to describe the evolution of a physical field (a
complex function) given an initial condition. An implicit finite difference method has
been used to carry-out the simulation, and the systems of equations are solved by
means of a multigrid-like iterative method [8]. The execution times that we present in
this paper are the result of a single time step simulations using only one multigrid
iteration.

Like other regular applications, the parallel program execution is a sequence of
computation and communication steps. The subdomains of every processor are
independently computed and then, a communication between neighbouring logical
processors updates the boundaries of these subdomains.

The code used in this study parallelizes well for a number of reasons. The
discretization is regular, and the same operations are applied at each grid point, even
though the evolution of the system is non-linear. Thus, the problem can be statically
load-balanced at the start of the code.

3. Spatial Locality Impact on Message Sending.

Message sending between two tasks located on different processors can be divided
into three phases: two of them are where the processors interface with the
communication system (the send and receive overhead phases), and a network delay
phase, where the data is transmitted between the physical processors. Details of what
the system does during these phases varies. Typically, however, during the send
overhead phase the message is copied into a system-controlled message buffering
area, and control information is appended to the message. In the same way, on the
receiving process, the message is copied from a system-controlled buffering area into
user-controlled memory (receive overhead is usually larger than send overhead):

In several out-of-date parallel computers, like the Thinking Machines CM5, the
Parsys Supernode 1000 or the Meiko CS-2, the most important component was the
network delay [9]. However, in current machines like the Cray T3E or the SGI Origin
2000, as the interconnection networks increase their bandwidth, the send and receive
overheads are becoming important. The factors determining these overheads are
different in each system, but they are mainly due to uncached operation, misses and
synchronisation instructions, generally considered to be infrequent events and
therefore a low priority for architectural optimisations of commodity microprocessors.
The use of these components allows a rapidly increasing performance and excellent
price performance, but microprocessors are designed for workstations and modestly
parallel servers. A large-scale multiprocessor creates a foreign environment into
which they are ill- equipped to fit. For example, the memory interfaces are cache line
based, making references to single words (corresponding to strided or scatter/gather
references in a vector machine) inefficient [10]. Therefore, the cost of communication
depends not only on the amount of communication but also on how it is structured to
interact with the architecture (mainly the spatial data locality).

307

FEUP - Faculdade de Engenharia da Universidade do Porto

3.1 The Cray T3E Message Passing Performance

The T3E used in this study had 32 DEC Alpha 21164 running at 300 MHz at the

beginning of our research, and has recently been upgraded with 450 MHz processors.

Like the T3D, The T3E contains no board-level cache, but the Alpha 21164 has two

levels of caching on-chip: 8 KB first-level instructions and data caches, and a unified,

3-way associative, 96-Kbyte write-back second-level cache. The local memory is

distributed across eight banks, and its bandwidth is enhanced by a set of hardware
stream buffers. These buffers, which exploit spatial locality alone, can take the place
of a large board-level cache, which is designed to exploit both spatial and temporal
locality. Each node augments the memory interface of the processor with 640 (512
user and 128 system) external registers (E-registers). They serve as the interface for

message sending; packets are transmitted by first assembling them in an aligned block
of 8 E-registers.

The processors are connected via a 3D torus with an inter-processor

communication bandwidth of 480 Mbytes/sec. Using MPI, however, the effective

bandwidth is smaller due to overhead associated with buffering and with deadlock

detection. The library message passing mechanism uses the E-registers to implement

transfers, directly from memory to memory. Data does not cross the processor bus; it

flows from memory into E-registers and out to memory again in the receiving

processor. E-registers enhance performance when no locality is available by allowing
the on-chip caches to be bypassed. However, if the data to be loaded were in the data
cache, then accessing that data via E-registers would be sub-optimal because the
cache-backmap would first have to flush the data from data cache to memory
[9][10][11].

20000000 40000000
Message Size (bytes)

60000000

Fig. 1. CRAY T3E message passing performance for contiguous data. The network distance
between the processors involved in the communication varies.

Figure 1 shows the measured one-way communication bandwidth for different
message sizes using MPI. The test program uses all of the 28 processors available in
the system. There is always the same sender processor and one receiver processor that

308

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

varies. The sender initiates an immediate send followed by an immediate receive, then
it waits until both the send and the receive have been completed. The receiver begins
by starting an immediate receive operation, then waits until it is finished. It replies
with another message using a send/wait combination. Because this operation is
repeated many times, if all the data fits into the cache then, except for the first echo,
the required data will be found in the cache. But, on the CRAY T3E, the suppress
directive [12] can be used to invalidate the entire cache and so, it forces all entities in
the cache to be read from memory. The measures demonstrate that there is no
difference between close and distant processors in the CRAY T3E.

Figure 2 shows the impact of the spatial data locality. We use also the simple echo
test, but we modify the data locality by means of different strides between successive
elements of the message. The stride is the number of double precision data between
successive elements of the message, so stride-1 represents contiguous data. We use
MPI datatypes (MPI_Type_vector) instead of the MPI_Pack / MPI_Unpack
routines, because they may allow certain performance optimisations. However, we
must be careful because the use of certain MPI datatypes can dramatically slow down
communication performance, e.g., the MPI_Type_hvector type in the T3E
implementation. We send buffers that are 8-byte aligned because the T3E copies non-
aligned data slowly. This is automatic for the usual case of sending double precision
data. Due to memory constraints the larger message is limited to 32Kbytes, although
it is not big enough to obtain the asymptotic bandwidth for the stride-1 case, these
sizes are similar to the messages used in our application program.

WOO 10000 15000 20000 25000 30000 35000

Message Size (Bytes)
- Sum* i

- So» ■«■
-smv 2V

-Stride 2
- Stride 32

Stride 512

Stride 4
-Stride 64

Stride 1024

- Stride 8
— Stride 128

Stride 2048

Fig. 2. CRAY "PE mcAvafc passing performance using non-contiguous data

It is interesting to note ihji almost the same effective bandwidth is obtained for
strides between 16 and <!.' double precision data. For 32 KB messages, stride-1
bandwidth is around 5 timo hotter than stride-16. Beyond Stride-1024 this difference
grows, being stride-1 10 times hotter than stride-2048.

309

FEUP - Faculdade de Engenharia da Universidade do Porto

3.2 SGI Origin 2000 Message Passing Performance

We repeated these tests in a SGI Origin 2000. The Origin is a distributed shared-
memory system with a hypercube network in which each processing node contains
two processors, a portion of the shared memory, a directory for cache coherence, and
interfaces to I/O devices and other system nodes. The system used in this study has
the MIPS R10000 running at 195 MHz. Each processor has a 32 Kbyte two-way set-
associative primary data cache and a 4-Mbyte two-way set-associative secondary data
cache. One important difference between this system and the T3E is that it caches
remote data, while the T3E does not. The memory bandwidth per node is 780
Mbytes/sec. Latencies to the memory modules of the Origin 2000 system depend on
the network distance from the issuing processor to the destination memory node.
Accesses to local memory take 80 clock cycles (CC) (400 ns), while latencies to
remote nodes are the local memory time plus 22 CC (110 ns) for each network router,
plus a one-time penalty of 33 CC for a remote access. On a 32-processor machine, the
maximum distance covers 4 routers, so that the longest memory access is about 201
CC (1005 ns) [13][I4][I5].

However, as in the CRAY T3E, using MPI, the time required to send a message
from one processor to another is almost independent of both processor locations. We
have measured erratic differences of around 7%.

100.00 1

80.00

60.00

40.00

20.00

0 00

4000000 8000000

Message size
12000000 16000000

Fig. 3. SGI Origin 2<XX) me\sjpe passing performance for contiguous data. The network
distance between the pnxrw>t\ involved in the communication varies

It is interesting to nocc ihji ihe measured bandwidth slows down when the message
sizes are larger-than the ^ *KJ level cache (4 MB). Figure 4 shows the impact of the
spatial data locality, the leitend on the right is the number of double precision data
between successive elements To avoid temporal locality effects we build and free the
message every echo opcrjn.-n

310

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

50000 100000 150000 200000
Message Size (Bytes)

250000 300000

-Stride 1
Stride 8

-Stride 64

-Stride 2
-Stride 16
-Stride 128

Stride 4
—•— Stride 32
___. Stride 256

Fig. 4. SGI Origin 2000 message passing performance using non-contiguous data .

For non-contiguous data, the reduction in the effective bandwidth is even greater
than in the T3E case. For 256 KB messages, stride-1 bandwidth is around 6.3 times
better than stride-2. This difference grows with the stride, being 23 times for stride-
256. The memory interface of the Origin is cache line based, making references to
single data more inefficient than in the Cray T3E. Moreover, the current MPI
implementation on the Origin 2000 requires one extra buffer copy.

3.4 Experimental Results in Our Sample Code

Although the communication pattern that we found in our application program is
not a one-way transfer, but a message exchange between neighbouring logical
processors, we notice the impact of the spatial locality as well. In this data exchange,
advantage can be taken of bi-directional links, and a greater bandwidth can be
obtained than is possible with the echo test. The code was written in C, so a three
dimensional domain is stored in a row-ordered (x,y,z)-array. It can be distributed
across a ID mesh of processors following three possible partitionings: x-direction, y-
direction and z-direction. The x and y-direction partitioning were found to be more
efficient, because the message data exhibits a better spatial locality. X and Y
boundaries are stride-1 data, except strides between different Z-columns (two
complex data, i.e. four doubles, for X-partitioning and this quantity plus two times the
number of elements in a x-plane for Y-partitioning). A message using Z-partitioning
has a stride 2 times the number of elements in dimension z (all the elements are
double precision complex data). Figures 5 and 6 show the experimental results from
the CRAY T3E and the SGI Origin 2000 respectively. Due to main memory capacity,
the SGI allows larger simulations.

X-partitioning is found to be 2 times better than Z-partitioning for the 128-element
simulation on the two different configurations of the CRAY T3E. Although message-
passing bandwidth is very important, we should also note that this difference is not
only a message passing effect. X and Y-partitioning more efficiency exploit stream

311

FEUP - Faculdade de Engenharia da Universidade do Porto

buffers because they maximise inner loop iterations [11]. By means of the MPP
Apprentice performance tool we have found that the time spent in the initiation of
message sending is 5 times larger in the Z-partitioning simulations. This fact fits in
with what we measure in the echo test.

64 128
Problem size

B.X(300Mhz) ■YßOOMhz) DZ(300Mhz)
aX(450Mhz) ■Y(450Mhz) ■Z(450Mhz)

Fig. 5. Different linear partitioning of our sample application using sixteen processor in the
CRAY T3E. The problem size is the number of cells in each dimension for the finest grid in the
multigrid hierarchy.

450
400
350

"o 300
«.250
| 200
j= 150

100
50
0 U

128 256
Problem size

X Partitioning HYPartitioning DZ Partitioning

Fig. 6. Different linear partitioning of our sample application using 32 processors in the SGI
Origin 2000. The problem size is the number of cells in each dimension for the finest grid in the
multigrid hierarchy.

Equivalent differences in the Origin 2000 are important, but lower than the T3E
ones. For the 128-element problem, X partitioning is only 1.2 times better. For the
256 one, it grows to 1.4. The large second-level cache of this system, which allows
the best exploitation of the temporal locality, influences these results [16].

312

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Using 2D and 3D decompositions, we notice the same effects. Z-plane boundaries
slow down the performance of the application because they are discontinuous in
memory. Therefore, as figure 7 show, a 2D decomposition using a 4x4x1 array of
abstract processors (4 processors in the x and y dimensions and no decomposition in
the z direction) is better than 4x1x4 and 1x4x4 topologies (the differences are around
15 % in the Cray T3E). In the same way, a 3D decomposition using a 4x2x2 array is
better than a 2x2x4 one.

25

64 128
Problem size

H4x4xl (300Mhz) B4xlx4(300Mhz) □ 1x4x4(300Mhz)

D4x4xl (450 Mhz) B4xlx4(450Mhz) ■ 1x4x4(450Mhz)

Fig. 7. Different 2D decompositions of our sample application using 16 processors in the
CRAY T3E. The problem size is the number of cells in each dimension for the finest grid in the
multigrid hierarchy.

4. Partitioning for Performance

Over the last decade the partitioning has been focused on reducing
communications that are inherent to the parallel program. As is well known, for a d-
dimensional problem, the communication requirements for a process grow
proportionally to the size of the boundaries, while computations grow proportionally
to the size of its entire partition. The communication to computation ratio is thus a
perimeter-to-surface area ratio in a two-dimensional problem, and similarly, a surface
area to volume ratio in three-dimensions. So, the three dimensional decomposition
leads to a lower inherent communication-to-computation ratio.

Moreover, as we have experimentally proved in the previous section, the time
required for sending a message from one processor to another is independent of both
processor locations. Therefore, there is no sense in talking about physical neighbours,
and the mapping of the logical processors over the physical ones is not very
important, as far as communication locality is concerned.

Therefore, these ideas suggest a general rule: Higher-dimensional decompositions
tend to be more efficient than lower-dimensional decompositions [5][8].

313

FEUP - Faculdade de Engenharia da Universidade do Porto

However, as we discussed in the previous section, the communication cost is also a
function of the spatial data locality. Therefore, a trade-off between the improvement
of the message data locality and the efficient exploitation of the interconnection
network exists.

The following figures compare the different decompositions for our sample
application in the Cray T3E. In the larger problem using 8 processors, and for the new
processor, the best ID-decomposition achieves improvements of 6.5% and 14,5%
over the best 2D and 3D-decompositions respectively. These differences have grown
by 2% and 10 % compared to the old 300 MHz configuration. In the 16-processor
simulation the differences are lower (only 2.2 % and 7%) for the same problem size
because the local matrices are smaller too.

20

f- 5

■>«■ ■IM
64 128
Problem size

BlD(300Mhz) ■2D(300Mhz)
D3D(300Mhz) DlD(450Mhz)
■ 2D(450Mhz) ■3D(450Mhz)

40

30

20

H 10

■~r-j.BiBr
64 128
Problem size

■ lD(300Mhz) »20(300 Mhz)
□ 3D(300Mhz) DID(450Mhz)
■ 2D(450Mhz) ■3D(450Mhz)

Fig. 8. Different decompositions for our sample program in the CRAY T3E using 16 (on the
left) and 8 processors (on the right). The problem size is the number of cells in each dimension
for the finest grid in the multigrid hierarchy.

100 -

-. 80"
I 60-

a_d 1 rif
0)

E 40 - ■
H ■■^i

20 - ■ i
0 - —-■ M 1

64 128
Problem size

■ ID ■ 2D D3D

Fig. 9. Different decompositions tor our sample program in the SGI Origin 2000 using 16 (on
the left) and 8 processors (on the right). The problem size is the number of cells in each
dimension for the finest grid in the multigrid hierarchy.

In the SGI Origin 2000. we have obtained lower differences. Using 8 processors,
the best choice is also a linear decomposition, but it is only 5% and 7% better than the

2D and 3D decompositions. However, for the 16-processor simulation, the 2D
decomposition is 15 % and 1% better than the ID and 3D decompositions. The large

314

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

second-level cache of this system is again the reason of these results. Cray T3E is
more sensitive to spatial data locality than the SGI because its performance depends
significantly on the effective use of the stream buffers system.

Therefore, in both multiprocessors, it is more important to make effective use of
the local memory hierarchy than to reduce the overheads due to network delay cost.
So, the best performance is usually obtained by means of a simple linear
decomposition.

We should also note that, although we have considered execution time as the
performance metric, there are many aspects to the evaluation of a parallel program. A
lower-dimensional partitioning program is easier to code, so if we consider
implementation cost, a one-dimensional partitioning is also the best choice. Besides, it
allows the implementation of fast sequential algorithms in the non-partitioned
directions [17].

In a workstation cluster a linear data distribution is also the best because the fewer
the number of neighbours, the fewer the number of messages to be sent. Therefore, a
one-dimensional decomposition reduces TCP/IP overheads as well [18]. So, if we
consider portability, a one-dimensional partitioning is also the best choice.

5. Computation - Communication Overlapping.

A typical approach for dealing with the communication cost due to the transit
latency, the bandwidth-related cost, and contention, is to hide it by overlapping this
part of the communication with other useful work. The results in the previous sections
have been obtained without overlapping, but these types of algorithms can be
structured so that every process request for remote data is interleaved explicitly with
local computation. For this purpose, it is necessary to deal with the boundaries before
the inner domain. In this way, it is possible to initiate an immediate send operation
before the point where it naturally appears in the program and the message may reach
the receiver before it is actually needed. Thus, the receive operation does not stall
waiting for the message to arrive; it will copy the data straight away from an
incoming buffer into the application address space. Therefore, instead of using the
simple pattern:

1- Exchange artificial Boundary:
Send boundaries to neighbours
Receive artificial boundaries from neighbours

2- Update local domain using artificial boundaries
we must use:

1- Update boundaries
2- Send boundaries to neighbours
3- Update local domain using artificial boundaries
4- Receive artificial boundaries from neighbours

315

FEUP - Faculdade de Engenharia da Universidade do Porto

In order to evaluate the benefits and limitations of this new approach, we will
assume that message initiation and reception costs are the same in the two structures,
so the execution time can be estimated as:

Twithout_overlapping = Tlocal + Tcom_overhead + Tcom . (1)

Toverlapping = Tboundaries + Tcom_overhead + max(Tinner,Tcom) . (2)

Tlocal is the time spent in the local domain update, Tinner is the cost of inner
domain actualisation, Tboundaries is the time required for updating the boundaries,
Tcom_overhead is the send and receive overheads (it is important to recall that these
overheads incurred on the processors cannot be hidden) and Tcom is the network
delay. For a real problem, Tcom is lower than Tinner. Therefore, the overlapping
pattern is better than the simple approach while:

Tboundaries + Tinner < Tlocal + Tcom . (3)

Tlocal can be divided in a Tinner and a Tboundaries_2, so the last inequality can be
simplified to:

Tboundaries - Tboundaries_2 < Tcom . (4)

This latter boundary actualisation time is different from the previous one. Usually,
the cost of updating the boundaries in the non-overlapping approach (they are updated
together with the inner local domain) is lower than in the overlapping pattern due to
the better exploitation of the memory hierarchy.

The overlapping approach has been successfully used in old parallel computers like
the Parys Supernode SN 1000, where the network bandwidth-related cost is very
important. In workstations clusters, the benefits are even greater because the network
is usually a non-private resource [18]. However, as we have discussed in the previous
sections, in the current generation of parallel computers Tcom is not so important.
Therefore, the increase due to the boundary actualisation may be greater than the
reduction obtained by way of the overlapping.

We have verified these ideas with our test program. Figure 10 illustrates both
patterns using a linear decomposition. In the CRAY T3E the non-overlapping
approach performance is 7.3% higher than the overlap pattern for the 16-processor
simulation (for the larger problem size with the 450 MHz processor) and 5% higher
using 8 processors. These differences have grown compared to the old configuration
where the differences are 6.4% and 4% respectively. Using 2D and 3D
decompositions we have obtained the similar differences [16].

In the SGI, the differences are similar. In the 32 processor-simulation, using a
linear decomposition, the difference for the larger problem is 7.5 % [16].

316

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

64 128

Problem size
■ Simple (300 Mhz) «overlap (300 Mhz)

GSimple (450 Mhz) Doverlap (450 Mhz)

64 128

Problem size
■ Simple(300Mhz) «overlap (300Mhz)

G Simple (450 Mhz) G overlap (450 Mhz)

Fig. 10. Overlapping versus non-overlapping approach on the Cray T3E using 8 (on the left)
and 16 processors (on the right). The problem size is the number of cells on each dimension for
the finest grid in the multigrid hierarchy.

6. Conclusions

We have shown how the optimal data partitioning of regular domains is a trade off
between the improvement of the message data locality and the
computation/communication ratio. In older parallel computers the performance
depends mainly on the efficient exploitation of the interconnection network.
However, the performance obtained on current parallel computers, based op the
replication of commodity microprocessors, present a growing dependence on the
efficient use of the memory hierarchy.

The main conclusions of the paper can be summarized in the following points, that
contradict to a certain extent the traditional wisdom on data partitioning: (1) the
partioning of the domain must avoid boundaries with poor data locality due to the
reduction in the effective bandwidth, (2) ID partitioning is becoming more efficient
than higher dimension partitioning (Moreover, it is easier to code, more suitable to
include fast sequential algorithms in non-partitioned directions and more portable),
and (3) communication/computation overlapping does not reduce execution time.
These conclusions have been verified by experimental results on two microprocessor
based computers: the Cray T3E and the SGI Origin 2000.

Acknowledgements

This work has been supported by the Spanish research grants TIC 96-1071 and TIC
IN96-0510, the Human Mobility Network CHRX-CT94-0459 and the Access to

317

FEUP - Faculdade de Engenharia da Universidade do Porto

Large-Scale Facilities (LSF) Activity of the European Community's Training and
Mobility of Researchers (TMR) Programme.

We would like to thank Ciemat, the Department of Computer Architecture at

Malaga University and C4(Centre de Computatiö i Comunicacions de Catalunya) for
providing access to the parallel computers that have been used in this research.

References

[I] W. A Wulf and S. A. McKee, "Hitting the Memory Wall: Implications of the Obvious,"
Comp. Arch. News, Assoc. for Computing Mach., March, 1995.

[2] A. Saulsbury, F. Pong, A. Nowalzyk."Missing the Memory Wall: The Case for
. Processor/Memory Integration ". In Proceeding of ISCA'96. May 1996.

[3] C. C. Douglas, "Caching in with multigrid algorithms: Problems in two dimensions"
Parallel Algorithms and Applications, (1996), pp. 195 - 204.

[4] L. Stals and U. Rude. "Techniques for improving the data locality of iterative methods".
Tech. Report MRR97-038, School of Math. Sc. of the Australian National University, 1997.

[5] Ian T Foster. "Designing and building parallel programs. Concepts and tools for parallel
software engineering", Addison-Wesley Publishing Company 1995.

[6] I. M. Llorente, F. Tirado y L. Vazquez, "Some Aspects about the Scalability of Scientific
Applications on Parallel Computers", Parallel Computing, Vol. 22, pp. 1169-1195, 1997

[7] V. M. Perez-Garcia, et al. "Low Energy Excitations of a Bose-Einstein Condensate",
Physical Review Letters, Vol 77, pp. 5320-5323, 1996

[8] I. M. Llorente y F. Tirado, "Relationships between Efficiency an Execution Time of Full
Multigrid Methods on Parallel Computers", IEEE Trans, on Parallel and Distributed
Systems, Vol.8, N° 6, 1997

[9] David Culler. Jaswinder Pal Singh, Annop Gupta. Preliminary draft of Parallel Computer
Architecture. A hardware /software approach. Morgan-Kaufmann Publishers 1997.

[10] S. L. Scott. "Synchronization and Communication in the T3E Multiprocessor", Proceeding
of the ASPLOS VII, October 1996.

[II] E. Anderson, J. Brooks, C Grassl, S. Scott. "Performance of the CRAY T3E
Multiprocessor". In Proceeding of SC97, November 1997.

[12] Cray C/C++ Reference Manual, SR-2179 3.0.
[13] J. Laudon and D. Lenoski. "The SGI Origin: A ccNUMA Highly Scalable Server". In

Proceeding of ISCA'97.May 1997.
[14] H. J. Wassermann, O. M. Lübeck, F. Bassetti. "Performance Evaluation of the SGI Origin

2000: A Memory-Centric Characterization of LANL ASCI Applications". In Proceeding of
the SC97, November 1997.

[15] Silicon Graphics Inc., Origin Servers, Technical Report, April 1997.
[16] M. P. Matfas, D. Espadas, I. M. Llorente, F. Tirado, "Experimental results of different

partitionings of a regular domain on the Cray T3E, the SGI Origin 2000 and the IBM SP2 ",
Tech. Report 98-001, Dept. of Computer Architecture at Complutense University, Madrid.
Spain, 1998.

[17] C. C. Douglas, S. Malhotra. and M. H. Schultz, "Transpose free alternating direction
smoothers for serial and parallel methods ", MGNET at http://www.mgnet.org/. 1997.

[18] I. M. Llorente. J. C. Fabero, F. Tirado, A. Bautista. "Distributed Parallel Computers versus
PVM on a Workstation Cluster in the Simulation of Time Dependent PDE ". In Proceeding
of 3rd Euromicro Workshop on Parallel and Distributed Processing, Italy 1995, pp. 20-26.

318

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

A performance analysis of the SGI Origin2000

Aad J. van der Steen1 and Ruud van der Pas2

1 Computational Physics, Utrecht University
P.O. Box 80195, 3508 TD Utrecht

The Netherlands
steenOphys.uu.nl

2 Ruud van der Pas, European HPC Team
Silicon Graphics

Veldzigt 2a, 3454 PW De Meern
De Meern, The Netherlands

ruudffidemeern.sgi.com

Abstract. In this paper we present the results of benchmark experi-
ments carried out on a Silicon Graphics Origin2000. We used the three
modules of the EuroBen Benchmark ([1]) to assess the performance of a
single node, as a shared memory system, and as a distributed memory
system. Where the situation calls for it, we compare the results with
those obtained on a Cray T3E and an IBM SP2. The results obtained
from this benchmark give a good impression of what performances can
be attained on the Origin2000 under what circumstances and expose the
weak and strong points of the system.

Keywords: Performance analysis, High-performance computers, Programming
models.

1 Introduction

The Silicon Graphics Origin2000 has been introduced in the last quarter of
1996. Since then a considerable amount of these systems have been installed,
ranging from 4-128 processors per system. The Origin2000 machine has a rather
complicated architwture and, like most high-performance computers, shows a
wide range of performance levels depending on memory access patterns, loop
content, fitness for and main size of parallelism, etc. It was our intention to make
a performance pn>füt < A t he Origin2000 which will allow to obtain a fair estimate
of the performance und«-! a variety of realistic operating circumstances. At, the
same time, architect m.ii (.«.»tlenecks can be identified. This may be valuable for
future system dpw!<>|>m.:it and will in the end be of benefit for end users.

To assess the pet t<.rrn.nice of the Origin2000 we used the EuroBen Bench-
mark, version 3.2 {[1_ I !u» benchmark was initially designed for testing shared-
memory MIMD system» However, for a limited number of important cases also
message-passing code> haw been developed.

319

FEUP - Faculdade de Engenharia da Universidade do Porto

W-liN"!

|»N»| : Node card

(§) : Router board

 : XpressLtnk

Fig. 1. Configurations of Origin2000 systems with 16 and 32 processors.

This paper has the following structure: first the Origin2000 and the EuroBen
Benchmark are briefly described, next we present the most relevant results of
our benchmark study and we conclude with a summary and issues that might
be addressed in further research.

2 The Origin2000 system

The Origin2000 is a cache coherent, logically shared, physically distributed mem-
ory system with 4-128 MIPS R10000 RISC processors. The features of the pro-
cessors are extensively described in [2,3]. These include out-of-order execution
of instructions and prefetching of operands in order to hide data-access latency.

The system as we have benchmarked contained 195 MHz processors with
a theoretical peak performance of 390 Mflop/s. The processors have 32 KB,
two-way set-associative primary instruction and data caches and a combined
secondary instruction and data cache of 4 MB. In parallel processing the caches
of the processors involved are kept coherent via a directory memory, see [2]. The
memory of the total system was in our case 16 GB.

Two processors are mounted on a node card together with a local part of the
memory and & HUB chip, an ASIC which connects all components on the node
card with each other In addition, the HUB chip also connects the node card to
the other node car d> «uid the I/O facilities of the system. The raw bandwidth
of the connection«, on *> node card and between node cards is 780 MB/s, see
[4]. However, the t».. |>n«.'ssors have to share this bandwidth when accessing
data from memor\ l-.'t tti«- actual point-to-point bandwidth between processors
on the user level Sih< <m < .t.tphics quotes a bandwidth of 150 MB/s. This is due
to various overhea<l> .tn.i the cache-coherency that is enforced by the system.

Node cards are. \ M t ;>.-n HUB chip, connected by routers to the rest of the
system. The intercom!«-* n.m of the routers has a hypercube topology. However,
for up to 32 processoi- M -< ailed XpressLinks can be added to reduce the system
diameter Q to 3. Figun 1 --hows some system configurations.

320

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Silicon Graphics provides auto-parallelising compilers that attempt to spread
the content of loops evenly over the processors. In addition, the user may add par-
allelisation directives in various styles. Next to SGI-proprietary, also ANSI X3H5
recommended ([5]) and OpenMP ([6]) directives are accepted. Also distributed
memory message passing libraries are available. Apart from the SGI/Cray-style
shmem library, MPI ([7]) and PVM ([8]) are supported. An HPF compiler ([9])
for the Origin2000 is distributed by the Portland Group.

3 The EuroBen Benchmark

To get a complete insight in the behaviour of the machine one has to investigate
the single-node performance, the shared-memory parallelisation capabilities, and
the possible (dis)advantages of using the system as distributed memory system.
The EuroBen Benchmark has been build in a hierarchical way to extract the
necessary information and to build the performance profile from programs in
three modules of increasing complexity:

- The first module contains programs that identify the machine parameters
that govern upper and lower bounds of the performance.

- The second module contains simple but basic algorithms: full and sparse
linear systems solvers, FFTs, random number generation, etc.

- The third module places the algorithms in a compact application setting
and applies them in various PDE and ODE problem implementations. In
addition, linear and non-linear least-squares problems and some I/O-bound
problems are considered.

For a full description of the benchmark one is referred to [1].

3.1 Testing circumstances

The full benchmark applied on single nodes, together with the parallel execu-
tion of relevant programs from the benchmark both with a shared-memory and
a distributed-memory message-passing programming model gives a sufficient in-
sight in the machine behaviour to enable reasonable performance estimates in
many circumstances. For the shared-memory programming model we used both
the SGI-proprietary as well as the ANSI X3H5 directives, for the message-passing
programs MPI was used. Moreover, features like Inter Procedural Analysis and
the quality of the numerical libraries provided by Silicon Graphics have been
assessed to complete the profile of the machine. Where relevant, to compare and
contrast the distributed memory results we also have done similar tests on two
other widely available DM-MIMD systems, a Cray T3E Classic and a IBM SP.
In addition some results from a Hitachi SR2201 were used.

We had the following testing circumstances for the systems quoted in this paper:

- Origin2000 The FORTRAN 77 MlPSPro compiler, version 7.20, compiler op-
tions -03 -64 -OPT: IEEE:arithmetic=3:roundoff=3, Operating System
IRIX 6.4 02121744. For the hardware specifications seen section 2.

321

FEUP - Faculdade de Engenharia da Universidade do Porto

- IBM RS6000/SP We used IBM RS6000/SP Thinnodes with 160MHz
P2SC processors and 512 MB memory per node. The Fortran 90 compiler was
xlf, version 4.1, compiler options were -03 -qarch=pwr2, Operating Svstem
AIX, version 2.4 002006959400.

- Cray T3E Classic We used 300 MHz DEC Alpha 21164 processors with
128 MB memory per node. The Fortran 90 compiler was CF90, version
3.0.1.3, compiler options were -03 -dp, Operating System UNICOS/mk,
version 2.0.2.19.

- Hitachi SR2201 We used 200 MHz PA-RISC 720 processors with 256 MB
of memory per node. The Fortran 90 compiler was OFORT90, version V02-
05-/A, compiler option was -03, Operating System HI-UX/MPP, version
SR220001 02-02 0.

In all cases we used the system clock with resolutions ranging from 0.5-15 (is.
We took care to use timing measurement intervals of at least a few hundred ms
to exclude measuring artefacts, repeating measurements where necessary.

4 Benchmark results

From each of the three benchmark modules we present some representative re-
sults as the complete discussion of all results is far to extensive for this paper.
One is referred to the report [3] for a comprehensive presentation. The report is
downloadable from: http://www.phys.uu.nl/-steen/euroben/reports/ as a
compressed PostScript file.

4.1 Module 1 results

Program modlac measures the speed of a number of important basic operations
as a function of the array length. With the bandwidth to the CPU known we
should be able to assess whether the code generated by the compiler is optimal.
In Table 1 we list the single-node speeds for these operations with stride 1 access
to the operands as found for operation from the level 1 and level 2 cache.

Program modlac obtains which the speeds of the operations with stride 1,
3, and 4 memory access. Moreover, also the speeds of the same operations is
measured when accessing the operands via an index vector. Non-unit stride ac-
cess turns out to have quite little influence on the performance. Indirect indexed
operations incur a loss of roughly 30% in speed due to address operations. So, we
present only the stride-1 values. The first and fourth column show the maximum
observed performance. 7-„mx. when accessed from the primary and secondary
cache, respectively. As the secondary cache is quite large (4 MB), a relatively
small proportion of data references will have to be to the main memory.

The dependency of the execution time of the array length can be modelled
with considerable precision by a linear model t{n) = a + bn where a is the la-
tency and b is the time per operation per element. These parameters are given
as the third and second column entries of Table 1. It enables us to draw defi-
nite conclusions about the optimality of the generated code for the operations
considered.

322

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

L-l cache L-l cache L-l cache L-2 cache
7* 111 ax Cycles per Latency r 111 ax

Operation Mflop/s op/element cycles Mflop/s

1 Broadcast 195.60 1 23 61.92

2 Copy 95.29 2 15 43.65

3 Addition 64.66 3 21 34.36

4 Subtraction 64.48 3 18 34.57

5 Multiplication 64.45 3 18 34.52

6 Division 9.23 21 0 9.22

7 Dotproduct 194.46 2 14 137.61

8 x — x + ay 128.92 3 19 69.13

9 z = x + ay 128.62 3 17 66.99

10 y = x\x-i + X3X4 107.39 6 23 56.97

11 1st order recurs. 96.39 2 23 46.04

12 2nd order recurs. 96.69 4 22 80.31

13 2nd difference 242.31 2.5 36 132.54

14 9th Degr. Polynomial 376.92 9 31 351.17

Table 1. rmax, the number of cycles per operation per element, and the latency values
for the primary cache operations on a single processor of the Origm2000. Only results
of the first 14 of kernels are shown. The operations all have unit stride access. The
operation latency from secondary cache is completely hidden by the data access.

The dyadic operations addition, subtraction, and multiplication operate at
l/6th of the Theoretical Peak Performance, 390 Mflop/s, when accessed from the
primary cache as the total operation takes 3 cycles. With an ideal bandwidth
situation, transferring two operands to the relevant functional unit and shipping-
one result back per clock cycle, the performance should approximately be half the
Theoretical Peak Performance. One can conclude that only one 8-byte data item
can be transferred per cycle. This is in agreement with the bandwidth quoted by
the vendor. The dotproduct and the daxpy operation (kernel 7 and 8) also show
speeds that closely agree with this bandwidth with computational intensities of
1 and 2/3, respectively ([10]). It shows that, at least for these simple operations,
the compiler is able to generate optimal code given the limited bandwidth of one
operand/cycle. With a high reuse of operands, like the evaluation of a 9th-degree
polynomial and a computational intensity of 9, a large fraction of the Theoretical
Peak Performance can be obtained: kernel 14 shows a performance of 96% of the
Theoretical Peak Performance.

Shared-memory parallel performance of program modlac Ideally, the
simple, vector-oriented operations in program modlac should speed up almost
linearly with the number of processors when executed in parallel. There are
two effects that will decrease the potential speedup: the parallelisation overhead
inherent in the distribution of the data and the synchronisation of the multiple
processes and, secondly, the slowdown per processor when the array length per
processor decreases because of the latency of the operation. In Figure 2 the
speeds on 1, 8, and 32 processors is displayed for the first 14 kernels of program
modlac.

323

FEUP - Faculdade de Engenharia da Universidade do Porto

4000

1000

Results of Program modlac
Stride 1 performances of kernels 1-14

o
I

100

10

Ü ' " : '

'"* 8' 0 o ' © : -

■ -c -- a * * o - ;

O 4
O Q

.".'.'.'.'.'.'.'.'.'.'.'.'. .'.'.".'.o.'.".'..'.'ä' Z[o^\ZLZZ"'.'.'.'.'.'.'.'.Z'~"":'

'■■* ' '■'■-'■■ «■ -■"■

"A " o

o

■::?.:::::»:::':::■::::■::;:: :::::::,::

o 1 processor
4 8 processors
o 32 processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Kernel number

Fig. 2. Speeds in Mflop/s of the first 14 kernels of program modlac on 1, 8, and 32
processors.

The FORTRAN compiler uses heuristics to determine whether the computational
content of a loop is sufficient to warrant parallel processing. If not, the loop is
executed sequentially. When recurrences are detected, the loop is also executed
sequentially. This is the case with kernels 11 and 12 representing first and second
order recurrences, respectively. All other kernels but one are executed in parallel.
For all these kernel there turns out at least some benefit in parallel execution. The
exception is the dotproduct that shows a lower performance on 8 processors in
parallel and is executed sequentally on 32 processors. It shows that the heuristics
used to determine a sufficient amount of parallelism basically are correct in that
the parallel execution is not slower than the sequential one.

In many cases, however, the speedup is not very high. The inherently slow
division (kernel 6) and kernel 14, the evaluation of a 9th-degree polynomial,
which have both a large computational content benefit the most while a kernel
like the daxpy operation (kernel 8) show a speedup of only 12% from 8 to 32
processors. Here also the latency of the operation plays a role: the array length on
32 processors is only 31 elements. With this array length the speed per processor
is already 15% lower than r,nax.

In summary one can conclude that the computational content of a loop should
preferably not be below 10 Hops to attain a sizable speedup at 32 processors.

Distributed-memory parallel dotproduct From Figure 2 it was clear that
the use of the shared-memory programming model is not suited for parallel ex-
ecution of the dotproduct. We also executed the dotproduct with a distributed-
memory programming mmodel using MPI. Three implementations were consid-
ered: a "naive" implementation, in which all partial sums are sent to a root
processor which also distributes the global sum back directly to all other proces-

324

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

4000

1000

100

10

j.-^^^. -

 : ■-'■/ " : :

 Naive implementation
 Tree implementation
 MPI Reduce/Broadcast

■ ■ . : : : ;
1 40 10

No. of processors

Fig. 3. Performance in Mflop/s of the three distributed-memory dotproduct implemen-
tation on 1-32 processors.

sors, a FoRTRAN-implemented tree algorithm for gathering the partial sums and
broadcasting the global sum, and an implementation based on MPI_Reduce and
MPI-Broadcast. The last implementation contains MPI functions that should
be optimised by the vendor and perform at least as good as the FORTRAN-

implemented tree algorithm. Figure 3 shows the result of this distributed-memory
dotproduct.

The first observation that can be made is that the FORTRAN-based tree im-
plementation and the MPI_Reduce/Broadcast implementation indeed are quite
close in performance. So, MPI_Reduce and MPI_Broadcast are optimised commu-
nication functions. Both perform considerably better than the naive implementa-
tion, especially for a larger number of processors. The second observation is that
the distributed-memory version of the dotproduct scales well with the number
of processors: at 32 processors a speed of 3167 Mflop/s is attained: about 100
Mflop/s, including the time lost in communication. So, the distributed-memory
version is preferable by far over the shared-memory version from a performance
point of view.

Point-to-point communication The program modlh measures bandwidth
and latency between two processors using the MPI library functions MPI_Send
and MPIJleceive with message lengths varying from 40-10,000,000 bytes. This
covers the full range of possibilities: communication from the primary cache, from
the secondary cache, and from the main memory. The interprocessor communi-
cation speed with point-to-point communication is not negligible in comparison
with the speed between the local memory and the CPUs. Therefore, it is useful
to consider this full range as it may affect the communication patterns one wants
to use.

325

FEUP - Faculdade de Engenharia da Universidade do Porto

300.0

200.0

100.0

0.0

—j—, \—►—

'{ -..- : • —'—\—■

 Origin2000
 Cray T3E (sleams on)
 IBMSP
 Hitachi SR2201

:
2000000
Bytes

3000000 4000000

Fig. 4. Graph of bandwidths in point-to-point message passing using HPI.Send and
MPI-Recieve. Results for the Origin2000, the SGI/Cray T3E-Classic, and the IBM SP
are shown. On the T3E the stream buffers were on.

The same program has also been run on a Cray T3E Classic, an IBM SP2 and
a Hitachi SR2201. As the cache sizes of these systems are different, one might
expect to see different behaviour for these systems as indeed is the case. This is,
however, not only due to the different access speed in the memory hierarchies.
In MPI the strategy in MPI-Send of buffering messages, or not, is left to the
implementator. As it may be assumed that different implementation decisions
have been made for different machines, observed differences in bandwidth may
originate from differences in local access times, another message buffer strategy
or both. Therefore, the best decision seems to be to give the bandwidth as a
function of the message length and the latency as derived from very short mes-
sages (e.g., up to 400 bytes). For these short messages one may assume that no
auxiliary buffering is required and one may obtain a fair idea of the latency as
experienced through the software. In addition, this information is important be-
cause of the frequency that messages of only one data item are exchanged which
enables an estimate for the slow-down caused by such messages. The bandwidth
versus the message length is shown in Figure 4.

Note that the bandwidth of the Origin2000 is decreasing from about 115
MB/s for sufficiently long messages up to 2 MB to 102 MB/s at 4 MB. As already
mentioned in section 2, the bandwidth available at the application level is 150
MB/s, so the bandwidth found reasonably matches this figure. For messages
longer than 4 MB the bandwidth even drops to about 78 MB/s. We do not
observe this behaviour on the other three systems. We ascribe the decreasing
bandwidth on the Origin to the fact that buffer copies above 4 MB do not fit, in

326

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Bandwidth Latency
System Mbyte/s US

SGI Origin2000 115.75 14.6
SGI/Cray T3E-Classic 117.30 22.3
IBMSP 104.85 34.7
Hitachi SR2201 216.69 29.7

Table 2. Maximum bandwidths and latencies for the Origin2000, the SGI/Cray T3E-
Classic, the IBM SP, and the Hitachi SR2201.

200 r

100

50

 Fortran 77, column wise, not unrolled
 SGI Library version

20 100
Matrix order

500

Fig. 5. Performance for y = Ax. Only the fastest FORTRAN 77 and the SGI library
routine are shown.

the secondary cache anymore and therefore the memory must be accessed. The
less than ideal MPI implementation might be at the base of this effect. In table
2 we summarise the maximal bandwidths and latencies for the four systems.

4.2 Module 2 results

Of module 2 we present two programs. Program mod2a, which measures the
speed of a matrix-vector multiplication and mod2e which solves a large sparse
eigen value problem system. For the discussion of all programs of module 2 one
is referred to [3].

mod2a, single-node In In the single-node version problem sizes of n = 25, 50,
100, 200, 300, and 500 are considered for each of five implementations. For the
sake of clearness, we show only the fastest of the FORTRAN 77 implementations
together with the result of the library version of the BLAS 2 routine dgemv
in Figure 5. The implementations actually used are a dotproduct, or row-wise

327

FEUP ■ Faculdade de Engenharia da Universidade do Porto

Not unrolled 4 x unrolled Not unrolled 4 x unrolled Librar y
Row-wise Row-wise Column-wise Column-wise versio n

Order Mflop/s Mflop/s Mflop/s Mflop/s Mflop/s
25 135.8 78.2 181.3 130.4 53. 9
50 173.3 102.3 269.0 166.5 226. 2

100 167.7 123.7 233.4 169.5 225. 6
200 184.2 138.4 242.3 184.4 234. 5
300 186.9 138.1 239.0 187.6 227. 6
500 187.1 77.3 201.4 181.2 189. 5

Table 3. Performances on the Ongin2000 for y = Ax. Four different Fo RTRAN 77
implementations and the SGI libary version are shown.

implementation, a daxpy or column-wise implementation and the four times
unrolled versions of these two methods. On many systems the unrolled versions
perform better than their not unrolled equivalents. This is, however, not the case
on the Origin. The reason is that the FORTRAN 77 compiler itself already unrolls
loops where possible and this is certainly so for the simple inner loops used in
the various not unrolled implementations. For the implementations where a hand
unrolling is done the compiler is not able to generate code of comparable quality
and the performance of the unrolled versions lag behind as shown in Table 3.
So, a fairly obvious hand optimisation does not work out very well here. The
lesson could be not to do these kind of optimisations on the Origin to give the
compiler a better chance for automatic optimisation. One of the objectives of
program mod2a is to make users aware of such facts.

Note that in the column-wise version, using daxpy operations a speed is
attained that is twice as high as found with program mod lac for kernel 8 (see
Table 1). Within the context of a matrix-vector multiplication with the daxpy
as an inner loop, the compiler is able to overlap two succesive iterations of the
inner loop, thus winning a factor of 2 in speed.

mod2a, parallel versions Of mod2a also a shared-memory and a distfibuted-
memory version were executed to assess the potential benefit of the paralleli-
sation in both programming models. In Figure 6 the results for the two imple-
mentations is shown. It is clear from the Figure that the distributed-memory
version is much faster than its shared-memory counterpart: 7.3 vs. 2.7 Gflop/s
on 32 processors. In the distributed-memory implementation the data distribu-
tion is such that no data have to be communicated between the processors. In
this situation the distributed-memory is preferable. However, when the trans-
posed matrix-vector product is performed, all-to-all communication is required.
The overhead in sending messages turns out to be so high in this case that the
shared-memory version is now faster then the distributed-memory version: 2.5
vs. 0.15 Gflop/s on 32 processors.

Program mod2e In program mod2e the 10 smallest eigenvalues of penta-diagonal,
symmetric systems with matrix orders n =100,... ,10000 are computed by a gen-
eralised Lanczos iteration scheme. In Figure 7 we show the speed per iteration
for the range of system orders both without and with interprocedural analysis.

328

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

m ct pi"-.-

Fig. 6. Performance surface of a parallel shared-memory implementation (left) and a
distributed memory implementation (right) of a matrix-vector product.

o
I

150.0

100.0

50.0

0.0

 I -~^=^=
/: y^l

jf ; j : ; ; i

f\ \ '■■ \

/ ! I ! ! !
 Standard analysis
 Interproc. analysis

/ ! I I ! : "
0.0 2000.0 4000.0 6000.0 8000.0 10000.0

Order

Fig. 7. Performanrr prr iteration for sparse eigenvalue, computation without and with
interprocedural analym

Figure 7 show« that th«' interprocedural analysis results in a small but consis-
tently better perform-uif »■ over the whole problem range. The difference becomes
slightly larger for Ui2>-t [noblem size because in this case the floating-point op-
erations in the gcm't.iii»»-«) Lanczos routine more strongly dominate the compu-
tation.

The floating-pumt ••(«•rations on the diagonals of the matrices are typical
vector operations a> «»-T- measured in program modlac and therefore the ker-
nels from modlac sin .ui'1 ; .1 >'dict the speed of the Lanczos routine to a reasonable
extent. The mix of Hu.itmn-point operations as measured in modlac was as fol-
lows:

329

FEUP - Faculdade de Engenharia da Universidade do Porto

Dotproduct 34.3%
Kernel 10 25.7%
axpy 22.9%
Dyadic mult. 17.1%
The weighted average of the peak speeds of these operations in the primary cache
is 134.5 Mflop/s. From Figure 7 we see that with interprocedural analysis the
speed for the largest problem is 133 Mflop/s and without interprocedural anal-
ysis we find 127 Mflop/s. This is in excellent agreement with the speeds found
for the kernels of modlac. This consistency shows that in the right context the
prediction of the performance from kernel speeds might help to understand the
observed performance. The right context is important though, as was demon-
strated with program mod2a.

In the present form program mod2e is badly suited for parallelisation. There-
fore no parallel results are presented.

4.3 Module 3 results

In module 3 various programs are considered that represent important classes of
applications. The programs have been tailored in the sense that only the essential
floating-point parts have been retained as this is our main concern. However, the
first two programs in this module are designed to test important I/O patterns
to obtain an idea of the I/O capabilities of the systems considered. Again, we do
not discuss the full range of programs in this module. See [3] for the complete
results.

Most of the programs in this module have a complexity that, makes it dif-
ficult to estimate their Mflop-rate. So, mainly execution times are reported. In
addition, only one of the programs was amenable for parallelisation (program
mod3h). On the other hand, many module 3 programs have a complexity that
made it worthwhile to subject them to interprocedural analysis.

To place the results in context, we added timings of two other systems: the
T3E-Classic and the IBM RS/6000 SP.

PDE programs In module 3 three implementations of Elliptic/Parabolic PDE
solvers are included, programs mod3c a Multigrid solver, mod3g a Fast Elliptic
solver, and mod3h a Block Relaxation solver, respectively. They all solve the
same model proMt-m a Laplace equation on the unit square. They differ vastly
in their solution *!>.•«•<] lor this particular problem but each method has its own
virtues that m.ik< t h»-:u more or less complementary. The execution times are
given in Table -4 A« . .m lie seen from the Table, a single node of the the T3E
is consistently slow: •>..il, those of the IBM SP and the Origin2000. Note that
only in program aodic •;,.• IBM SP is significantly faster than the Origin2000,
although the theory., .i- j«-.ik performance is much higher: 640 vs. 390 Mfiop/s.
Furthermore, it tin;,- M' That interprocedural analysis gives a very slight ad-
vantage over the n..iin.»i .uialysis. In general, for the programs of this module
the effects of intepro. .•-lii.il analysis were not large.

ODE program In |>!-u:.nn mod3f the problem of gas diffusion into a porous
medium is considered In this program two gases with different diffusion coef-

330

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

mod3c mod3g mod3h
System seconds seconds seconds
Cray T3E-Classic 2.424 0.114 10.083
IBM RS/6000 SP 0.970 0.083 3.670
SGI Origin2000 1.486 0.065 2.366
SGI Origin2000
Interproc. analysis — 0.062 —

Table 4. Execution times for three PDE solvers on the Cray T3E- Classic, the. IBM
RS/6000 SP, and the Origin2000.

Execution time
System seconds
Cray T3E-600 16.003
IBM RS/6000 SP 8.5646
SGI Origin2000 8.7060
SGI Origin2000
Interproc. analysis 7.6141

Table 5. Performances in seconds in program mod3f for various systems (single-node
performance).

firients are modeled. The implementation is such that a time sequence of stiff
two-point boundary-value ODEs is solved. The timing results for the program
are displayed in Table 5. Table 5 shows the same general pattern as was found for
the PDEs: the T3E is notably slower than the other two machines while the IBM
SP is only marginally faster than the Origin2000 with standard code analysis,
notwithstanding its higher Theoretical Peak Performance. With interprocedural
analysis, the Origin2000 is about 15% faster than with standard code analysis.

5 Summary and future work

The amount of information from our experiments has been vast and, although we
have discussed them to a fair extent, we are sure that a more extensive analysis
would still bring up new points in the interpretation. It would almost certainly
also would give grounds for new experiments. In this study we also have refrained
from hand-optimisation: we just let the compiler do the work with the appro-
priate complier options. Other subjects not considered but probably important
are: the explicit placement of data on the Origin2000 system and the migration
of data by the operating system to the processor that most uses them. On the
other hand, a number of useful conclusions can be drawn from this study of
which we list the main ones below:

- In many cases a large proportion of the Theoretical Peak Performance can be
attained when operating from the primary cache. The performance with ac-
cess from the secondary is generally 2-3 times slower, except for the division
operation.

331

FEUP - Faculdade de Engenharia da Universidade do Porto

- The experiments in program modlac showed that one 8-byte operand can be
loaded or stored from/to the primary cache. From the secondary cache this
is about one operand per two cycles.

- When automatic parallelisation is applied, the default choices whether or not
to parallelise a certain loop seem to be adequate in most cases we observed.

- The point-to-point bandwidth measured with MPI is about 110 MB/s. about
70% of the bandwidth of 150 MB/s quoted by SGI.

- The automatic shared-memory parallelisation of codes generates a non-ne-
gligible parallelisation overhead as shown by program mod2a, a matrix-vector
multplication. Compared with the distributed-memory version it gives a
large performance loss. On the other hand, as soon as also messages must,
be exchanged, the shared-memory implementation is clearly faster than the
MPI version. The similar phenomenon was observed in the FFT program
mod2f. Communication timings suggest that MPI implementation we used
in the present tests is not optimal.

- In the rather small programs of module 3 interprocedural analysis generally
had a quite modest influence on the execution time (5-15% decrease).

Acknowledgments

We would like to thank Silicon Graphics Inc. for making their Origin2000 system
at the Advanced Technology Center in Cortaillod, Switzerland, available to us
to conduct the experiments described in this report.

References

1. A.J. van der Steen, The benchmark of the EuroBen Group, Parallel Computing.
17, (1991) 1211-1221.

2. Silicon Graphics Inc., Origin Servers, Technical Report, April 1997.
3. A.J. van der Steen, R. van der Pas, Benchmarking the Silicon Graphics Origin2000

system, Technical Report WFI-98-2, Utrecht University. May 1998.
4. M. Galles, Spider: A High-Speed Network Interconnect, IEEE Micro, 17, 1, (1997).
5. ANSI Standard Commitee X3H5, Fortran language, binding, X3H5 Document

Number X3H5/91-0023 Revision B, 1992.
6. http://www.openmp.org/
7. M. Snir, S. Otto. S. Huss-Lederman, D. Walker, J. Dougarra, MPI: The Complete

Reference, MIT Press. Boston, 1996.
8. A. Geist, A. Beguelin. .1. Dongarra, R. Manchek, W. Jaing, and V. Sunderam.

PVM: A Users' Guide and Tutorial for Networked Parallel Computing, MIT
Press, Boston, 1994.

9. High Performance Fortran Forum, High Performance Fortran Language Specifi-
cation, Scientific Programming, 2, 13, (1993) 1-170.

10. R..W. Hockney, jir.: A parameter to characterize memory and communication
bottlenecks, Parallel Computing, 10 (1989) 277-286.

332

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Parallel Computing over the Internet with Java

Hernäni Pedroso, Luis M. Silva, Vfctor Batista, Paulo Martins, Guilherme Soares
and Telmo Menezes

Departamento de Engenharia Informätica
Universidade de Coimbra - POLO II

Vila Franca - 3030 Coimbra
PORTUGAL

{1 ui s ,hemani} @ dei. uc. pt

Abstract. JET is a parallel library implemented with Java for parallel
computing over the Internet. The JET library is oriented to long-running
Master/Worker applications with a coarse-grain task distribution. The
computation is performed by Java applets that are downloaded through a Web
page. The paper describes some internals of JET and its mechanisms to provide
support for fault-tolerance, interoperability with PVM/MPI and the use of
statistics. The paper includes some performance figures that were taken with
simple benchmarks and more complex applications.

1. Introduction

In the last years we have seen an extraordinary increase in the number of machines
that are connected to the Internet, this is estimated to continue with an exponential
growth. According to a survey accomplished by Network Wizards [NetWizards] in
January 1998, 29.6 millions hosts were connected to the Internet (against 16 million
in January 1997). This mass of processors connected together represent a very
significant processing power, with a performance level of a Petaflop (10 ').

In a large percentage of their time, workstation machines and personal computers
are only used to small iterative tasks, such as reading mail or editing files. As was
remarked in [Schrage92] workstations remain idle in about 90% of their time.

The idea of using this spare computational power in computers that are connected
to the Internet seems to be quite promising and is getting an enthusiastic acceptance
within the high-performance computing community. Two main things are required:

• appropriate applications, that take a long time to execute and have low
communication requirements;

• an effective infrastructure to support the execution of massively parallel
applications in hundreds or thousands of computers geographically dispersed
throush the Internet;

333

FEUP ■ Faculdade de Engenharia da Universidade do Porto

The main challenge of JET is to provide such infrastructure. It was implemented in
Java [JavaSoft] to provide the portability of code, to solve the problem of
heterogeneity of systems and to allow the easy distribution of code through the
machines that want to volunteer their CPU spare cycles for solving a massively
parallel application.

Applications that are good candidate programs to the JET parallel machine should
divide the problem into small tasks to be executed by different processors distributed
over the Internet. Those applications should be coarse-grained, take a long time to
execute, do not require ultimate performance and should tolerate, in some extent, the
low latency of the network. There are some quite important applications from the field
of cryptography and mathematics that can be effectively executed with JET.

2. JET Architecture

The applications that can be executed with JET follow the Master/Worker paradigm.
There is a process, the Master, which is responsible for the decomposition of the
problem into small and independent tasks. The tasks are distributed among the worker
processes, which are executing a simple cycle: receive a task, compute it and send
back the result. The results are gathered by the Master process, which merges them to
construct the final solution. Since every task is independent from each other, there is
no need for communication between the worker processes.

JET is non-intrusive to the machines that access any Web page: only those users
that are willing to volunteer their CPU time will have an applet working on their
computer contributing for a JET computation. The users that wish to volunteer to a
JET computation have to access to a Web page using a Java-enabled browser and
follow a Web link. The downloaded Web page has an inlaid Java applet (Worker
applet) which will indicate the status of the computation and communicates with the
JET Master.

The security features of Java only allow the applets to communicate with the
machine from where they where downloaded. Hence, the Master process has to be
executing in the same machine where the http daemon is executing. It has a well-
known port to all the Workers. The communication between Workers and Master is
done through UDP sockets. Although the UDP protocol does not guarantee the
delivery of messages, it provides a higher scalability and consumes fewer resources
than TCP sockets. The communication layer of JET implements a reliable service that
assumes sequenced and error-free message delivery.

334

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

JET
Master

HTTP- HDP «ickas

World Wide Web
Clusters of Workstation! running PVM or MP1

Fig. 1. The structure of the JET virtual computation.

The JET library as a server checkpointing mechanism to assure the continuity of
the application when there is a failure or a preventive shutdown of the JET Server.
The critical state of the application is saved periodically in stable storage in some
portable format that follows its resumption later in the same or different machine.

To tolerate the loss of the stateless worker applets the JET library maintains a task-
reconfiguration scheme. The library keeps the jobs that have been sent to each worker
applet. If one applet fails or withdraws from the virtual machine, the only part of the
computation that is affected is the task it was being executed. Re-allocating that task
to another worker would reproduce the lost work without changing the ultimate
outcome of the computation. However, for those applications with very long-running
tasks it is important to save intermediate states of the task execution in the worker
applets.

Implementing client checkpointing is not trivial in a Java applet since it cannot
write to the local disk. Thereby, the only way he had to implement the client
checkpointing was to send the checkpoint data over a socket stream to the associated
JET Master. When a Worker applets withdraws from the virtual machine the last
checkpoint of its task is distributed to another worker.

The JET machine needs to motivate the Web surfers to participate in the
computation, and even on interesting applications is necessary to increase their

335

FEUP - Faculdade de Engenharia da Universida.de do Porto

enthusiasm. The JET Server gathers information about the computation done by each
volunteer and creates a statistics module with several rankings. The statistical
information, organized by several categories (e.g. users, countries, operating systems,
processors and browsers) ranks, is published on the Web. The users are also able to
create teams. These rankings create a healthy competition between users and keeps
their interest to participate in the computation.

JET is not restricted to Web-based computation. The use of some existing parallel
libraries and computer resources is also be possible. The basic idea is to allow
existing clusters of machines running PVM or MPI to inter-operate with JET
computations.

To achieve this we have used two Java bindings developed in-our research group
for Windows versions of the MPI (WMPI) [WMPI] and PVM (WPVM) [Alves95]
libraries. The big master process of the PVM/MPI cluster only needs to create an
instance of a class that implements a bridge between the cluster and the JET Master.
The jobs are fetched by this object and placed in an internal buffer of the PVM/MPI
big master, which is responsible to distribute them among the workers of the cluster.
The results are gathered by the big master of the cluster and passed to the bridge
object to be sent to the JET Master.

3. Performance Results

In this section, some performance results of JET are presented. These measurements
were taken in a heterogeneous environment of NT and Solaris Workstations. The
workers were running on 6 PentiumPro-based machines, all of them running at 200
MHz, with the NT Workstation operating system. Two of those machines are dual-
processor; hence, in overall the performance results were taken with 8 processors. The
Master process was running on a Sun Ultra-Sparc machine running Solaris V4.0. The
machines were connected through a non-dedicated 10 Mbit/sec Ethernet network. The
Worker applets were executed through the Netscape Communicator 4.0; the Master
process was executed with JDK 1.1.

3.1 Simple Benchmarks

The relative speedup of the NQUEENS application with 14, 15 and 16 queens is
presented in Figure 2. In this example, the speed up was calculated with the parallel
version of the algorithm running on one processor. The achieved results are quite
good: with 8 processors the speed up was 7.66, 7.36 and 7.24 with 14, 15 and 16
queens respectively. The reason why the speedup decreases with the increase of the
number of queens is due to small differences of performance of the processors that are
more visible with larger jobs. Hence, the time that the JET machine has to wait for the
last job increases with the size of the jobs. Although the task distribution of JET has
intrinsic load-balancing behavior, they can not tolerate these fine-grain differences.

336

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

9

8

a. 7 3

a. 6

1 5 '
a

4

3 -

2 ■

1

T!!?S»!T?^Tä«B!HÄ*S™r " BÄW'^^^'K 1
I

v'-t —•— Nqueens(14)p

•"'■-♦— Nqueens(15)E*

*•- H —«r— Nqueens(16) fr*H^-;-,«-B.\ I^SB BST' ■ V?.1-!.,.V-.»-. .»]• ■. -^V^

1 r •
.ili.r-SMSf**''

- 4;** *-]..- 3m
vrttniw

^nj
!^^
•••'^."'jE*
'H£flP 1 :v;4£H rr. *■<?*-

 ^y 7 ■■-
- ' 1 .1

C 1 2 3 4 5 6 7

Number of Processors

i

Fig. 2. Relative speedup of NQUEENS (14, 15 and 16 queens).

The EP-NAS application, which makes part of the NAS benchmark suite
[Bailey93], was also used as benchmark. Due to the temporary unavailability of the
dual-Pentium machines, the results were taken in just four processors. The speedup
presented in Figure 3 was calculated with a serial Java version of the program.

Fig. 3. Relative Speedup of EP-NAS.

337

FEUP - Faculdade de Engenharia da Universidade do Porto

Although EP-NAS problem has a significant amount of floating-point calculations
the performance of Java, and therefore JET performance, was not affected since the
speedup once again is quite good: 3.87 with 4 processors.

Although the speedup results are always dependent from the characteristics of each
application, these results show that JET does not degrade the performance with the
Increasing number of processors.

4

3,5

% 3

1 2,5

2 t»
iili 75

I 1.5

* 1

0.5

0

- With Additional Information

- Without Additional Information I

■—

Z^.
3 4

Number of Processors

Fig. 4. Relative speedup of TSP (20 cities) with and without additional
information.

The next experiment was made with an application that has different characteristics
from the last two. In the Travel Salesman Problem (TSP), additional information was
passed asynchronously to the Workers, which is enabled by the JET library. Each
Worker is informed if a shorter path (new minimum path) was found by another
Worker every time a result with a new minimum arrives to the Master. A version
without this capability (in this case each worker only knows its minimum) also was
implemented. Figure 4 presents the relative speedup achieved by the two versions
when searching on a 20 cities map.

The application, due to its intrinsic characteristics, does not scale as well as the
previous examples. The version that does not use the JET library capability of pass
information additional information to the workers does not scale so well when
compared with the other one.

338

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

3.2 Complex Applications

Besides these simple benchmark applications, a few more complex applications
were ported to JET: a program to find Mersenne Primes [Mersenne] and a RC5 (64-
bit key) encryption algorithm [Rivest95] crack application.

The RC5 encryption attack is an example of a embarrassingly parallel application.
The jobs are a set of keys to be tested, by using them to decrypt the message and test
is if it is the correct one. The result only has to indicate if the correct key was in the
tested set and the correct key. The key-space to be searched is enormous and a
concerted world effort [Bovine] is on the way to crack this code. The JET
computation is a candidate to join this effort and use Web-based computation to help
finding the correct key.

5 6 7 8

Number of Processors

Fig. 5. Speedup of the RC5 64-bit encryption attack application.

Figure 5 shows the speedup achieved by JET when computing this application. The
speedup was calculated »>th * serial Java version of the application.

The Merssene Primes s<-jfi.h application was tested with two versions, the
difference between thest- »croons is the order by which the numbers are searched.
The version which starts u*m >he higher number has a better speedup (Figure 6). This
fact occurs due to the better usk distribution achieved by JET. The size of the jobs
grows exponentially with the increase of the number to be searched. If the biggest
task is the last to be assigned, (hen all the other processes will stall waiting for that
task to be ended. However, it the largest task is the first one, all the other processes
will be working (on other tasks). At the final of the computation, the tasks are so
small that the time to wait for the end of the last job is very small.

339

FEUP - Faculdade de Engenharia da Universidade do Porto

6 7 8

Number of Processors

Fig. 6. Speedup of the Mersenne Primes search application.

Figure 6 presents the speedup of the Mersenne Primes search, relative to a serial
Java version of the application. As it can be seen the version with decreasing tasks
size scales better, this shows the importance of a correct task distribution.

4. Related Work

In the past years several projects have confirmed the ability of the Internet for
massively parallel computing. In [Silverman91] was presented an example of
massively distributed computing over the Internet. It used 400 machines that were
located at research institutes of three different continents. The problem was the
factorization of a 100-hits integer used by the RSA cryptographic algorithm. Each site
has received by electronic mail a set of polynomials to independently work with. It
took 275 MIP-Years m pcrlorm one of the computations. The project has been active
[RSAFact] since then and ihc factoring of 130-bits number was successfully solved in
November 1996. To <->he this problem a collection of CGI scripts were used to
automate and coordmaic ihc (low of tasks within the distributed network of Web
sieving clients.

Another representative example is the Gordon Bell Prize of 1992 big winner: a
collection of 192 heterogeneous machines scattered around the United States was
used to solve a simulation of polymer chains [Karp93]. The outstanding

One MIP-Year is referred a*, the amount of work performed by 1-MIP machine running for
one year.

340

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

price/performance ratio achieved granted the prize to the project. In [NiepIocha96] is
presented another project which had used four supercomputers located in
geographically dispersed computing centers of the United States connected together to
compute a molecular simulation program. The speedups achieved were quite good.
Another interesting example was presented in [Strumpen93]. This paper describes the
use of 800 workstations to solve a problem that involved molecular sequence analysis.
The machines were dispersed through 31 different local area networks and 5
continents.

More recently, there were other remarkable examples of Internet parallel
computing. For instance, in February of 1997 a team of researchers using 3500
computers spread across Europe was able to crack a RSA code of 48 bits in less than
two weeks [Lash97].

In January 27th of 1998 a Californian 19 year-old student found the 37lh Mersenne
Prime (the world's largest known prime) on behalf of the GIMPS project (Great
Internet Mersenne Prime Search) [GIMPS]. The computation comprised about 4000
users that volunteer their machines to that computation and the lucky man was Roland
Clarkson, that have contributed with his 200 MHz Pentium computer for 46 days, in
part-time, to prove the number prime.

Finally, in October 19"' of 1997, it was announced that one of the largest
distributed-computing effort ever seen, involving tens of thousands of computers
connected to the Internet: the Bovine cooperative effort [Bovine] decrypted a message
encoded with RSA Labs' 56-bit RC5 encryption algorithm. The search took 250 days
of massive Internet computing: the medium computational power was equivalent to
14,685 Intel Pentium Pro 200 processors. This time the lucky man that found the right
key was Peter Stuer from Belgium.

All these examples demonstrate that the use of worldwide-distributed computing
resources is feasible to perform large computations.

In the latest years, the exploitation of geographically distributed machines for parallel
computing has become a clear trend. A considerable number of project have been
proposed: Globe [Steen95], Legion [Grimmshaw96], Globus [Foster96], Atlas
[Baldeschweiler96], ParaWeb [Brecht96], Popcorn [Camiel96], Charlotte
[Baratloo96], DAMPP [Vanhelsuwe97], IceT [Gray97], Javelin [CappeIo97],
JavaParty [Philippsen97], Albatross [Bal97], among others.

Some of these projects were also developed in Java: Javelin, Popcorn, DAMPP,
Charlotte, JavaParty, Atlas, ParaWeb, IceT and Albatross. Most of these systems lack
some support of fault-tolerance, scalability, support for interoperability with other
existing tools and a module of statistics to motivate Internet users to participate in
Web-based computations.

341

FEUP - Faculdade de Engenharia da Universidade do Porto

Although there are some differences between these projects and JET, all of them
try to prove the idea that Java can be used for parallel computing over the Internet. It
would be interesting that some standardization protocols could be developed to allow
the cooperative execution of JET and any of these Java-based parallel tools. This way
the number of machines working out on the same global computation could be
extended.

5. Final Conclusions

JET can be a massively parallel machine. It may compromise several hundreds of
machines connected to the Internet. Each machine that takes part on a JET
computation is absolutely ubiquitous: it just requires a Java-enabled browser. The user
can volunteer his CPU spare cycles just by clicking in some URL of a Web page. A
Java applet is downloaded to that machine and executes some independent tasks of a
number-crunching application. JET is a really inexpensive parallel computing
platform: it is based on the idea of "scavenging" the idle CPU cycles of machines that
are connected to the Internet, reusing the existing computing facilities.

Some built-in features provide support for fault-tolerance on the JET computation,
interoperability with PVM and MPI libraries and the usage of statistics to keep the
motivation and enthusiasm of the user volunteers.

The first performance results of JET with simple benchmarks were very promising.
When complex application were ported to JET the results achieved have confirmed
the ability of JET to be used for massively parallel computing over the Internet.

References

[Alves95] A.Alves, L.M.Silva, J.Carreira, J.G.Silva, "WPVM: Parallel Computing for the
People", Proc. of HPCN'95, High Performance Computational and Networking Europe.
May 1995. Milano, Italy, Lecture Notes in Computer Science 918, pp. 582-587

[Bai!ey93] D.Bailey, E.Barszcz, L.Dagum, H.Simon. "NAS Parallel Benchmark Results", IEEE
Parallel and Distributed Technology, pp. 43-51, February 1993

[Ba!97] H.Bal, "Albatross - Wide Area Cluster Computing",
http://www.es.vu.nl/albatross

[Baldeschwieler96] J.Baldeschwieler, R.Blumofe, E.Brewer. "ATLAS: An Infrastrusture for
Global Computing", Proc. of HPCN'95, High Performance Computing and Networking
Europe, Lecture Notes in Computer Science 918, pp. 582-587, Milano, Italy, May 1995

[Baratloo96] A.Baratloo, M.Karaul, Z.Kedem, P.Wyckoff. "Charlotte: Metacomputing on the
Weh", Proc. ISCA Int. Conf. on Parallel and Distributed Computing, PDCS'96, Dijon,
France, pp. 181 -188, Sept. 1996

[Bovine] Distributed.net, http: //www.distributed.net/

342

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

[Brecht96] T.Brecht, H.Sandhu, M.Shan, J.Talbot. "ParaWeb: Towards World-Wide
Supercomputing", Proc. 7'h ACM SIGOPS European Workshop on System Support tor
Worldwide Applications, 1996

[Cappelo97] P.Cappelo, B.Christiansen, M.F.ionescu, M.Neary, K.Schauser, D.Wu. "Javelin:
Internet-based Parallel Computing using Java", ACM 1997 Workshop on Java for Science
and Engineering Computation, Las Vegas', USA, June 1997

[Camiel96] N.Camiel, S.London, N.Nisan, O.Regev. "The Popcorn Project: Distributed
Computation over the Internet in Java", Proc. 6lh International World Wide Web
Conference, April 1997

[Foster96] I.Foster, SxTuecke. "Enabling Technologies for web-Based Ubiquitous
Supercomputing", Proc. 5"1 IEEE int. Symposium on High-Performance Distributed
Computing, HPDC-5, Syracuse, USA, pp. 112-119, August 1996

[GIMPS]http://www.utm.edu/research/primes/notes/2976221/
[Gray97] P.A.Gray, V.Sunderam, "IceT: Distributed Computing and Java", 1997 ACM

Workshop on Java for Science and Engineering Computation, Las Vegas, Nevada, June
1997

[Grimshaw96] A.Grimshaw, W.Wulf. "Legion - A view from 50,000 Feet", Proc. 5,h IEEE Int.
Symposium on High-Performance Distributed Computing, HPDC-5, Syracuse, USA, pp. 89-
99, August 1996

[JavaSoft] JavaSoft Homepage, http: //www. Javasoft. com/
[Karp93] A.H.Karp, K.Miura. "1992 Gordon Bell Prize Winners", IEEE Computer, pp 77-82,

January 1993
[Lash97] A.Lash. "48-bit crypto latest to crack". CNET: The Computer Network, February

1997, http://www.news.eom/News/Item/0,4,7849,4000.html
[Mersenne] Mersenne Primes: History, Theorems and ■ Lists,

http://www.utm.edu/research/primes/mersenne.shtml
[NetWizards] Network Wizards, http: / /www. nw. com/
[Nieplocha96] J.Nieplocha, R.J.Harrison. "Shared Memory NUMA Programming on 1-Way",

Proc. 5lh IEEE Int. Symposium on High-Performance Distributed Computing, HPDC-5,
Syracuse, USA, pp432-441, August 1996

[Philippsen97] M.Philippsen, M.Zenger, "JavaParty - Transparent Remote Objects in Java",
1997 ACM Workshop on Java for Science and Engineering Computation, Las Vegas,
Nevada, June 1997

[Rivest95] Rivest Ronald L. "The RC5 Encryption Algorithm" Proceedings of the Second
International Workshop on Fast Software Encryption, Leuven, Belgium, pages 86-96,
Springer-Verlag, January 1995

[RSAFact] RSA Factoring-By-Web Project, NPAC Syracuse, USA,
htp://www.npac.syr.edu/factoring.html

[Schrage92] M.Schräge. "Piranha processing - utilizing your down time ", HPCwire (Electronic
Newsletter), August 1992

[Silverman91] R.D.Silverman. "Massively Distributed Computing and Factoring Large
Integers", Communications of the ACM, Vol. 34, No 11, pp. 95-103, November 1991

[Steen95] M.V.Streen, P.Homburg. L.V.Doorn, A.S.Tanenbaum. "Towards Object-Based Wide
Area Distributed Systems", Proc. Int. Workshop on Object Orientation in Operating
Systems, Lund, Sweden, pp. 224-227, August 1995

[Strumpen93] V.Strumpen. "Parallel Molecular Sequence Analysis on Workstations in the
Internet", Technical Report 93-28, Department of Computer Science, University of Zurich,
1993

[WMPI] Windows Message Passing Interface, http: //dsa.dei ,uc .pt/wmpi/

343

FEUP - Faculdade de Engenharia da Universidade do Porto

[Vanhelsuwe97] L.Vanhelsuwe. "Create your own Supercomputer with Java", Javaworld,
January 1997, http: //www. javaworld.com/

344

VECPAR '98 ■ 3rd International Meeting on Vector and Parallel Processing

The Parallel Problems Server:
A Client-Server Model for Interactive Large

Scale Scientific Computation

Parry Husbands1 and Charles Isbell2

1 Laboratory for Computer Science, MIT. Cambridge MA 02139 USA
parryQsupertech.lcs.mit.edu

2 Artificial Intelligence Laboratory, MIT, Cambridge MA 02139 USA
isbellQai.mit.edu

Abstract. Applying fast scientific computing algorithms to large prob-
lems presents a difficult engineering problem. We describe a novel archi-
tecture for addressing this problem that uses a robust client-server model
for interactive large-scale linear algebra computation.
We discuss competing approaches and demonstrate the relative strengths
of our approach. By way of example, we describe MITMatlab, a power-
ful transparent, client interface to the linear algebra server. With MIT-
Matlab. it is now straightforward to implement full-blown algorithms
intended to work on very large problems while still using the powerful
interactive and visualization tools that Matlab provides. We also examine
the efficiency of our model by timing selected operations and comparing
them to commonly used approaches.

1 Introduction

We describe a novel architecture for a "linear algebra server" that operates on
very large matrices. Matrices are created by the server and distributed across
many machines or processors. Operations take place automatically in parallel.
The server includes a general communication interface to clients and is extensible
via. a robust package system.

We are motivated by three observations. First, many widely-used algorithms
in machine learning, differential equations, simulation, etc. can be realized as
operations on matrices. Second, it is vital to be able to test new ideas quickly in
an interactive setting. Finally, algorithms that appear promising on small data
sets can fail on large problems and it would be helpful to have a tool that easily
enables experimentation on large problems.

Common approaches suffer from several difficulties. Interactive prototyping
environments such as Mathematica, Maple, Octave, and Matlab exist; however,
they often fail to work well on large problems. Linear algebra libraries designed
to work on large problems abound; however, they involve steep learning curves.
Further they are typically not interactive, requiring that applications be written
in a compiled language, such as C++ or Fortran. This is a burden for users who

345

FEUP - Faculdade de Engenharia da Universidade do Porto

simply want a library's functionality and for programmers who wish to extend
it.

We address these problems directly. Like standard libraries, our system en-
capsulates basic functionality; however, by modeling the system as a server, we
allow for on-the-fly interaction with arbitrary user interfaces. Further, the server
is a self-contained application, so we are able to extend it at run-time.

In this paper, we show that our model opens several possibilities. We briefly
describe standard'approaches in Section 2 before describing the Parallel Prob-
lems Server itself in Section 3. We detail its architecture, focusing on its exten-
sibility. Section 4 describes MITMatlab, a system that enables users to compute
interactively with very large data sets directly from within Matlab. We then
report on the results of some performance experiments in Section 5. Finally, we
conclude, discussing further extensions to the system.

2 Standard Approaches

2.1 Linear Algebra Libraries

For many compute-intensive tasks, the best way to maximize performance is
to use a library. For example, optimized versions of LAPACK [1] exist that
outperform similar code written in a. high-level programming language (thanks
primarily to native implementations of the BLAS). For distributed memory ar-
chitectures, vendor-optimized libraries (e.g. Sun's S3L and IBM's ESSL) coex-
ist with public domain offerings such as ScaLAPACK [5], PARPACK [11] and
Petsc [4] [9].

Each of these libraries has its own idiosyncratic interface and assumptions
about the types and distributions of data allowed. It is often a major program-
ming effort, to incorporate library routines into an application.

2.2 Interactive Systems

The power of prototyping systems like Maple, Matlab, Mathematica and Octave
is that they are interactive. It is straightforward for both seasoned programmers
and relatively naive tis«»r< to develop algorithms and to visualize results from
such algorithms. Unfortunately, while these tools work well for small problems,
they are often inad<<|iiat<- for production-level data.

There have been main attempts to extend prototyping tools in order to make
them work in parallel with large data sets. Here, we focus on systems that add
parallel features to Matlab. a widely-used scientific computing tool.

Both MultiMatlab from Cornell University [13] and the Parallel Toolbox for
Matlab from Wake Forest University [10], make it possible to manage Matlab
processes on different machines. Matlab is extended to include send, receive and
collective operations so that separate Matlab processes can communicate. In
short, these approaches implement traditional message passing with Matlab as
the implementation language.

346

FEUP - Faculdade de Engenharia da Universidade do Porto

fashion and managed among worker processes, which may live on different ma-
chines. Currently we support row and column distributed dense arrays, column
distributed sparse arrays, and replicated arrays in single precision. Communica-
tion and synchronization among the workers is accomplished using the MPI [8]
message passing library. This is a standard library available on a wide range
of platforms; it is currently the most portable way to develop applications on
distributed memory computers.

Machine Machine? Machinen

Fig. 1. The General Organization of the Parallel Problems Server. The server
process provides an interface to any client that implements its communication protocol.

3.2 Communication and Extensibility

We use the client-server model in two ways. First, there is a protocol for commu-
nicating with clients. Just as importantly, there is a separate plug-in architecture
that allows for straightforward run-time extensibility of the PPServer.

The Client Interface While we believe that servers are crucial, they remain
only academic oddities without useful clients. HTTP servers are useful but they
are much more useful when powerful browsers exist. Therefore, it is important

348

VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing

Compilers for Matlab are also an active area. Both the CONLAB system from
the University of Umea [7] and the FALCON environment from the University
of Illinois at Urbana-Champaign [3][12] translate Matlab-like languages into in-
termediate languages for which high performance compilers exist. For example,
FALCON compiles Matlab to Fortran 90 and pC++. Sophisticated analyses of
the Matlab source are performed so that efficient target code is generated.

Both of these approaches have merits; however, it is our claim that they
do not adequately address the issues we have raised. The former approach is
too involved for the naive user and the latter approach sacrifices direct interac-
tion with the computation and includes an edit-compile-run cycle that increases
development time.

3 The Parallel Problems Server

The Parallel Problems Server (PPServer) combines many aspects of the ap-
proaches we have described so far. Like standard linear algebra packages, the
PPServer neatly encapsulates basic functionality; however, because it is a server
with a general communication protocol, interaction with arbitrary programs
(with their own user interfaces) is possible. Also, the server implements a ro-
bust, protocol for accessing compiled libraries. Thus, extending the functionality
of the PPServer is a simple, modular task.

3.1 The Client-Server Model

The client-server model is ubiquitous. There are HTTP servers that allow access
to data via the World Wide Web and database servers that admit access to
specially indexed data. Because these servers implement robust protocols for
communicating the information they provide, it is possible to build useful clients,
such as web browsers.

We believe that this model is also a useful one for scientific computation.
First, there is no need to force a client to operate in parallel by endowing it
with communication primitives; rather, such communication remains implicit.
As a result, the user is not responsible for managing data among various pro-
cesses. The user simply issues the client's standard commands: these are then
transparently executed on multiple machines.

Secondly, there is no need to use the client as the computational engine. While
this has the possible short-term disadvantage of the server's functionality being
different than the client's, we gain extremely high performance. We are free to use
the fastest distributed memory implementations of the algorithms that we need.
Furthermore, we are not required to use the client's data representation. For
example, Matlab uses double precision numbers. For the very large operations
that concern us. it often preferable to use single precision, gaining significant
time and space advantages when accuracy is not a concern.

A high-level view of our implementation of the PPServer is shown in Fig-
ure 1. Clients make requests of the server. Data are created in a distributed

347

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

that, the client interface be simple to use but powerful enough to allow for arbi-
trary operations.

The PPServer uses standard Unix sockets for client communication. The pro-
tocol is straightforward. A client sends a request, consisting of a command and
arguments. A command is a string, naming a function. Functions may request,
data or the loading, saving, or creating of data. Furthermore, they may require
that specific operations be performed on already existing data or that library
extensions to be included with the server. Arguments are lists of characters, inte-
gers and real numbers. Once a command has been completed, it is acknowledged
with a message from the server that includes any errors and returned values.

A C++ library (and source) is provided that implements this protocol, in-
cluding automatic conversion between standard C/C++-style data types and a
form suitable for transmission to/from the server. Clients need only provide a
suitable wrapper for these functions.

The Server Interface The PPServer is extensible (see Figure 2). It includes a
robust, function interface using C++ objects. New functions are defined using this
interface. These new functions are compiled into dynamically loadable libraries,
dubbed "packages" and loaded on demand. Each package is its own name space,
so new functions can be loaded "on top" of others, hiding functions of the same
name in other packages. Like the PPServer itself, package functions use MPI.
These functions enjoy access to the basic functionality of the Server, including
direct access to data and the ability to execute all the same commands that are
available to clients, including those in other packages.

Figure 3 shows the code for a sample package. It contains one function sumall
that sums the elements of a distributed matrix. This example shows the mecha-
nisms for extracting input arguments, accessing the elements of the matrix, and
returning results to the client. With only a handful of exceptions, all current
server functionaliu i- written in this way.

We have used tin- l'|>(vrver as the core of several applications, implementing
packages that pm\ii. arr.>ss to ARPACK. SCALAPACK and S3L, Sun's opti-
mized version of *»< VL AI'ACK. The functions in the packages are merely short
wrappers for the MII-1»TI\ ma functions provided by the libraries.

Portability Tin- u- * »i^ndard C++ and MPI has allowed us to develop a
system that is hißlih i • f »Me. Although the PPServer was originally developed
on a network of »\ ii,Hi«-'n<- multiprocessors from Sun Microsystems, we have
been able to port n • * luster of SMPs from Digital Equipment Corporation
with minimal effort \\ • *"■ -urrently working on a port to Pentium-driven Linux
systems.

3.3 Other Client-Server Models

There have been previou» library systems that implement a similar model. Both
RCS [2] and Netsolve [(>] an as fast back-ends for slower clients. In their model.

349

FEUP - Faculdade de Engenharia da Universidade do Porto

Scalapack S3L Libraries

mathfun.cq | scalapack.cc
Computational &
Interface Routines

Fig.2. Extending the PPServer. A client communicates with the PPServer using
a simple command-argument protocol. The Server itself uses a '•package'" mechanism
to implement all but its most basic functions. New functionality can be added to the
PPServer and managed in a reasonable way. (S3L is Sun's optimized version of some
ScaLAPACK routines)

350

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

void sumall(PPServer fttheServer, PPArgList fcinArgs, PPArgList fcoutArgs)

{
// Get the matrix identifier that was passed in
PPMatrixID srcID=*(inArgs[0]);

// Make sure that we're passing in a dense matrix
if(ItheServer.isDense(srcID)) {

// Return the corresponding error
outArgs.addErrorCBADINPUTARGS,"Expecting a Dense Matrix");

outArgs.add(0);
return;

}

// Get a pointer to the actual matrix
PPDenseMatrix *src = (PPDenseMatrix *) theServer.getData(srcID);

float sum=0, answer;

// Find the local sum of all of the elements
for(int i=0;i < src->numRows();i++)

for(int j=0;j < src->numCols();j++)
sum+=src->get(i,j);

// Add the local sums to find the global sum
MPI.AllReduce(ftsum.ftanswer,1.MPI.FLOAT,MP1_SUM,MPI_C0MM.W0RLD);

// Return an error code
outArgs.addNoError0;

// Return the result to the client
outArgs.add(answer);

}

// Register this function to the server
extern "C" PPError ppinitializeCPPServer fttheServer);
PPError ppinitializeCPPServer fttheServer)

{
theServer.addPPFunct i on("sumall",sumall);
return(NDERR);

}

Fig. 3. A Sample Server Extension. This code is essentially complete other than a few
header files

351

FEUP - Faculdade de Engenharia da Universidade do Porto

clients issue requests, arguments are communicated to the remote machine and
results sent back. Clients have been developed for Netsolve using both Matlab
and Java.

Our approach to this problem is different in many respects. Our clients are
not responsible for storing the data to be computed on. Generally, data, is created
and stored on the server itself: clients receive only a •'handle" to this data (see
Figure 4 for an example). This means that there is no cost for sending and
receiving large datasets to and from the computational server. Further, this
approach allows computation on data sets too large for the client itself to even
store.

We also support transparent access to server data from clients. As we shall
see below, given a sufficiently powerful client, PPServer variables can be created
remotely but still be treated like local variables.

Both Netsolve and RCS assume that the routines that perform needed com-
putation have already been written. Through our package system we support
on-the-fly creation of parallel functions. Thus, the server is a meeting place for
both data and algorithms.

Machine Machine,,

Fig. 4. MITMatlab V*ri*t.L-s. Use of the PPServer by Matlab is almost completely
transparent. PPServet i4n*M.-s remain tied to the server itself while Matlab receives
"handles" to the data ' -,i.» Matlab scripts and Matlab's object, and typing mecha-
nisms, functions using IM'-, M.T variables invoke PPServer commands implicitly.

352

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

4 MITMatlab

Using the client interface, we have implemented a Matlab front end, called MIT-
Matlab. At present, we can process gigabyte-sized sparse and dense matrices
"within" Matlab, admitting many of Matlab's operations transparently (see Fig-
ure 5). By using a client as the user interface, we take advantage of whatever
interactive mechanisms are available to it. In Matlab's case, we inherit a host
of parsing capabilities, a scripting language and a host of powerful visualization
tools.

For example, we have implemented BRAZIL, a text retrieval system for large
databases. BRAZIL can process queries on a million documents comprised of
hundreds of thousands of different words. Because of Matlab's scripting capabil-
ities, little functionality had to be added to the server directly; rather, most of
BRAZIL was "written" in Matlab.

» a=nuidn(512,512*p); a2=ones(512*p,512);
m=sprand(10000,1000*p,0.01);

»whose
Your variables are:

Name Size Bytes Class
a 512 x512p 1048576 ddense array
a2 512px512 1048576 ddense array
m 10000 xlOOOp 810176 dsparse array
Grand total is 624560 elements using 2907328 bytes

»b=mv(a)i csa*b; ~*(1:$E37
ans =

4.0000 ^aow^&oooo

~ 0.0000 -0.0000 1.0000
>>csd^a^^t(e,'*')^jäT[^'30 40'30D»xb('sqiiarer)/
>>[nÄv]=svds(m>5)^'
ans= ■ .

7.7153 7.7342 7.7447 7.7831 163842
»idseye(1000*p)pcBCamsam(id,l);y=camsum(x,l);
»ima«esc(y+y')

Fig. 5. A Screen Dump of a Partial MITMatlab Session. Large matrices are
created on the PPServer through special constructors. Multiplication and other matrix
operations proceed normativ

5 Performance

In this section we present results demonstrating the performance of the PPServer.
We begin with experiments comparing the efficiency of individual operations in
Matlab with the same operations using MITMatlab. We conclude with a case
study of a computation that requires more than a single individual operation. We

353

FEUP - Faculdade de Engenharia da Universidade do Porto

compare the performance impact of implementing a. short program in Matlab,
directly on the PPServer, and using optimized Fortran.

5.1 Individual Operations

We categorize individual operations into two broad classes, according to the
amount of computation that is performed relative to the overhead involved in
communicating with the PPServer. For fine grained operations, most of the time
is spent communicating with the server. A typical fine grained task would involve
accessing or setting an individual element of a matrix. Coarse grained operations
include functions such as matrix multiplication, singular value decompositions,
and eigenvalue computations where the majority of the time is spent computing
instead of communicating input and output arguments with the server.

Below we assess MITMatlab's performance on both kinds of operations. Ex-
periments were performed on a network of Digital AlphaServer 4/4100s con-
nected with Memory Channel.

Fine Grained Operations These operations are understandably slow. For
example, in order to access an individual element, the client sends a message
to the server specifying the matrix and location, the server locates the desired
element among its worker processes, and then finally sends the result, back to
the client.

MITMatlab cannot compete with the local function calls that Matlab uses
for these operations. For example, accessing an element in Matlab only takes
139 microseconds on average, while on a request from the server such can take
2.8 milliseconds. This result can be entirely explained by the overhead involved
in communicating with the server; a simple "ping" operation where MITMatlab
asks the PPServer for nothing more than an empty reply takes 2 milliseconds.

Coarse Grained Operations For coarse grained operations, the overhead of
client/server communication is only a small fraction of the computation to be
performed.

Table 1 shows the performance of dense matrix multiplication using Matlab
and MITMatlab. Large performance gains result from the parallelism obtained
by using the server: however, even in the case where the server is only using a
single processor, it gains significantly over Matlab. This is due in part because
the PPServer can use an optimized version of the BLAS. This illustrates one of
the advantages of our model. We can use the fastest operations available on a
given platform.

Using PARPACK, MITMatlab also shows superior performance in computing
singular value decompositions on sparse matrices (see Table 2).

It is worth noting that Matlab"s operations were performed in double preci-
sion while the PPServer s used single precision. While this clearly has an effect
on performance, we do not believe that it can account for the great performance
difference between the two systems.

354

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Table 1. Matrix multiplication performance of the MITMatlab on p processors. Time
are in seconds. Here "p = 3 + 3" means 6 processors divided between two machines.

Matrix Size N
lKxlK 2Kx2K 4Kx4K

Matlab 41.1 267.1 2814.9
MITMatlab
with p = 1 5.5 45.1 357.9

p = 2 2.8 21.5 175.6

p = 4 3.9 12.9 94.7

p = 3 + 3 1.4 14.4 64.5

Table 2. SVD performance of MITMatlab on p processors using PARPACK. These
tests found the first 5 singular triplets of a random 10K by 10K sparse matrix with
approximately 1, 2, and 4 million nonzero elements. Matlab failed to complete the
computation in a reasonable amount of time. Times are in seconds.

Processors
used

Nonzeros
IM 2M 4M

2 136.8 169.2 433.5

4 88.8 91.9 241.0
3 + 3 75.2 78.8 168.6

Discussion These results make it. clear what, types of tasks are best performed
on the server. Computations that can be described as a series of coarse grained
operations on large matrices fare very well. By contrast, those that use many fine
grained operations may be slower than Matlab. Such tasks should be recoded to
use coarse grained operations if possible, or incorporated directly into the server
via. the package system. Note that on many tasks that involve computation on
large matrices, fine grained operations occupy a very small amount of time and
so the advantages that we gain using the server are not lost.

5.2 Executing Programs

Figure 6 shows the Matlab function that we used for this experiment. It per-
forms a matrix-vector multiplication and a vector addition in a loop. Table 3
shows the results when the function is executed: 1) in Matlab, 2) in Matlab with
server operations, 3) directly on the server through a package, and 4) in Fortran.
Experiments were performed using a Sun E5000 with 8 processors. The Fortran
code used Sun's optimized version of LAPACK.

The native Fortran version is the fastest: however, the PPServer package
version did not incur a substantial performance penalty. The interpreted MIT-
Matlab version, while still faster than the pure Matlab version, was predictably
slower than the two compiled versions. It had to manage the temporary vari-
ables that were created in the loop and incurred a little overhead for every server

355

FEUP - Faculdade de Engenharia da Universidade do Porto

function called. We believe that this small cost is well worth the advantages we
obtain in ease of implementation (a simple Matlab script) and interactivity.

A=rand(3000,3000);
x0=rand(3000,l);
Q=rand(3000,9);
n=10;

function X=testfun(A,xO,Q,n)

X(:,l)=x0;
for i=l:n-l

X(:,i+l)=A*X(:,i)+Q(:,i);
end

Fig. 6. Matlab code for the program test. The Matlab version that used server opera-
tions included some garbage collection primitives in the loop.

Table 3. The performance of the various implementations of the program test. Al-
though Matlab takes some advantage of multiple processors in the SMP we list it in
the p = 1 row.

Processors
Used

Time (sec)
Fortran Server

Package
Matlab

with Server
Matlab

1 3.07 49.93
2 1.61 1.92 2.43
4 0.90 1.02 1.49
6 0.62 0.78 1.26
8 0.55 0.67 1.84

6 Conclusions

Applying fast scientific computing algorithms to large everyday problems rep-
resents a major engineering effort. We believe that a client-server architecture
provides a robust approacli that makes this problem much more manageable.

We have shown that wo can create tools that allow easy interactive access
to large matrices. With MITMatlab, researchers can use Matlab as more than a
prototyping engine restricted to toy problems. It is now possible to implement
full-blown algorithms intended to work on very large problems without sacrificing
interactive power. MITMatlab has been used successfully in a graduate course

356

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

in parallel scientific computing. Students have implemented algorithms from ar-
eas including genetic algorithms and computer graphics. Packages encapsulating
various machine learning techniques, including gradient-based search methods,
have been incorporated as well.

Work on the PPServer continues. Naturally, we intend to incorporate more
standard libraries as packages. We also intend to implement out-of-core algo-
rithms for extremely large problems, as well implement interfaces to other clients,
such as Java-enabled browsers. Finally, we wish to use the PPServer as real tool
for understanding the role of interactivity in supercomputing.

Acknowledgments Parry Husbands is supported by a fellowship from Sun Mi-
crosystems. Charles Isbell is supported by a fellowship from AT&T Labs/Research.
Most of this research was performed on clusters of SMPs provided by Sun Mi-
crosystems and Digital Corp.

References

1. E. Anderson. Z. Bai. C. Bischof, J. Demmel. .1. Dongarra. J. Du Criz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov. and D. Sorensen. LAPACK
Users' Guide. Siam Publications. Philadelphia, 1995.

2. P. Arbenz, W. Gander, and M. Oettli. The Remote Computation System. Technical
Report 245, ETH Zurich, 1996.

3. Falcon Group at the University of Illinois at Urbana-Champaign. The Falcon
Project, http://www.csrd.uiuc.edu/falcon/falcon.html.

4. S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith. Efficient Management
of Parallelism in Object-Oriented Numerical Software Libraries, Birkhauser Press,
1997.

5. L. S. Blackford, J. Choi. A. Cleary, E. D'Azevedo. J. Demmel,
I. Dhilon, J. Dongarra, S. Hammarling. G. Henry. A. Petitet,
K. Stanley, D. Walker, and R.C. Whaley. Scalapack Users' Guide.
http://www.netlib.org/scalapack/slug/scalapack.slug.html. May 1997.

6. Henri Casanova and Jack Dongarra. Netsolve: A Network Server for Solving Com-
putational Science Problems. In Proceedings of SuperComputing 1996. 1996.

7. Peter Drakenberg, Peter Jacobson. and Bo Kagstrom. A CONLAB Compiler for a
Distributed Memory Multicomputer. In Proceedings of the Sixth SIAM Conference
on Parallel Processing from Scientific Computing, volume 2, pages 814-821. Society
for Industrial and Applied Mathematics, 1993.

8. William Gropp, Ewing Lusk. and Anthong Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. The MIT Press, 1994.

9. PETSc Group. PETSc - the Portable, Extensible Toolkit for Scientific Computa-
tion. http://www.mcs.anl.gov/home/gropp/petsc.html.

10. J. Hollingsworth, K. Liu. and P. Pauca. Parallel Toolbar for MATLAB PT v. 1.00:
Manual and Reference Pages. Wake Forest University, 1996.

11. K. J. Maschhoff and D. C. Sorensen. A Portable Implementation of ARPACK
for Distributed Memory Parallel Computers. In Preliminary Proceedings of the
Copper Mountain Confertnce on Iterative Methods. 1996.

357

FEUP - Faculdade de Engenharia da Universidade do Porto

12. L. De Rose, K. Gallivan. E. Gallopoulos, B. Marsolf. and D. Padua. Falcon: An
Environment, for the Development of Scientific Libraries and Applications. In Pro-
ceedings of KB UP'95 - First International Workshop on Knowledge-Based Systems
for the (re)Use of Program Libraries, November 1995.

13. Anne E. Trefethen. Vijay S. Menon. Chi-Chao Chang, Gregorz J. Czajkowski,
Chris Myers, and Lloyd N. Trefethen. MultiMATLAB: MATLAB on Multiple

Processors. http://www.cs.cornell.edu/Info/People/lnt/mult.imatlab.html, 1996.

358

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

A Thread-level Distributed Debugger

Joäo Lourenco Jose C. Cunha

{jml,jcc}Sdi.fct.unl.pt
Departamento de Informätica

Faculdade de Ciencias e Tecnologia
Universidade Nova de Lisboa

Portugal

Abstract. In order to address the diversity of existing parallel programming models, it is important to provide develop-
ment environments that can be incrementally extended with new services. Concerning the debugging of process-based
models, we have previously designed and implemented a basic interface that can be accessed by other tools as well as by
debugging modules associated with high-level programming languages.
In this paper we describe our work towards the support of further debugging functionalities for parallel and distributed
programs, by discussing a model to support thread-based debugging services. We then show how those services are
supported on top of a distributed monitoring and control software architecture.

1 Introduction

In order to ease the task of parallel and distributed application development, a debugging service must support the following
aspects:

1. Inspection and control of the computation state;
2. Tool interfacing;
3. Heterogeneity.

There are several difficulties regarding the development of debugging services. On one hand, due to the large diversity
of programming and computational models, it is not possible to define a universal debugging interface that can meet the
requirements of all such models. On the other hand, there is an increasing number of applications which are composed of
multiple separate components, each based on its own computational model, be it sequential or parallel.

So aspect (1) depends on each specific computational model, e.g. process-based, object-based, multi-threaded, as well
as the underlying programming paradigm, e.g. imperative or declarative. At a basic level, as far as parallel and distributed
debugging is concerned, the following entities should be modeled: processes, threads, and their interactions. Efforts such as
the one from the HPDF initiative (BFP97] are currently trying to establish a standard interface for the most common basic
debugging functionalities, that can hopefully improve the current situation.

Aspects (1) and (2) were addressed in our previous work [CL97,KCD+97,LCK+97], when we have developed a dis-
tributed process-level debugger (OOM> for C/PVM programs. The DDBG debugger was integrated in a parallel software
engineering environment within the *cope of an European project [S+94].

In both of the above situations. * debug ging service must be able to handle the requirements of very distinct models, and
this can be achieved through hetenifen*«ms debuggers (aspect (3) above).

We have recently implemented J p»<Kess-level debugging interface on top of a very flexible monitoring and control
software architecture (DAMS) [CLV * **«1 One important aspect of this architecture is that it can be easily extended with
new services and functionalities, suvh a* for debugging, profiling, and distributed resource management. This allows an
incremental development of tools and their experimentation with rapid prototyping.

In this paper we extend such debugging functionalities with a thread-based service, and show how it is implemented on
top of the mentioned architecture.

The organization of the paper is as follows. Section 2 discusses process and thread-based debugging services, and Sec. 3
discusses implementations on top of the DAMS architecture. Then we discuss related work and present some conclusions.

2 Process and Thread-oriented Debugging Services

In order to provide debugging functionalities for process- and thread-based models, we must identify the basic concepts and
mechanisms supporting inspection and control of the computation state. We define a model that is intended to be neutral
concerning the diversity of semantics of existing process and thread-based models.

359

FEUP - Faculdade de Engenharia da Universidade do Porto

2.1 The Components of the Model

The model defines the following basic entities:

- Processes. A process is a passive entity, a kind of "capsule" supporting contexts for the concurrent execution of multiple
threads. A context is defined by a non-empty set of cells. A process is completely specified by four types of "contexts":

• Process Memory Context. It corresponds to the process address space which is represented by a set of values of
accessible memory cells. Code, data and stack regions are mapped onto such memory cells.

• Process Synchronization Context. It contains cells representing synchronization variables such as locks and mu-
texes, as well as condition variables. Of course they are also mapped onto memory cells but we prefer to separate
them for greater clarity of the model.

• Process Communication Context. It is represented by the values of the input/output ports and the communication
channels (such as message queues). Such communication channels and input/output ports can also be modeled by
associated memory cells, but they are explicitly identified here, because they describe the process interaction with
its outside environment.

• Process Execution Context. This is defined by the set of threads that execute within the scope of the process. Each
such thread has a precise logical specification in terms of specific contexts, as described below. Additionally, each
process has an associated Scheduling Context which describes the status of the physical processor scheduling for
all threads (this is not further detailed in this paper).

- Threads. A thread is an active entity which executes some code within the contexts defined by its enclosed process. It
is specified by two types of "contexts":

• Thread Memory Context. It is defined by the set of values of the memory cells containing the code, the data, and
the stack regions that were specified for each thread. Of course, both the code and data regions are shared by all
threads in a single process, unlike the stack regions which must be kept private.

• Thread Execution Context. This is defined by the status of the Virtual Processor that is associated with each thread
in order to model its logical behavior. The status of a virtual processor is defined by the set of values of the
processor registers, and by a logical state, a cell containing one of the values T_Running, T_Blocked, T_Stopped,
T_Terminated.

The thread logical state transition diagram presented in Fig. 1 identifies the possible state transitions allowed to a thread,
identifying at the same time some of the debugging functionalities that trigger each state transition. Associated with each
transition in the state diagram there is a set of labels naming the possible causes of the transition. Their name suggest the
associated functionality. Labels between angle braces, such as <T_Exit>, define actions resulting of'the thread execution
and generated internally or by the system. Other labels, such as T_step, identify transitions forced by an external agent,
such as the debugger.

Fig. 1. The thread state transition diagram

360

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

- T_DETACHED. The thread is running free and it is not under control of the debugger.
- T_RUNNING. The thread is running under control of the debugger.
- T_STOPPED. The thread is stopped as a result of a debugger command or due to the occurrence of some exception.
- T_BLOCKED. The thread has invoked a blocking call and is temporarily blocked until that request is satisfied.
- T_TERMINATED. The thread has terminated due to a debugger or system command, or because it has reached its exit

point.

2.2 Events

Using such a model, we are able to precisely identify the events which are relevant to describe and control a concurrent
computation with multiple processes and threads.

In the following we briefly illustrate how this model can help in the process of precisely specifying the operational
semantics of debugging primitives in terms of events.

Generally, given a specific Context (as previously defined above) an event is defined by a modification in a single value
of a cell contained in that context. This corresponds to the basic notion that an event describes a transition from one state to
another state.

Process-level Events These events describe all modifications made to any of the contexts defined in the process (Memory,
Synchronization, Communication, and Execution). For example, events are triggered by modification of global process
variables, by modifications of the state of a mutex, by the arrival of a message, or by the creation or destruction of a thread
in a process.

Thread-level Events These events describe the modifications in the thread Memory and Execution contexts. For example,
the modification of a local thread variable, or a physical processor register. Thread-level events are also triggered by any
change in the logical state of its virtual processor.

2.3 Actions

An action is responsible for the state modification that triggers each event. We identify two classes of actions:

- Internal Actions. They are enforced by the virtual processor associated with a given thread in a process. The sequence
of all pairs (Internal_action, Generated_Event) that are produced during thread execution, precisely specify the compu-
tation path followed by the thread. Such internal actions may correspond to physical processor instructions or to higher
level instructions, for example C code statements.

- External Actions. They are enforced by external controller entities such as the debugger, acting upon the contexts
defined within a process. The sequence of all pairs (External_action, Generated_Event) gives the history of a debugging
session.

2.4 The Debugging Activity

Debugging functionalities fall into two categories: inspection commands, and controlling commands. On the other hand,
they can refer to individual processes or threads. They can also refer to process interactions or thread interactions. The core
of the debugging activity amounts to observe and/or enforce well-defined sequences of events so that deviations from the
program specification can be localized and corrected. Our model provides a foundation to develop a mechanism that controls
the detection and registering of events. Basicly event detection can be enabled for a well-defined class of action/event pairs.
For example:

- Detect events in a given process/thread, associated with its Memory context, which were generated by internal actions
only. It is possible to detect events associated with a given memory cell.

- Detect events in a given process, associated with its Synchronization context, and generated by internal actions of a
given thread.

- Detect events in a given process/thread, associated with the logical state of its Execution context, and were generated
by external actions.

361

FEUP - Faculdade de Engenharia da Universidade do Porto

In general it is possible to selectively enable/disable event detection for specific types through the specification of the
following elements:

- Which class of action triggers the event (External, Internal).
- Which entity should be monitored (Process, Thread, Context, Cell).

Well-known debugging primitives can easily be represented in terms of this model. For example, concerning threads, a
command "set_var()" of a local variable in a given thread would generate an event related to the Thread Memory Context.
A command "set_breakpoint()" in a given thread would relate to the Thread Execution Context. Concerning processes, a
command "kill_thread()" would relate to the Process Execution Context (and also to the Thread Execution Context because
it also changes the thread state).

By monitoring the occurrence of events of a certain type, it is possible to construct event histories that contribute to
a better understanding of the concurrent computation. For example, in.order to implement a deterministic replay facility
concerning process interactions only (i.e. message exchange), one needs to enable the detection of events related to the
Process Communication Context. A replay facility for thread interactions internal to a single process depends on the enabling
of events related to Process Memory and Process Synchronization Contexts.

2.5 Asynchronous Event Notification

Several types of debugging commands provide an immediate response, e.g. as in a "set_var()" or "set_breakpoint()", which
give a success or failure indication, and possibly return some result (e.g. a breakpoint identification).

Other types of debugging commands typically act upon Thread Execution Contexts in such a way that it is not possible
to obtain immediate meaningful imformation, besides knowing that the command was successfully applied. For example,
commands like "continue()" or "next()" immediately originate a logical state transition in a thread (from T_STOPPED to
T_RUNNING), but it might take an unpredictable amount of time for the thread to reach a point that should be inspected
during debugging, e.g. to reach a breakpoint. In general, the debugger interface or the application that is invoking debugging
commands should not be forced to wait until the desired event is reached. Instead, an asynchronous event notification
mechanism must be provided by the debugging interface, allowing a thread to explicitly register its interest in receiving
event notifications through the declaration of an event handler.

This declaration is achieved by calling the service

T_sethandler (process_thread_list, event_type, handler)

which defines the function handler as an handler of events of the given type (according to the previous subsection)
which are originated from any of the processes or threads from process_thread_list. Multiple threads in the same or
different processes can register handlers for a specific type of events. If such event occurs, a notification is sent to all the
registered threads. When a thread receives an event, its current execution is suspended while the associated handler function
is executed.

This event mechanism is also used to vupport tool synchronization and coordination in an integrated software devel-
opment environment where multiple tools < for debugging, testing, visualization, etc.) concurrently observe and control the
evolution of a computation. This coordination it *. hieved by having some tools, e.g. a graphical user-interface or a thread-
based visualization tool, registering handlerv rtlMal to the occurrence of some types of events, that may be originated by
internal and/or external actions (e.g. setting hrtalpoints). On event occurrence, such tools can react and update the graphical
view that is being presented to the user, con\iucnih »ith the evolution of the computation and with the actions triggered by
the debugging tool.

2.6 Summary on the Debugging Functions

In this section we have discussed how an event-ba<*d model can provide the foundation to develop process and thread based
debugging services. In this paper we have not presented the interface of process and thread debugging primitives. Our goal
is to be able to support distinct and evolving interface primitives so that our debugging framework can be used to support
experimentation and building of prototypes.

3 A Process- and Thread-oriented Debugging Tool

In this section we discuss implementation issues, including the support for multiple connections from concurrent client
tools, as well as the infrastructure for implementing the debugging functionalities that we have outlined in the previous
section.

362

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Client Processes

Thvoatl-avipMctl

Ührnry /:

DAMS

Machine A
-" TlAMS Driver ~~"-

Loital
Mauager

*f DAMS Driver v-. ,
^ Debuggrr ' K,H]r \ \ /

v/ Coatrolcr f Debugger \J f

- ~~ 1)AMS Diimr ~"~ -
Debugger

Coul rolcr

Node
Debugger

Machine B

Local
Mauager

'~~'&AMSDiivZr~~-- "
Debugger

Coulroler

Nmle
Debugger

 ;; ,/

_ _^. Event inoptiizaliou

Fig. 2. The TDBG architecture

3.1 The DAMS system

The DAMS (Distributed Application Monitoring System) system provides the basic layer to support the incremental devel-
opment of parallel and distributed monitoring and control services, such as debugging, profiling and resource management.
Its design and implementation are neutral regarding the programming and computational models of the target application.

The processes related to DAMS can be classified in one of three classes (see Fig. 2):

- Target application processes. The set of processes that will be controlled/monitored by the DAMS system.
- Client application processes. The set of independent client tools, that may operate concurrently over the Target appli-

cation processes by issuing requests to the DAMS system, through a service interface library.
- The DAMS processes. The set of internal processes that implement the DAMS system and its services. This set includes:

• System processes. This includes a single Service Manager and several Local Managers, one per physical node of the
target architecture. These processes manage the internal DAMS resources and provide an architecture independent
communication layer that allows the Client application processes to control and inspect the evolution of the Target
application processes.

• Service processes. Each class of service (e.g. debugging, resource management, profiling) requires a DAMS config-
uration which includes a set of specific components: one Service Module, to handle the Client application service
requests and their high-level system-independent parts; and a set of Driver processes, usually one per process of
the Target Application, to implement the low-level system-dependent control and monitoring aspects.

The most important aspects of DAMS are: its extensibility; its neutrality concerning the target application models; its
builtin support for multiple concurrent connections from client tools; and its functionalities for tool coordination and syn-
chronization using events.

3.2 The TDBG tool

In [CLV+98] we have described the implementation of FDBG, a process-level debugger as a DAMS service. Here we describe
how thread-level debugging (the TDBG debugger) is implemented as a service on top of the DAMS system by the provision
of an adequate set of Service processes.

For a better understanding of how the TDBG components interact, we present an example, which also refers to Fig. 2.
There are three Target application processes; two Client applications: the Graphical Interface and the Text Interface; and,
for simplicity, the pictured DAMS configuration is providing the TDBG service only.

363

FEUP - Faculdade de Engenharia da Universidade do Porto

Let us consider that a client application (e.g. a Text Interface) issues a debugging command by calling a debugging
library function, that sets a breakpoint in a given line of a given thread e.g. set_break(t 12345, 1 9 8). This func-
tion establishes the communication with the Service Manager, which identifies the type of requested service (related to
debugging), and forwards it to the appropriate component: the Debugging Module.

The Debugging Module parses the received data, identifies the type of request, and then sends the (possibly) transformed
request to the Debugging Driver. The DAMS system internally manages the routing tables to assure that the request reaches
the desired Debugging Driver which is associated with the identified target process.

In order to allow easy plug-in of existing commercial or public-domain Node Debuggers, the Debugging Driver includes
a front-end process, called a Controller, which is responsible for all interactions with the actual Debugger. The Controller
acts as a kind of "user", as far as the Debugger is concerned1.

After parsing the data that was sent by the Debugging Module, the Controller identifies the target process, and is-
sues an adequate sequence of commands conforming to the existing Debugger interface e.g. select_thread 12345,
break_line 98. The Controller waits for the completion of each command before issuing the next one. When the se-
quence is terminated, the results of the command, e.g. local_brkpt_id=2, are sent back to the Debugging Module.

The Debugging Module parses the received data, and does the necessary post-processing, for example converting a local
breakpoint identifier into a global breakpoint identifier, e.g. global_brkpt_id=14. Afterwards, it sends the results back
to the Client process in the form of return values of the invoked library call.

3.3 Summary on DAMS and TDBG

By describing how the interfacing between the client tools and the TDBG debugger is done, we have illustrated the great
flexiblility of the DAMS architecture in order to support extended functionalities. Namely, it is possible to integrate multiple
heterogeneous target debuggers, for processes and threads, in a single DAMS configuration.

4 Related Work

There are many current efforts on the field of parallel and distributed debugging (with and without thread's support) and
related topics [LWSB97,Zho94,MB94,Lum95,XWZS96,PHK91,DJ88,HS88]. Because we cannot cover them all here, we
have chosen two related approaches that are briefly presented and compared with our own approach. The first one concerns
the specification of debugging functionalities and the second concerns a distributed design supported by an existing tool.

4.1 The HPDF (proposed) Standard

The High-Performance Debugging Forum (HPDF) [BFP97] is a collaborative effort between researchers and industry, aim-
ing to define a standard for parallel debuggers. As of Version 1 of the standard, a command based (non-graphical) interface
has been prepared, specifying either syntax and semantics of the proposed services. The definition of graphical interfacing
and complex I/O operations are still under work.

According to HPDF, a parallel debugger is either a thread-oriented debugger, a process-oriented debugger or a hybrid
debugger, and sets of required and recommended services have been defined for each of them. Our design can easily
accommodate most of the HPDF proposed functionalities for hybrid debuggers.

In this regard, the tool integration features of TDBG, presenting an unified event-based model for the internal and
external actions, is a distinct contribution to the integration of parallel debuggers in more complete and complex program
development environments [KCD+97,LCK+97].

4.2 The p2d2 Distributed Debugger

The p2d2 distributed debugger [Hoo96] is a process-oriented debugger. It uses a client-server approach, with a well defined
interface, promoting portability by isolating the system dependent code into a debugger server. There is an user-interface
capable of displaying and controlling many processes, individually or associated in groups. The GNU gdb is used as a Node
Debugger, and a call-back method supports asynchronous interactions between gdb and the user-interface.

The distinctive feature of our approach (i.e. TDBG+DAMS) is to support multiple concurrent client tools and to offer the
necessary mechanisms to implement client tool coordination.

From an implementation point of view, the existing Node Debugger must provide an interface library to be accessed by the Controller
front-end.

364

VECPAR '98 ■ 3rd International Meeting on Vector and Parallel Processing

5 Conclusions and Ongoing Work

In this paper we have discussed a model to support the development of process and thread debugging functionalities, and
their implementation as services of the DAMS distributed architecture. This work is part of our experimentation towards the
incremental building of tool support services for parallel and distributed processing.

There is a prototype of DAMS running on our Ethernet LAN with Linux/PC's nodes, and a cluster of FDDI-interconnected
Alpha processors under OSF/1. A process-level debugger (PDBG) runs as a DAMS service, and uses the GNU gdb as the target
debugger. The efficieny of this prototype suffers because gdb is very heavy.

This prototype is being extended to implement TDB6 which provides a thread-based debugging service according to
the description in Sec. 3.2. A different Node Debugger is used, namely SmartGDB [Hal92], which is a thread-oriented
debugger, extending GNU gdb with TCL scripting capabilities and debugging support for user-level threads.

An ongoing related project focus on the integration of TDBG and a visualization tool for thread-based programs. In this
project we are experimenting with the TDBG tool integration and coordination support mechanisms.

Acknowledgements

Thanks are due to Joäo Vieira, Bruno Moscäo e Daniel Pereira for their work in the DAMS system.
The work reported in this paper was partially supported by the Portuguese CIENCIA Programme, by the PRAXIS XXI

SETNA-ParComp (Contract 2/2. l/TIT/1557/95), and by the DEC EERP PADIPRO (Contract P-005).

References

[BFP97] J. Brown, J. Francioni, and C. Pancake. White paper on formation of the high performance debugging forum. Available in
"http://www.ptools.org/hpdf/meetings/mar97/whitepaper.html", February 1997.

[CL97] J. Cunha and J. Lourenco. An Experiment in Tool Integration: the DDBG Parallel and Distributed Debugger. Journal of
Systems Architecture, 2nd Special Issue on Tools and Environments for Parallel Processing, Elsevier Science, 1997.

[CLV+98] J. C. Cunha, J. Lourenco, J. Vieira, B. Moscäo, and D. Pereira. A framework to support parallel and distributed debugging. In
Proceedings of the International Conference on High-Performance Computing and Networking (HPCN'98), Springer, LNCS
vol. 1401, pages 708-717, Amsterdam, The Netherlands, April 1998. Springer.

[DJ88] Thomas W. Doeppner, Jr. and David D. Johnson. A multi-thread debugger. In Proceedings of the ACM S1GPLAN/SIG0PS
Workshop on Parallel and Distributed Debugging, pages 295-297, Madison WI, May 1988. [Extended abstract].

[Hal92] Sudhir Halbhavi. Thread debugger—implementation and integration with the SmartGDB debugging paradigm. Master's
thesis, University of Mysore, India, 1992.

[Hoo96] Robert Hood. The p2d2 project: Building a portable distributed debugger. In Proceedings of the 2nd Symposium on Parallel
and Distributed Tools (SPDT'96), Philadelphia PA, USA, 1996. ACM Press.

[HS88] Gil Hansen and Andy Sheppard. Debugging multithreaded programs. In Proceedings of the ACM S1GPLAN/SIG0PS Work-
shop on Parallel and Distributed Debugging, pages 310-312, Madison WI, May 1988. [Extended abstract].

[KCD+97] P. Kacsuk, J. C. Cunha, G. Dözsa, J. Lourenco, T. Fadgyas, and T. Antäo. A graphical development and debugging environ-
ment for parallel programs. Parallel Computing, Elsevier Science, 22(1997): 1747-1770, 1997.

[LCK+97] J. Lourenco, J. C. Cunha, H. Krawczyk, P. Kuzora, M. Neyman, and B. Wiszniewsk. An integrated testing and debugging
environment for parallel and distributed programs. In Proceedings of the 23rd Euromicro Conference (EUROMICRO'97),
pages 291-298, Budapeste, Hungary, September 1997. IEEE Computer Society Press.

[Lum95] Steve S. Lumetta. Mantis: A debugger for the split-C language. Technical Report CSD-95-865, University of California,
Berkeley, March 1995.

[LWSB97] T. Ludwig, R. Wismuller, V. Sunderam, and A. Bode. OMIS — On-Line Monitoring Interface Specification (Version 2.0).
Technical report, Lehrstuhl fur Informatik, Technical University of Munich (LRR-TUM), Munich, Germany, July 1997.

[MB94] John May and Francine Berman. Designing a parallel debugger for portability. In Howard Jay Siegel, editor, Proceedings
of the 8th International Symposium on Parallel Processing, pages 909-915, Los Alamitos, CA, USA, April 1994. IEEE
Computer Society Press.

[PHK91] M. Krish Ponamgi, Wenwey Hseush, and Gail E. Kaiser. Debugging multithreaded programs with MPD. IEEE Software,
8(3):37^13, May 1991.

[S+94] S.Winter et al. Software Engineering for Parallel Processing, copernicus programme. Progress report 1, University of West-
minster, London, UK, October 1994.

[XWZS96] Jianxin Xiong, Dingxing Wang, Weimin Zheng, and Meiming Shen. BUSTER: an integrated debugger for PVM. In IEEE,
editor, Proceedings of 1996 IEEE Second International Conference on Algorithms and Architectures for Parallel Processing,
1CA PP '96, pages 11-13, Singapore, June 1996. IEEE Computer Society Press.

[Zho94] W. Zhou. A layered distributed program debugger. In Symposium on Parallel and Distributed Systems (SPDP '93), pages
665-668, Los Alamitos, Ca., USA, December 1994. IEEE Computer Society Press.

365

FEUP - Faculdade de Engenharia da Universidade do Porto

366

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

New Access Order to Reduce Inter-Vector-
Conflicts

A. M. del Corral & J. M. Llaberia
Department d'Arquitectura de Computadors.

Universität Politecnica de Catalunya. Barcelona (Spain)
e-mail: anna@ac.upc.es

Abstract In vector processors, when several vector streams concurrently access the
memory system, references of different vectors can interfere in the access to the
memory modules, causing module conflicts. Besides, in a memory system where
several modules are mapped in every bus. delays due to bus conflicts are added to
module conflict delays. This paper proposes an access order to the vector elements that
avoids conflicts when the concurrent access corresponds to vectors of a subfamily, and
the request rate to the memory modules is less than or equal to the service rate. For
other cases of concurrent access, the proposal dramatically reduces conflicts.

1 Introduction

In vector processors, the ideal execution of a memory vector instruction would permit to
obtain a datum at every cycle after an initial latency. As, in general the memory module
reservation time is much longer than the processor cycle time, the memory system
usually consists of multiple memory modules with independent access paths.

Usually, vector processors have more than one port to the memory subsystem to
allow several memory vector instructions to proceed concurrently. Under these
conditions, conflicts appear in the access to the memory modules when two.or more
references are simultaneously issued to the same module. Besides,.a reference to a busy
module also causes a memory module conflict.

In vector processors with several paths to the memory system, or in multi-vector
processors, another factor that affects the performance of the memory system is the
interconnection network between processors and memory modules. In the design of
some memory systems, the decision of reducing the number of independent access paths
to the memory modules (several modules are mapped on every bus) [2][6], implies a
reduction in its economic cost. However, this solution implies assuming the presence of
conflicts in the access to the interconnection network, as well as the memory module
conflicts mentioned above. Both type of conflicts appear even in the specially common
case of several one-strided vector streams concurrent access. The main effect of the
conflicts is the starvation of the functional units, with the subsequent loss of
performance.

Memory vector instructions with regular access patterns generate periodical conflicts
as these kind of instructions generate periodical streams of references (vector streams
with a constant stride). In the context of this paper, our interest is the reduction, and the
elimination when possible, of the memory conflicts (interconnection and memory
module conflicts) caused by concurrent constant-strided vector streams.

Several kind of methods have been proposed to reduce the number of cycles lost due
to memory conflicts. Some authors propose to accurately place in memory the vectors to

367

FEUP - Faculdade de Engenharia da Universidade do Porto

be concurrently accessed [J 0][14][17]. This technique implies that patterns must be
known in compilation time, and, the access to a vector stream in different context of a
program could decrease its effectiveness. Other authors propose the use of buffers in the
memory modules [17] or in the interconnection network [19]. Buffers allow the
requesting processor to keep sending requests without waiting, but this technique
requires labelling the memory references to allow their reordering before being used by
the processor; the cost of the interconnection network increases as the tag must be sent
along with the request [17]. In addition, buffers do not directly solve the problem of the
convergence to a single port of the requests in the return network [21].

Our proposal consists of a new access order to the vector stream elements. In parallel
with our work, other authors have studied this kind of solution [15]. This new order
working with a new arbitration algorithm will help concurrent vector streams perform
their memory request with no conflicts or less number of conflicts than the classical
access implies.

One of the cases for which our proposal completely avoids conflicts is the very
common case of the concurrent access of several one-strided vector streams. J. Fu and
J.H. Patel in [7] show that between 7% and 54% of the vector streams in four programs
of the Perfect Club benchmark set [1] (ADM, ARC2D, BDNA and DYESM) access the
memory with stride 1.

Section 2 outlines the architecture model, on which the present study is based, and
the characterization of the interleaving mapping and vector access functions. The
interaction between vector streams in a complex memory system is studied in Section 3.
Section 4 presents the proposed access order to the memory modules and presents its
hardware support. Finally, Section 5 deals with the comparison between the proposal
and the method used in a classical system, like CRAY X-MP.

2 Architecture

The memory architecture presented in Fig. 1 is an example of the complex memory
system, similar to the one used in the CRAY X-MP [2].

The memory subsystem consists of M = 2m memory modules (memory cycle, nc = 2C

clock cycles), connected to P = _M/n(.\ memory ports through an interconnection
network. To reduce the number of access paths to the memory subsystem the memory
modules are distributed into SC sections. A memory module request occupies the
section path where the module is located during one cycle. It is supposed that SC = 2",
and the number of memory modules is a multiple of SC.

In each cycle, every port requests an element of a vector stream except when a
conflict appears in the interconnection network or in a memory module. In case of
conflict, only one vector stream obtains the access and the other requests must wait; a
priority rule must determine which port will be able to proceed. In the present paper, we
use the arbitration implemented in the CRAY X-MP [2], to measure the performance of
the classical access (Definition 5) and in the examples of concurrent access when
another algorithm is not specified. This arbitration gives priority to the vector stream
with the lower 2s stride factor; for ports with same parity of strides, the priority is fixed.

The memory is organized as an interleaved address mapping model (section = A;
nwdSC, memory module = Aj mod M. offset = _A/M\). The interleaving function which
maps the address into memory modules has a period of P=M.

368

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

P ports

qp qp eg] qg]
rpmryinri
gpcriEpOT]
[T] qq ITD D?]
memory modules

. section 0

section 1

section 2

section 3

Fig. 1. Complex Memory System.

The following definitions will help the reader to follow the method.
Definition 1: A vector stream A = (AQ, S, VL) is the set of references to memory
modules {/4,l A, = A0 + ixS, 0<i<VL], where AQ is the address of the first reference, S
(stride) is the distance between two consecutive references and VL is the vector length,
or number of references. If the length is not relevant a stream is specified as A = (AQ, S).

Vector streams can be classified into different families according to their stride.
Definition 2: A stride family (Fs) is the set of vector streams with strides S = CT X 2\
where a is an odd factor [9].

A vector stream with a stride S = 0x2s references Ps= M/ gcd(M, 2s) memory
modules periodically, and the period is Py

Definition 3: The memory module set (MA/5) of the vector stream A = (AQ, S) is the set
of all the memory modules accessed by the vector stream A=(AQ,S,PX). MMS = /m,-l
mj=(A0+ix.S)modM, 0<i<PJ.
Definition 4: A stride subfamily (SF^O) is the set of vector streams of a family that
reference the same set of memory modules.

To give some examples, the family F0 (odd-strided vector streams) only has one
subfamily SF°0 , and the family Fj (even-strided vector streams) has two subfamilies,
SF°j references the even memory modules, and SF1/ references the odd modules.
Definition 5: Classical access is the access order that uses the recurrence Aj+J = At +S
(S=Stride) to compute vector stream addresses.

Since the vector length is usually greater than the vector register length, the compiler
is required to transform the code using strip-mining. Under this condition, a great
proportion of memors accesses from vector streams are issued by vector instructions
load and store, which ore ot a fixed length equal to the vector register length. Let us
assume that, in order in simplify the explanation of the proposed method, the vector
stream length (VL = 2" > is * multiple of the vector register length MVL = 2mvl which is
assumed to be a muliipk <»» the number of memory modules M = 2m.

3 Characterization of the Conflicts

Only in the case that the memory request rate imposed by concurrent vector streams is
equal to or less than the memory module response rate, the concurrent access can be
conflict-free. When the requesi rate is equal to the response rate, it is said that the
memory system (or similarly ihe memory modules) works tight, and when the request
rate is less than the response rale, the memory system works loose.

To obtain a conflict-tree access, not only the system must work loose or tight, in
addition, the concurrent access of the vector streams must fulfil two conditions:

• consecutive references to a memory module must be distanced at least n(. cycles (to
avoid memory module conflicts).

369

FEUP - Faculdade de Engenharia da Universidade do Porto

• since memory modules share sections, only a few sets of concurrent memory
module references are correct (to avoid section conflicts).

To analyse the effect of the first condition, we first study a memory system that can
only present conflicts in the access to the modules, not in the interconnection network.
Then, we extend the study to a complex memory system to discuss the second condition.

Simple Memory System
A simple memory system has an independent access path from every port to every
memory module, thereby its interconnection network does not present conflicts. In a
system like that, the concurrent classical access of vector streams that have the same
stride has a conflict-free steady state when the request rate they imply is less than or
equal to memory modules response rate (the system works loose or tight) [16][17].

Fig. 2 presents the concurrent classical access of four one-strided vector streams in a
memory system with 16 memory modules and an nc of 4 cycles. Vector streams start
their concurrent access in different memory modules. In the figure, it is possible to
observe for every cycle the memory module that begins to be occupied by every vector
stream (the module remains occupied during latency cycles). A delay due to a memory
module conflict is depicted in black.

Cycles | 0 1 2 | 3 4 | 5 6 | 7 | g | 0 10| 11| 12| 13| 14| 15| 16

(A
V

"3 •a e
2

A 0 1 2 3 ■■ 4 5 6 7 8 9 10 11 12
B 1 2 i 4 5 6 7 8 9 10 11 12 13 14 If IT
C 4 5 6 7 8 9 10 11 12 13 14 ii 0 1 2 3 4
D 8 9 10 11 12 13 14 15 Ü 1 2 3 4 5 6 7 8

Fig. 2.16-way interleaved memory with nc = 4. Conflicts with the classical access.

This concurrent access presents conflicts at the very beginning, but the steady state,
that starts at cycle 8, is conflict-free. At the steady state, four sets of concurrent memory
module references ({0, 4, 8, 12}, {1,5,9, 13}, {2, 6,10, 14} and {3,7, 11, 15}) are
periodically repeated every «(. cycles, thereby, consecutive references to the same
memory module are distanced n(. cycles. The periodicity of these four sets (called CMR
-Concurrent memory Module References- from now on) can be guaranteed because
vector streams reference the memory modules with the same order.

R. Raghavan and J.R Hayes stated with theorem 6 of [17] the conditions the
concurrent vector streams must fulfil to obtain a conflict-free classical access in a
simple memory system. These conditions can be fulfilled only by vector streams that
belong to the same subfamily. All the combinations of vector streams that have the same
stride have a conflict-free access whenever the system works loose or tight. The
concurrent classical access of vector streams of different subfamilies is always
conflictive (corollary 3 of [4]).

Complex Memory System
Combinations of vector streams that obtain a conflict-free access in a simple memory
system, may not have a good behaviour in a complex memory system. The sets CMR
that are suitable in a simple memory system may not be appropriated in a system where
several memory modules are mapped in the same section. As an example, none of the
CMR of the concurrent access of Fig. 2 are appropriated in a complex memory system

370

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

where the 16 memory modules are interleavedly mapped in 4 sections (Fig. 1): all the
memory modules of every CMR are mapped in the same section, then, they can not be
concurrently accessed.

Fig. 3 shows the conflictive classical access of four one-strided vector streams in the
system of Fig. 1. The delay due to a section conflict is represented in light grey, and a
memory module conflict is depicted in black; a section is locked during one cycle in the
access to a memory module. In this concurrent access, conflicts are linked and
periodically repeated: a section conflict causes a memory module conflict which also
causes a section conflict, and so on.

Cycles 1 0 1 1 1 2 3 | 4| 5 | 6 | 1 8 | 9 | 14 ll| 12 13| 14| 15] 16

B e
u

A 1 0 l 2 3 0 10 1 2 3 0 | 0 1 2 3 o
0 B 3" ü 1 2 3 Kg 0 1 2 3 IIP 0 1 2 *

C & ^$k'z 0 1 2 3 i, ■ 0 1 2 3Hff 0 1 2 3 P, ;-Vj-::

D i?y$ ££§ .-". 0 1 2 3 m.\ 0 1 2f3 !• 0 1 2 3

41

's
A U 1 2 3 H 4 5 6 7 || 8 9 10 11 ■1 12 13
B is** 4 5 6 7 ti* "5 8 9 1Ü 11 &"•'-- 12 13 14 15 fj"=ä 0
C IS""' —— s 9 10 11 £•: 12 13 14 15 0 1 2 3
D W&&

-■

12 13 14 15 iis 0 1 2 3 4 5 6 7

Fig. 3. 16-way interleaved memory system with nc = 4 and 5C=4.
Conflicts with the classical access.

T. Cheung and J.E. Smith characterize in [2] the linked conflicts that appear in the
concurrent classical access of two one-strided vector streams and use the term complex
linked conflict (complex conflict) when three or more vector streams interfere with each
other in a less precise way. Authors prove that the steady-state linked conflicts and
complex conflicts reduce the effective bandwidth.

Authors of [2] show that in the concurrent classical access of three one-strided vector
streams (the system works loose), in 34% of the cases (combinations of initial memory
modules) linked conflicts appear, in 7% of the cases complex conflicts are generated,
and performance can be degraded by 20%.

To solve these conflicts, W. Oed and O. Lange conclude in [16] that n,. and SC must
be coprime (theorem 9). A solution with a prime SC is proposed in [15]. In [2], authors
give some alternatives to avoid linked conflicts, i.e. a solution with odd values of«,.. For
all the proposals, if vector streams have different strides conflicts persists and, in any
case, complex conflicts do not disappear.

Tab. 1 shows the asymptotic number of operations per cycle (R„) the classical
access obtains in average for four types of combinations of vector streams, in a simple
memory system (/W=16 and ;J,.=4) and in the corresponding complex system (M=16,
«(.=4 and SC=4). The concurrent accesses simulated are all the combinations of four,
three and two odd strided vector streams, two odd strided with one even strided vector
streams, and two even strided vector streams. For the simple memory system, the
average R„ for the classical access is far away from the ideal, even for combinations for

1. /?„= ops xr„x tc, where /,. is the processor cycle time, dps is the number of concur-
rent vector streams, and r«, is the asymptotic performance [12].

371

FEUP - Faculdade de Engenharia da Universidade do Porto

which the system works very loose and vector streams belong to the same subfamily.

Comparing the results for both memory systems, it can be easily concluded that in a

complex memory system, the results are worst because of interferences in the
interconnection network.

Tab. 1. R„ for the classical access and Ideal.

Combinations
of Strides

Complex i
M=16nt.

Mem. Syst.
= 4SC=4

Simple Mem. Syst.
M=I6n,. = 4

Odd Even Classical Ideal Classical Ideal
4 0 1.57 4 1.86 4
3 0 1.51 3 1.66 3
2 0 1.35 2 1.38 2
2 1 1.39 3 1.60 3
0 2 1.05 2 1.27 2

The next section presents an access method that completely avoids conflicts in the

concurrent access of vector streams of the same subfamily when the system works loose

or tight. This method also dramatically reduces conflicts for other cases of concurrent

access. The name of the proposal is Skewed Sequence of memory Modules (SSM).

4 Proposal SSM

To reduce the number of memory module conflicts, we propose that concurrent vector

streams reference the memory modules with the same order. All the vector streams of a

subfamily reference the same set of Ps memory modules (Px = Mgcd(A/,25)), but with

the classical access, the order every vector uses to access them depends on the C-factor

of the stride. We propose to construct a O-independent access order, then all the vector
streams of a subfamily will reference the Ps modules with the same order.

To avoid section conflicts, this CJ-independent access order must be constructed
considering that the resulting CMR sets must comprise memory modules mapped in
different sections.

This new sequence <>t memory modules will be called SSM {Skewed Sequence of

memory Modules) f-\? 4 shows the SSM proposed for different subfamilies in a

memory system thai ha> W= 16, n,.=4 and SC=4 (Fig. 1). For every sequence SSM it is

also shown the sequeiKc <>(sections referenced and the corresponding CMR.

Subfamily SF°„ (odd

SSM 0 12
sections 0 I 2

subpenod a

•M modules) - CMR = (10.7.10.13). (1.4.11.14). (2.5X15). (3.6.9.12))

-456
■012
tmkperiod 1

10 11 8 9
2 3 0 1
subpenod 2

13 14 15 12
12 3 0
subpenod3

Subfamily SF°, (even stndr\. rrtn modules)
CMR = 1(0.10). (2.8). (4.UI '■ :;/

Subfamily SF 'j (even strides, odd modules)
CMR = ///.///, (5.15). (7.13). (3.9)1

SSM 0 2
sections 0 2 0 2

subperiod 0

Hi H

: o
subperiod I

14 12
i 0

SSM
sections

/ 3 7 5
13 3 1
subperiod 0

11 9 13 15
3 I I
subperiod 1

Fig. 4. 16-way interleaved memory with nc = 4 and SC=4. SSM for several subfamilies.

372

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Each one of the SSM we propose has nc CMR sets of PJn(. memory modules. In
consequence, PJnc concurrent vector streams of a subfamily can concurrently reference
memory modules of different sections, avoiding section conflicts. Besides, module
conflicts are also avoided as consecutive references to a CMR are distanced n(. cycles.

Fig. 5 shows the conflict-free access of four odd-strided vector streams in the system
of Fig. 1, when the corresponding SSM is used. This SSM has nt.=A CMR sets with PJnl.
= 16/4 modules, so four odd-strided vector streams could have a conflict-free access.

Cycles 0 1 2 3 4 5 6 7 8 9| 10 11 12 13 14 15] 16

to
3
c
.*> to

A 1 2 3 0 0 1 2 3 3 0 1 2 2 3 0 1 1
B 2 3 0 1 1 2 3 0 0 1 2 3 3 Ü 1 2 2
C 3 0 1 2 2 3 0 1 1 2 3 0 0 1 2 3 3
D 0 1 2 3 3 0 1 2 2 3 0 1 1 2 3 Ü 0

to
■Si

■§

1

A 13 14 15 12 0 1 2 3 7 4 5 6 10 11 8 9 13
B 10 11 8 9 13 14 15 12 0 1 2 3 7 4 5 6 10
C 7 4 5 6 10 11 8 9 13 14 15 12 0 1 2 3 7
D 0 1 2 3 7 4 5 6 10 11 8 9 13 14 15 12 0

Fig. 5. 16-way interleaved memory system with n(. = 4 and 5C=4. Conflict-free
concurrent access of four odd-strided vector streams using SSM.

Vector streams of Fig. 5 start their concurrent access in correct memory modules
(same CMR), so the concurrent access synchronizes from the beginning. When the start
addresses do not correspond to a CMR, an arbitration algorithm is necessary. Section 4.2
presents a dynamic arbitration that forces vector streams to concurrently access memory
modules of the appropriate CMR [3].

4.1 Skewed Sequence of memory Modules - SSM

The new sequence of memory modules is called "Skewed" as the SSM we define for
every subfamily is the result of applying a skew function to the subfamily MMS
lexicographically ordered.
Definition 6: For a vector stream A = (A0, S, Ps), of the subfamily SFM

S° , (M() = A0 mod
gcd(M,2'!)), we call Skewed Sequence of memory Modules (SSM) to the sequence
determined by the expression:

k =flnij) = ((mi+lm/nlj)modnr+lm/nl.}xn(.)/gcd(M,2'1),

where k is the position that the memory module /n, (0<m,<A/) occupies in the sequence
and mi belongs to the vector stream MMS.

The function f'(nij), that gives the memory module from a position in the sequence
(reverse function oi'fim,)). will permit to generate the SSM sequence. We express f'fnij)
as an algorithm, but before presenting it, we will make some considerations (Fig. 6
helps to follow the explanation):

• The first module a vector references with the SSM is M0 = A0 mod gcd(M,2s).
• Every set of [nlJgcd(M.2s) I consecutive memory modules of the MMS

lexicographically ordered suffers a skew. We call GS to every one of these sets, and
in a SSM there are (Mlnf.)kgcd(M,2s)/nl'] GS sets.

373

FEUP - Faculdade de Engenharia da Universidade do Porto

• The same skew is applied to gcd(M,2s) consecutive GS sets, but the first skew is
applied to at most gcd(M,2") consecutive GS. If M0 is not the memory module 0,
only the gcd(M,2>A/0 first GS sets suffer the same skew.

To give an example of the former considerations, ina system with M=16, n(. = 4 and
SC=4, the SSM of the subfamily SF1, has (M/nc)^gcd(M,2s)/n^ = 4 GS sets. The first
skew is applied only to gcd(M,2s)-Mo=\ GS as M0 is the memory module 1, but the
second skew is applied to gcd(M,2x)=2 consecutive GS.

Subfamily SF0 (odd strides, all modules)
MMS

SSM
sections

0 12 3

i , 2 3
0 12 3

skew 0

4 5 6

7*4 5

7

6
3 0 1 2

skew 1

8 9 10 11

lbTt-m 9
2 3 0 1

skew 2

12 13 14 IS

13~l4~-tt+12
12 3 0

skew 3

Subfamily SF°, (even strides, even modules) Subfamily SF', (even strides, odd modules)
SSM 0 2\ 4 6
sections 0 2 ' 0 2

skew 0
0' 2 0
skew 1

SSM
sections

I 3 7 S\ 11 9 13 IS
1 3 3 1' 3 1 1 3

skew 0 skew 1 skew 2

Fig. 6. 16-way interleaved memory system with n(. = 4 and SC=4. SSM construction for
several subfamilies.

The algorithm used to generate the SSM sequence for any subfamily is:
/W0 = /t0modgcd(M,2v,)
control = M0

skew = 0
for NGS = M01 n(. to Mln, -1 step [gcd(M,2s)/n,l

for 1 = M0 mod nc to nc-1 step gcd(M,2X)
module = ((I - skew x gcd(M,2")) mod n(. + NGS x nc) mod M

endfor
control = (control +[gcd(M,2*)/nJ) mod gcd(W,2-v;
if(control = 0) then skew = skew + 1

endfor
In the algorithm, NGS controls the generation of the memory module references for

every GS set. The variable 1 controls the generation of the memory module references
within a GS set. Control controls the skew changes after the generation of gcd(M.2s)
consecutive GS. li'M0 is not the memory module 0, only the gcd(M,2s)-M0 first sets GS
suffer the same skew.

4.2 Arbitration algorithm

An arbitration algorithm is needed in order to synchronize vector streams to reach a
conflict-free steady-state phase, or to dramatically reduce inter-conflicts, for any
combination of initial memory modules.

The SSM sequences can be divided in PsJnc subperiods of nr memory modules. In
Fig. 4, we can observe that each subperiod of a SSM references the sections following a
predetermined order which is different for every subperiod. Thus, in the concurrent
access of PJn(. vector streams of a subfamily, we obtain a conflict-free access if we
overlap different subperiods (different sections are simultaneously referenced as in the

374

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

example of Fig. 5 with family F0). The main idea is that, in every cycle concurrent
vector streams reference memory modules of a different subperiod, and these different
subperiods must be aligned.

The arbitration algorithm controls the subperiod changes between vector streams;
when all subperiod changes have been detected for all the vector streams, subperiods
are assigned using a fixed priority. The subperiod change is detected by computing the
expression subperiod=lm/(n,xgcd(M,2s))]modSC (m, = AsfRmodM) for two
consecutive memory module requests of a vector stream (the current and the previous).

4.3 Skew Sequence of memory References - SSR

The SSM is the order in which memory modules must be referenced periodically, then
vector stream memory references must be generated to periodically access the modules
with this new order.
Definition 7: For a vector stream A = (AO, S) of the subfamily SF^° (M0 = A0 mod
gcdfM^V), the Skewed Sequence of References (SSR) is the sequence of memory
references that permits to reference the memory modules following the SSM periodically.

The algorithm that generates SSR is a modification of the algorithm that generates
SSM. The following definition will help designing the algorithm.
Definition 8: The order number (ON) of a vector stream element, is the position on which
its address is generated using the classical access, 0 < ON < VL.

The address of an element of a vector stream A = (AQ, S), can be computed using its
order number as Addr = A0 + ON X S. With the classical access, addresses of elements
with consecutive ON are consecutively generated (ONi+] = ON/ + 1). This is not the
case with the SSR, but, if we know how to generate the sequence of order numbers that
fulfil SSM, we will be able to generate SSR.

First, we suppose SSR is Ps references long, then we extend the study to any length.

Ps references long (one Period)
Vector elements placed in memory modules adjacent in the MMS lexicographically
ordered have order numbers separated by a constant distance, Cv [3]. Then, we can
compute the ON of a vector element from the ON of any other vector element if we
know the distance between the memory modules' where they both are placed: ONj =
ONj + K x Cx, where K is the distance.

To compute the sequence of order numbers the SSM implies, the K we can use can be
the distance between the memory module to be referenced and the first memory module
referenced using the SSM that is M0 = A0 mod gcdfjW,2v). Then, we must use the order
number of the first vector stream element referenced using the SSR, NOO, that can be
easily computed. In this case, the order number of a vector element placed in the
memory module »;,■ is:

ONj = NOO + ((nij - M0)mod M/gcd(M,2s)) x Cy

Any Length (any number of Periods)
As the distance between memory modules can be computed within a period, the former
recurrence actually gives the order number relative to a period (ONR). To extend the

1. distance is the number of memory modules between them in the MMS lexicographi-
cally ordered.

375

FEUP - Faculdade de Engenharia da Universidade do Porto

computation of the order number to any number of periods, we can consider that every
period has a base order number (BN), to be added to the ONR to obtain the ON. From
period to period this BN must be increased in Ps units.

The next algorithm is based in the algorithm proposed in Section 4.1, adding the
computation of the order number and the loop that controls the period. The bold lines
are the ones added.

M() = A0modgcd(M,2x)
BN = 0
for Q = 07o [VL/Pf] -1

control = M0

skew = 0
for NGS = Mrf nt. to M/n(. -1 step [gcd(M,2s)/nt~\

for I = M0 mod n,. to «,.-] step gcd(M,2")
module=((I-skewxgcdfM,2'v;)mod nc.+NGSxn(.) mod M
K = ((module - M0) mod M)/gcd(M,2s)
ONR = (ONO + K x Cs) mod Ps

AddrSSR= A0 + (BN + ONR) x S
eiidfor
control = (control +1 gcd(W,2v;//!r|) mod gcd(M,2x)
if(control = 0) then skew = skew + 1

endfor
BN = BN + Ps

eiidfor
As a synopsis, the recurrences that compute the vector memory references are:

A?SR = A0 + Base.Addr + Af and Af = (Af + KXC.XS) mod (/»,xS)

where Af is the vector element address relative to a period, A?SR is its absolute address,
K is the distance between memory modules where Af and Af are placed, and Base_Addr
is the base address of a period (BN x S).

4.4 Hardware Support to Reduce Conflicts

To design the hardware that computes the SSR, we must rewrite the algorithm to make it
easier to implement. There are two issues that must be solved: the presence of a
multiplier and a modulo operation in the critical path of the address computation (every
iteration).

To avoid the use of a multiplier, the relative addresses Af are computed using the
relative addresses Af, so only two precomputed products KxCxxS mod (Ps x S) must
be used (#=1 and K=nt). This implies using three registers to store different previous
values Af.

The modulo operation (mod (Px x S)) can be performed by subtracting Px x S if
necessary, as demonstrated in [5]. In fact, the two values, Af +KxCsxS and Af + K x
Cs xS - Psx S, are computed in parallel, and the selection between them is performed
by a signal that comes from the vector register index computation [5]. This signal
indicates if ONf + K x Cs > PK. easier to compute as Ps is a power of two number.

Fig. 7 shows a hardware design of the data-path. The hardware cost is moderate, two
adders in the critical path and a CSA. and it is not more complex than that needed by
other solutions [8][I8] proposed to reduce the average memory latency time in vector
processors.

376

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

BASE ADDR

US HCJ MD CXS n,xC,.x5

- - t £ %,'

USE_ADDl{ pxs
T t r

i_^

CM

JE:

7Z>, 7B are /^computed before.

C/., = (((nl/gcd{M.SmCs)mi>dPs)

r^^n BASE_ADDR a_£ r^p> a P,

c
from the vector register index computation

Fig. 7. SSR generation Hardware.

The rate at which a memory request can be issued is limited by the rate at which
additions can be performed. The design can be pipelined to obtain a reduction of the
cycle time (this would be also needed in the classical access). The additional hardware
introduces a initial delay of a few cycles in the memory path. The number of clock
cycles needed to access the memory is of the order of 14 + MVL for the CRAY X-MP,
17 + MVL for the CRAY Y-MP and 23 + MVL for the C90 [20]. However, as the
processor speed continues to increase faster than the memory speed, an extra initial
delay of some cycles introduced by the hardware proposed is acceptable.

The number of parameters to be calculated is comparable to the number needed for
other proposals [8][18][22], and most of them can be determined by the compiler.

The hardware needed to access the vector registers is similar to the hardware shown
at Fig. 7 but simpler.

The cost of the hardware components can be considered a minor part of the cost of
the memory subsystem. Additionally, in contrast with other solutions, which include a
significant number of buffers to eliminate the effect of unsuitable temporal distributions
[8][18], this proposal does not need buffers.

5 New method performance

In this section we present the advantages of the method proposed in this paper. Tab. 2
shows the comparison between the SSM and the classical access in a memory system
with M=16 memory modules, interleavedly mapped in SC=4 sections, with an n(.=4.

Some considerations about the simulations:
a) We obtain the value /?«, for the concurrent access, using the classical access and the
proposal, of all the possible combinations of four, three or two vector streams of the
families F0 and SF°i
b) All the combinations of vector streams whose concurrent access has been simulated
have a non void intersection of MMS sets.
c) The parameter we use to perform the comparison is the increment in performance
(IRJ) implied by the proposal, and il is computed as 1RX = ((R^SSM ' R<»i-hissiraiy
R-chssualWWVM
d) The results presented under the name Rx are harmonic means of the asymptotic
number of operations per cycle that the classical access and the SSM obtain for
combinations of vector streams we group in types.

377

FEUP - Faculdade de Engenharia da Universidade do Porto

Tab. 2 presents the Rm for several types of vector stream combinations the classical
access and the SSM obtain in a 16-way interleaved memory system with n(. = 4 and
SC=4. The table also shows the maximum number of operations per cycle (/#„ Ideal)
that could be ideally obtained for every combination in the supposed memory system.
The increment in performance the SSM implies is presented in the column labelled as

Tab. 2. 16-way interleaved memory system with n(. = 4 and SC=A. R„ and lR^ for SSM.

STRIDE *~ *~ /eM m
Odd Even Ideal Classical SSR SSR

4 0 4 1.57 3.95 152%
3 0 3 1.51 2.98 97%
2 0 2 1.35 1.99 47%
2 1 3 1.39 1.99 43%
1 1 2 1.18 1.33 13%
1 2 2.4 1.19 1.99 67%
2 2 2.67 1.34 2.65 98%
0 2 2 1.05 1 99 90%
0 3 2 1.03 1 50 46"-/
0 4 2 1.04 1.99 91%

In the table, the types with an asterisk ('*') correspond to combinations of vector
streams of the same subfamily that make the system work loose or tight. For these types
the R„ the SSM obtains is almost R„ Ideal, and the IRX is very important, between 47%
and 152%. For the other types, the //?„ is also important, between 13% and 98%.

Fig. 8.a presents the IR^ the use of the SSM implies in function of the a-factor of the
stride, in the concurrent access of: four vector streams of the family F0 (dark bars), four
vector streams of the subfamily SFf (medium grey bars), and two vector streams of F0

with two vector streams of SFf (light bars). For every case we grouped combinations
that have four (bars labelled as "four"), three, two o zero (bars labelled as "zero") vector
stream with the same a-factor.

| SSR - .< MH'tini.\ Ft)

| SSR ■ .< streams Sf",

_J SSR - 2 streams F0

antt 1 stream SP)

Number of vector streams with the same a

Fig. 8. 16-way interleaved memory system with n,. = 4 and SC=4. IR„i'arSSM, in the
concurrent access of four (a) or three vector streams (b).

378

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

When four F0 vector streams (odd-strides, dark bars) access the memory system, the
memory works tight, but the concurrent access with the SSM is conflict-free and IR„ is
substantial, between 85% and 159%. Even when all the concurrent vector streams have
the same a-factor (same stride), SSM overworks the classical access, as this access does
not avoids section conflicts.

For combinations of four SFf vector streams (even-strides, medium grey bars) the
concurrent access with the SSM is not conflict-free as there are more than Pslnc (=8/4=2)
concurrent vector streams, but the 1R^ is important, between 69% and 105%.

When in the concurrent access there are two F{) vector streams and two SFf vector
streams the concurrent access with the SSM is not conflict-free as there are vector
streams of different subfamilies but the IRX is important, it ranges from 69% and 104%

Fig. 8.b presents the lR^ the SSM represents in function of the a-factor, in the
concurrent access of: three vector streams of the family F0 (dark bars), three vector
streams of the subfamily SFf (medium grey bars), and two vector streams of F0 with
one vector stream of SFf (light bars). For every case we grouped combinations that
have three (bars labelled as "three"), two or zero (bars labelled as "zero") vector stream
with the same a-factor in the stride. For these cases, the IR„ the SSM obtains is lower
than in the case of four vector streams, as the classical access finds the system working
looser and, in consequence, there are less conflicts or they have less effect.

Vectors and matrices are the most common data structures in vector processors. In
Fortran, the most frequent accesses to matrices are made by columns, rows and
diagonals, that correspond to the strides 1, n and n+J respectively, where n is the
column length, which is dependent on the problem size that varies widely. Present
compilation technology detects if n is even, then the matrix size can be increased in one
row (odd stride), and the number of referenced memory modules is M. Thus, in row-
major and column-major accesses the use of SSM performs equally well, and there are
no conflicts. When n is even and there is no possibility of increasing the number of
rows, the SSM reduces the number of conflicts.

6 Conclusions

The interferences between concurrent vector streams accessing the memory system of a
vector or multivector pr<».c>.M>r cause conflicts in the memory that reduce the processor
efficiency.

The present paper rwv proposed a c-independent access order to the vector stream
elements (SSM). for *hh.h *J! the vector streams of a subfamily reference the memory
modules with the same order The use of the SSM associated with the proposed
arbitration algorithm. a*onj\ conflicts when the concurrent access correspond to vector
streams of the same NuMamtly and the system works loose or tight. The proposal
significantly reduces conrtKi» lor other types of concurrent accesses.

The hardware solution th.it generates the SSM and the hardware used to access the
vector registers have ü iimdct JIC cost.

The simulations continued that the proposal can achieve the maximum number of
operations per cycle, and the results showed that the SSM always outperforms the
classical access, with perlonnance increments between 13% and 152% for
combinations of even and odd strided vector streams. In the interesting case of the
concurrent access of 4 one-sirided vector streams the increment in performance is 85%.

379

FEUP - Faculdade de Engenharia da Universidade do Porto

Acknowledgments

Work supported by the Ministry of Education of Spain, contract TIC-95-429.

References

1. M. Berry et al. Perfect Club Benchmarks: Effective Performance Evaluation of
Supercomputers. Int. Journal for Supercomputer Applications. 1989.

2. T. Cheung and J.E. Smith.. A Simulation Study of the CRAY X-MP Memory System. IEEE
Transactions on Computers. Vol. C-35, no 7, October 1980.

3. A.M. del Corral and J.M. Llaberia. Reduce Conflicts between Vector Streams in Complex
Memory Systems. CEPBA Report. DAC-UPC Report. June 1994.

4. A.M. del Corral and J.M. Llaberia. Eliminating Conflicts between Vector Streams in
Interleaved Memory Systems. CEPBA Report. DAC-UPC Report. August 1995.

5. A. M. del Corral and J. M. Llaberia. Avoiding Inter-Vector-Conflicts in Complex Memory
Systems. CEPBA Report, DAC-UPC Report. March 1996.

6. U. Detert and G. Hofemann. CRAY X-MP and Y-MP memory performance. Parallel
Computing, North-Holland, nO 17, 1991.

7. J.W.C. FU and J.H.Patel. Memory Reference Behavior of Compiler Optimized Programs on
High Speed Architectures. International Conference on Parallel Processing, Vol II. 1993.

8. D.T. Harper HI and J.R. Jump. Vector Access Performance in Parallel Memories Using a
Skewed Storage Scheme.IEEE Transactions on Computers, Vol. C-36, no 12, december 1987.

9. D.T. Harper III and D.A. Linebarger. Conflict-free Vector Access Using a Dynamic Storage
Scheme. IEEE Transactions on Computers, Vol. C-40. no 3, march 1991.

10. D.T Harper III and J.R. Jump. Vector Access Performance in Parallel Memories Using a
Skewed Storage Scheme. IEEE Transactions on Computers, Vol. C-36, no 12, december 1987.

11. J.L. Hennessy and D.A. Patterson. Computer Architecture. A Quantitative Approach. Morgan
Kaufmann Publishers, inc. 1990.

12. R.W. Hockney and C.R. Jesshope. Parallel Computers 2, Adam Hilger. 1988.
13. K. Kitai, T. Isobre, T. Sakakibara, S. Yazawa, Y. Tamaki, T. Tanaka and K. Ishii. Distributed

Storage Control Unit for the Hitachi S-3800 Multivector Supercomputer. Int. Conference on
Supercomputing, 1994.

14. L. Kurian. B. Choi. P.T. Hulina and L.D. Cofoor. Module Partitioning and Interleaved Data
Placement Schemes to Reduce Conflicts in Interleaved Memories. International Conference
on Parallel Processing, Vol. I. 1994.

15. D.L. Lee. Prime-way Interleaved Memory. International Conference on Parallel Processing
Vol. 1. 1993.

16. W. Oed and O. Lange. On the Effective Bandwidth of Interleaved Memories in Vector
Processor Systems. IEEE Transactions on Computers, Vol. C-34, no 10. October 1985.

17. R. Raghavan and J. Hayes. Reducing Interference Among Vector Accesses in Interleaved
Memories. IEEE Transactions on Computers, Vol. 42. n.4. April 1993.

18. R.Raghavan and J.P.Hayes. On Randomly Interleaved Memories. Proceedings of the
Supercomputing'90. November 1990.

19. J.E. Smith y W.R. Taylor. Accurate Modelling of Interconnection Networks. Int. Conference
on Supercomputing, pp. 264 - 273. 1991.

20. J.E. Smith. W.C. Hsu and C. Hsiung. Future General Purpose Supercomputer Architectures.
Proc. Supercomputing'90. 1990.

21. J. Torrellas and Z. Zhang. The Performance of Cedar Multistage Switching Network.
Proceeding of the Supercomputing'94. November 1994.

22. M. Valero. T Lang. J.M. Llaberia. M. Peiron. E. Ayguade y J.J. Navarro. Increasing the
Number of Strides for Conflict-free Vector Access. Int. Symp. on Comp. Architecture. 1992.

380

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Multilevel Mesh Partitioning for Aspect Ratio

C. Walshaw1, M. Cross1, R. Diekmann2, and F. Schlimbach2

School of Computing and Mathematical Sciences, The University of Greenwich,
London, SE186PF, UK. {C.Walshaw, M.Cross}@gre.ac .uk

2 Department of Computer Science, University of Paderborn, Fürstenallee 11,
D-33102Paderborn,Germany, {diek, schliitibo}@uni-paderborn.de

Abstract Multilevel algorithms are a successful class of optimisation techniques
which address the mesh partitioning problem. They usually combine a graph con-
traction algorithm together with a local optimisation method which refines the par-
tition at each graph level. To date these algorithms have been used almost exclu-
sively to minimise the cut-edge weight, however it has been shown that for certain
classes of solution algorithm, the convergence of the solver is strongly influenced
by the subdomain aspect ratio. In this paper therefore, we modify the multilevel
algorithms in order to optimise a cost function based on aspect ratio. Several vari-
ants of the algorithms are tested and shown to provide excellent results.

1 Introduction

The need for mesh partitioning arises naturally in many finite element (FE) and finite
volume (FV) applications. Meshes composed of elements such as triangles or tetrahe-
dra are often better suited than regularly structured grids for representing completely
general geometries and resolving wide variations in behaviour via variable mesh densi-
ties. Meanwhile, the modelling of complex behaviour patterns means that the problems
are often too large to fit onto serial computers, either because of memory limitations or
computational demands, or both. Distributingthe mesh across a parallel computer so that
the computational load is evenly balanced and the data locality maximised is known as
mesh partitioning. It is well known that this problem is NP-complete, so in recent years
much attention has been focused on developing suitable heuristics, and some powerful
methods, many based on a graph corresponding to the communication requirements of
the mesh, have been devised, e.g. [12].

A particularly popular and successful class of algorithms which address this mesh
partitioning problem are known as multilevel algorithms. They usually combine a graph
contraction algorithm which creates a series of progressively smaller and coarser graphs
together with a local optimisation method which, starting with the coarsest graph, refines
the partition at each graph level. These algorithms have been used almost exclusively
to minimise the cut-edge weight, a cost which approximates the total communications
volume in the underlying solver. This is an important goal in any parallel application,
to minimise the communications overhead, however, it has been shown, [18], that for
certain classes of solution algorithm, the convergence of the solver is actually heavily
influenced by the shape or aspect ratio (AR) of the subdomains. In this paper therefore,
we modify the multilevel algorithms (the matching and local optimisation) in order to
optimise a cost function based on AR. We also abstract the process of modification in
order to suggest how the multilevel strategy can be modified into a generic technique
which can optimise arbitrary cost functions.

381

FEUP - Faculdade de Engenharia da Universidade do Porto

1.1 Domain decomposition preconditioned and aspect ratio

To motivate the need for aspect ratio we consider the requirements of a class of solu-
tion techniques. A natural parallel solution strategy for the underlying problem is to use
an iterative solver such as the conjugate gradient (CG) algorithm together with domain
decomposition (DD) preconditioning, e.g. [2]. DD methods take advantage of the par-
tition of the mesh into subdomains by imposing artificial boundary conditions on the
subdomain boundaries and solving the original problem on these subdomains, [4]. The
subdomain solutions are independent of each other, and thus can be determined in par-
allel without any communication between processors. In a second step, an 'interface'
problem is solved on the inner boundaries which depends on the jump of the subdomain
solutions over the boundaries. This interface problem gives new conditions on the inner
boundaries for the next step of subdomain solution. Adding the results of the third step
to the first gives the new conjugate search direction in the CG algorithm.

The time needed by such a preconditioned CG solver is determined by two factors,
the maximum time needed by any of the subdomain solutions and the number of itera-
tions of the global CG. Both are at least partially determined by the shape of the subdo-
mains. Whilst an algorithm such as the multigrid method as the sol ver on the subdomains
is relatively robust against shape, the number of global iterations are heavily influenced
by the AR of subdomains, [17]. Essentially, the subdomains can be viewed as elements
of the interface problem. [7,8], and just as with the normal finite element method, where
the condition of the matrix system is determined by the AR of elements, the condition
of the preconditioning matrix is here dependent on the AR of subdomains.

1.2 Overview

Below, in Section 2, we introduce the mesh partitioningproblem and establish some ter-
minology. We then discuss the mesh partitioning problem as applied to-AR optimisation
and describe how the graph needs to be modified to carry this out. Next, in Section 3,
we describe the multilevel paradigm and present and compare three possible matching
algorithms which take account of AR. In Section 4 we then describe a Kernighan-Lin
(KL) type iterative local optimisation algorithm and describe two possible modifications
which aim to optimise AR. Finally in Section 5 we compare the results with a cut edge
partitioner, suggest ho» ihc multilevel strategy can be modified into a generic technique
and present some ideas tor turther investigation.

The principal inn<>\ jtions described in this paper are:

- In §2.2 we destnhc h<<» the graph can be modified to take AR into account.
- In §3.2 we desoitv three matching algorithms based on AR.
- In §4.3 we desuitv t»-- »ays of using the cost function to optimise for AR.
- In §4.4 we desenrx- tv*» the bucket sort can be modified to take into account non-

integer gains.

2 The mesh partitioning problem

To define the mesh partitioning problem, let G = G(\\ E) be an undirected graph of
vertices V, with edges K ■*. hich represent the data dependencies in the mesh. We assume
that both vertices and edges can be weighted (with positive integer values) and that \v\
denotes the weight of a vertex v and similarly for edges and sets"of vertices and edges.
Given that the mesh needs to be distributed to P processors, define a partition v to be a

382

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

mapping of V into P disjoint subdomains SP such that \Jp Sp = V. To evenly balance
the load, the optimal subdomain weight is given by S := \\V\/P] (where the ceiling
function \x] returns the smallest integer > x) and the imbalance is then defined as the
maximum subdomain weight divided by the optimal (since the computational speed of
the underlying application is determined by the most heavily weighted processor).

The definition of the mesh-partitioning problem is to find a partition which evenly
balances the load or vertex weight in each subdomain whilst minimising some cost func-
tion r. Typically this cost function is simply the total weight of cut edges, but in this
paper we describe a cost function based on AR. A more precise definition of the mesh-
partitioning problem is therefore to find IT such that SP < S and such that r is min-
imised.

2.1 The aspect ratio and cost function

We seek to modify the methods by optimising the partition on the basis of AR rather than
cut-edge weight. In order to do this it is necessary to define a cost function which we seek
to minimise and a logical choice would be maxp AR(5P), where AR(5P) is the AR of
the subdomain Sr. However maximum functions are notoriously difficult to optimise
(indeed it is for this reason that most mesh partitioning algorithms attempt to minimise
the total cut-edge weight rather than the maximum between any two subdomains) and
so instead we choose to minimise the average AR

rM = E^M. (1)
P

There are several definitions of AR, however, and for example, for a given poly-
gon S, a typical definition, [15], is the ratio of the largest circle which can be contained
entirely within S (inscribed circle) to the smallest circle which entirely contains S (cir-
cumcircle). However these circles are not easy to calculate for arbitrary polygons and
in an optimisation code where ARs may need to be calculated very frequently, we do
not believe this to be a practical metric. It may also fail to express certain irregularities
of shape. A careful discussion of the relative merits of different ways of measuring AR
may be found in [16] and lor the purposes of this paper we follow the ideas therein and
define the AR of a given shape by measuring the ratio of its perimeter length (surface
area in 3d) over that ot some ideal shape with identical area (volume in 3d).

Suppose then that in 2d the ideal shape is chosen to be a square. Given a polygon S
with area fiS and perimeter length dS, the ideal perimeter length (the perimeter length
of a square with area <?>) is 4\/T2S and so the AR is defined as dS/4\/J7S. Alterna-
tively, if the ideal shape is chosen to be a circle then the same argument gives the AR of
dS/2y/wQS. In fact, g i ven the definition of the cost function (1) it can be seen that these
two definitions will produce the same optimisation problem (and hence the same results)
with the cost just modified by a constant C (where C = 1/4 for the square and \/2y/n
for circle). These definitions of AR are easily extendible to 3d and given a polyhedron
S with volume QS and surface area dS, the AR can be calculated as CdS/{QS)2^3,
where C — 1/4 if the cube is chosen as the optimal shape and C = l/(47r)1/,332^3 for
the sphere. Note that henceforth, in order to talk in general terms for both 2d & 3d, given
an object S we shall use the terms dS or surface for the surface area (3d) or perimeter
length (2d) of the object and f?S or volume for the volume (3d) or area (2d).

383

FEUP - Faculdade de Engenharia da Universidade do Porto

Of the above definitions of AR we choose to use the square/cube based formulae for
two reasons; firstly because we are attempting to partition a mesh into interlocking sub-
domains (and circles/spheres are not known for their interlocking qualities) and secondly
because it gives a convenient formula for the cost function of:

r --T 1 k'ill|*ik- — . , / j

dSv

(VSP

(2)

where C = 2dP and d (= 2 or 3) is the dimension of the mesh. We refer to this cost
function as f(„„,lak. or F, because of the way it tries to match shapes to chosen templates.

In fact, it will turn out (see for example §3.2) that even this function may be too
complex for certain optimisation needs and we can define a simpler one by assuming
that all subdomains have approximately the same volume, ÜSP w QM/P, where QM
is the total volume of the mesh. This assumption may not necessarily be true, but it is
likely to be true locally (see §4.5). We can then approximate (2) by

p
■ lemplntc ■ - f 7üT,ds (3)

where C = 2dP*{QM) — . This can be simplified still further by noting that the
surface of each subdomain SP consists of two components, the exterior surface, deSP,
where the surface of the subdomain coincides with the surface of the mesh dM, and the
interior surface, d'SP, where SP is adjacent to other subdomains and the surface cuts
through the mesh. Thus we can break the £p dSP term in (3) into two parts £ d'SP
and EP d

eSp and simplify (3) further by noting that £p d
eSP is just dM, the exterior

surface of the mesh M. This then gives us a second cost function to optimise:

r, LV = -L^ö*'S'p + 7v5
A"i

(4)

where A'i = 2dP1« (QM)^1 and A"2 = dM/Ki. We refer to this cost function as
r«m»x or r, because it is just concerned with optimising surfaces.

2.2 Modifying the graph

Fig.l. Left to right: a simple mesh (a), its dual (b), the same mesh with combined elements (c)
and its dual (d)

384

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

To use these cost functions in a graph-partitioning context, we must add some additional
qualities to the graph. Figure 1 shows a very simple mesh (la) and its dual graph (lb).
Each element of the mesh corresponds to a vertex in the graph. The vertices of the graph
can be weighted as is usual (to carry out load-balancing) but in addition, vertices store
the volume and total surface oftheircorresponding element (e.g. Qv\ = Qtianddvi =
dei). We also weight the edges of the graph with the size of the surface they correspond
to. Thus, in Figure 1, if D(b, c) refers to the distance between points b and c, then the
weight of edge (ri.tw) is set to D{b,c). In this way, for vertices Vj corresponding to
elements which have no exterior surface, the sum of their edge weights is equivalent
to their surface (or,- = YIE \{l'i>vi)\)- Thus for vertex i>2, <9i'2 = de2 — D{b,c) +
D(c, e) + D(e, b) = |(t.-2, t>i)| + |(t>2, v3)\ + |(t>2, v5)|.

When it comes to combining elements together, either into subdomains, or for the
multilevel matching (§3) these properties, volume and surface can be easily combined.
Thus in Figure lc where E\ = e\-\- e4, En = 63 + e5 and E3 — e$ we see that volumes
can be directly summed, for example QV\ = QE\ = Qt\ + ße4 = Qv\ + Üv4, as can
edge weights, e.g. |(V'i. V'2)| = D(b,c) + D(c, d) = j(vi, v2)| + 1(^4, vs)|- The surface
of a combined object S is the sum of the surfaces of its constituent parts less twice the
interior surface, e.g. d\\ = dE\ = ctei+<9e4-2 x D(a,c) = dv\ + di>i -2\{vu t'4)|.
These properties are very similar to properties in conventional graph algorithms, where
the volume combines in the same way as weight and surfaces combine as the sum of edge
weights (although including an additional term which expresses the exterior surface de).
The edge weights function identically.

Note that with these modifications to the graph, it can be seen that if we optimise
using the r, cost function (4), the AR mesh partitioning problem is identical to the cut-
edge weight mesh partitioning problem with a special edge weighting. However, the in-
clusion of non integer edge weights does have an effect on the some of the techniques
that can be used (e.g. see §4.4).

2.3 Testing the algorithms

Table 1. Test meshes
mesh no vertices 10. edges type aspect ratio mesh grading

uk 4824 6837 2d triangles 3.39 7.98e+02
t60k 60005 89440 2d triangles 1.60 2.00e+00
dime20 224843 336024 2d triangles 1.87 3.70e+03
cs4 22499 43858 3d tetrahedra 1.07 9.64e+0l
mesh 100 103081 200976 3d tetrahedra 1.63 2.45e+02
cyl3 232362 457853 3d tetrahedra 1.28 8.42e+00

Throughout this paper we compare the effectiveness of different approaches using a
set of test meshes. The algorithms have been implemented within the framework of JOS-
TLE, a mesh partitioning software tool developed at the University of Greenwich and
freely available for academic and research purposes under a licensing agreement (avail-
able from http: //www.gre.ac .uk/~c.walshaw/ jostle). The experiments
were carried out on a DEC Alpha with a 466 MHz CPU and 1 Gbyte of memory. Due
to space considerations we only include 6 test meshes but they have been chosen to be
a representative sample of medium to large scale real-life problems and include both 2d
and 3d examples. Table 1 gives a list of the meshes and theirsizes in terms of the number
of vertices and edges. The table also shows the aspect ratio of each entire mesh and the
mesh grading, which here we define as the maximum surface of any element over the
minimum surface, and these two figures give a guide as to how difficult the optimisation

385

FEUP - Faculdade de Engenharia da Universidade do Porto

may be. For example, 'uk' is simply a triangulation of the British mainland and hence
has a very intricate boundary and therefore a high aspect ratio. Meanwhile, 'dime20'
which has a moderate aspect ratio, has been very heavily refined in parts and thus has
a high mesh grading - the largest element has a surface around 3,700 times larger than
that of the smallest.

Table 2. Final results using template cost matching and surface gain/template cost optimisation
P = i6 P = 32 P = 64 P = 128

mesh r, \Ec\ t* r, \EC\ t, r, \EC\ t, n \Ec\ t,
uk 1.48 206 0.12 1.31 331 0.12 1.23 543 0.22 1.25 917 0.50
t60k 1.16 1003 1.63 1.10 1547 2.07 1.11 2437 2.33 1.11 3647 2.65
dime20 1.22 1623 5.78 1.20 2868 5.17 1.15 4406 5.70 1.12 6620 7.57
cs4 1.22 2727 0.85 1.22 3738 0.90 1.23 5066 1.12 1.23 6747 1.60
mesh 100 1.25 5950 3.20 1.24 8752 3.53 1.26 12467 4.13 1.28 17346 5.13
cyl3 1.21 11141 10.05 1.21 15944 10.77 1.23 22378 13.02 1.22 29719 13.18

Table 2 shows the results of the final combination of algorithms - TCM (see §3.2)
and SGTC (see §4.3) - which were chosen as a benchmark for the other combinations.
For the 4 different values of P (the number of subdomains), the table shows the average
aspect ratio as given by f,. the edge cut \EC\ (that is the number of cut edges, not the
weight of cut edges weighted by surface size) and the time in seconds, ts, to partition
the mesh. Notice that with the exception of the 'uk' mesh, all partitions have average
aspect ratios of less than 1.30 which is well within the target range suggested in [6].
Indeed for the 'uk' mesh it is no surprise that the results are not optimal because the
subdomains inherit some of the poor AR from the original mesh (which has an AR of
3.39) and it is only when the mesh is split into small enough pieces, P = 64 or 128, that
the optimisation succeeds in ameliorating this effect. Intuitively this also gives a hint as
to why DD methods are a very successful technique as a solver.

3 The multilevel paradigm

In recent years it has been recognised that an effective way of both speeding up partition
refinement and, perhaps more importantly giving it a global perspective is to use multi-
level techniques. The idea is to match pairs of vertices to form clusters, use the clusters to
define a new graph and recursively iterate this procedure until the graph size falls below
some threshold. The coarsest graph is then partitioned and the partition is successively
optimised on all the graphs starting with the coarsest and ending with the original. This
sequence of contraction followed by repeated expansion/optimisation loops is known as
the multilevel paradigm and has been successfully developed as a strategy for overcom-
ing the localised nature of the KL (and other) optimisation algorithms. The multilevel
idea was first proposed by Barnard & Simon, [1], as a method of speeding up spectral
bisection and improved by Hendrickson & Leland, [11], who generalised it to encom-
pass local refinement algorithms. Several algorithms for carrying out the matching have
been devised by Karypis & Kumar, [13], while Walshaw & Cros~s describe a method for
utilising imbalance in the coarsest graphs to enhance the final partition quality, [19].

3.1 Implementation

Graph contraction. To create a coarser graph 6'/+i (V'/+i, Ei+1) from 6'/(V}, E-t) we
use a variant of the edge contraction algorithm proposed by Hendrickson & Leland,

386

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

[11]. The idea is to find a maximal independent subset of graph edges, or a matching
of vertices, and then collapse them. The set is independent because no two edges in
the set are incident on the same vertex (so no two edges in the set are adjacent), and
maximal because no more edges can be added to the set without breaking the indepen-
dence criterion. Having found such a set, each selected edge is collapsed and the vertices,
ui, «2 £ Vi say, at either end of it are merged to form a new vertex v G Vi+\ with weight
\v\ = |MI| -+- |M2|-

The initial partition. Having constructed the series of graphs until the number of
vertices in the coarsest graph is smaller than some threshold, the normal practice of the
multilevel strategy is to carry out an initial partition. Here, following the idea of Gupta,
[10], we contract until the number of vertices in the coarsest graph is the same as the
number of subdomains, P, and then simply assign vertex i to subdomain 5,-. Unlike
Gupta, however, we do not carry out repeated expansion/contraction cycles of the coars-
est graphs to find a well balanced initial partition but instead, since our optimisation al-
gorithm incorporates balancing, we commence on the expansion/optimisation sequence
immediately.

Partition expansion. Having optimised the partition on a graph Gi, the partition
must be interpolated onto its parent Gi-\. The interpolation itself is a trivial matter; if
a vertex i> G V\ is in subdomain SP then the matched pair of vertices that it represents,
vi, t>2 £ l';-i, will be in Sr.

3.2 Incorporating aspect ratio

The matching part of the multilevel strategy can be easily modified in several ways to
take into account AR and in each case the vertices are visited (at most once) using a
randomly ordered linked list. Each vertex is then matched with an unmatched neighbour
using the chosen matching algorithm and it and its match removed from the list. Vertices
with no unmatched neighbours remain unmatched and are also removed. In addition to
Random Matching (RM), [12], where vertices are matched with random neighbours,
we propose and have tested 3 matching algorithms:

Surface Matching (SM). As we have seen in §2.2, the AR partitioning problem can
be approximated by the cut-edge weight problem using (4), the Ts cost function, and
so the simplest matching is to use the Heavy Edge approach of Karypis & Kumar, [13],
where the vertex matches across the heaviest edge to any of its unmatched neighbours.
This is the same as matching across the largest surface (since here edge weights represent
surfaces) and we refer to this as surface matching.

Template Cost Matching (TCM). A second approach follows the ideas of Bouh-
mala, [3], and matches with the neighbour which minimises the cost function. In this
case, the chosen vertex matches with the unmatched neighbour which gives the result-
ing element the best aspect ratio. Using the rt cost function, we refer to this as template
cost matching.

Surface Cost Matching (SCM). This is the same idea as TCM only using the Ts

cost function, (4), which is faster to calculate.

3.3 Results for different matching functions

In Tables 3,4 & 5 we compare the results in Table 2, where TCM was used, with RM, SM
& SCM respectively. In all cases the SGTC optimisation algorithm (see §4.3) was used.
For each value of P, the first column shows the average AR, r, of the partitioning. The
second column for each value of P then compares results with those in Table 2 using the

387

FEUP - Faculdade de Engenharia da Universidade do Porto

metric JCM for RM, etc. Thus a figure > 1 means that RM has produced worse

results than TCM. These comparisons are then averaged and so it can be seen, e.g. for
P = 16 that RM produces results 24% (1.24) worse on average than TCM. Indeed the
average quality of partitions produced by RM was 30% worse than TCM. This is not
altogether surprising since the AR of elements in the coarsest graph could be very poor
if the matching takes no account of it, and hence the optimisation has to work with badly
shaped elements.

Table 3. Random matching results compared with template cost matching

P = 16 P = 32 P = 64 P = 128

tnMh r ^(RM)-' r r(RM)-i r r(RMi-i r r(RM)-i
mesh r> nTCM)-i r' r(TCM,-i r" r(TCM)-i r< nTCM)-)-i

uk 1.50 1.04 1.38 1.25 1.25 1.06 1.23 0.91
t60k 1.20 1.28 1.16 1.59 1.17 1.53 1.17 1.54
dime20 1.30 1.37 1.31 1.57 1.27 1.79 1.23 1.89
cs4 1.29 1.31 1.27 1.21 ■ 1.30 1.30 1.26 1.15
mesh 100 1.31 1.24 1.29 1.24 1.31 1.19 1.32 1.15
cyl3 1.25 1.19 1.25 1.19 1.26 1.15 1.27 1.22
Average 1.24 1.34 1.34 1.31

When it comes to comparing TCM with SM & SCM (Tables 4 & 5) there is actually
very little difference; SM is about 3.5% worse and SCM only about 1.5%. This suggests
that the multilevel strategy is relatively robust to the matching algorithm provided the
AR is taken into account in some way.

Table 4. Surface matching results compared with template cost matching
P = 16 P = 32 P = 64 P = 128

mesh r- f(SM)-i r r(SM)-i p r(SM)-i r nSM)-i
 ' TTrefcTPT l< rfTCM)-i r' r(TCM)-i F< ITJTfc

uk 1.54 1.13 1.34 1.11 1.24 1.01 1.28 1.10
t60k 1.14 0.87 1.11 1.05 1.12 1.10 1.12 1.08
dime20 1.26 1.18 1.24 1.23 1.15 1.00 1.13 1.04
cs4 1.22 0.97 1.24 1.08 1.24 1.04 1.23 1.00
meshlOOl.20 0.78 1.24 1.03 1.27 1.04 1.26 0.94
cy!3 1.19 0.93 1.21 1.02 1.24 1.05 1.24 1.08
Average 0.98 1.08 L04 1.04

Table 5. Surface cost matching results compared with template cost matching
P = 16 P = 32 P = 64 P = 128

mesh r r'SCM)-i r r(SCM)-i r r(SCM)-i r r(SCM)-i
mesh r< TTTüKTirT r< r(TCM)-i Ft nTCM)-i F' nTCM)-i

1.14 1.25 0.98
1.23 1.13 1.14
0.93 1.13 1.02
1.03 1.23 1.00
0.99 1.27 0.97
1.02 1.24 1.06
 LOji 1.03

We are not primarily concerned with partitioning times here, but for the record, RM
was about 0.5% slower than TCM (although this is well within the limits of noise). This
is because the optimisation stage took considerably longer (although the matching was

uk 1.47 0.99 1 31 1.00 1.27
t60k 1.11 0.69 1 10 0.99 1.14
dime20 1.23 1.06 1 18 0.91 1.14
cs4 1.23 1.04 1 23 1.04 1.24
mesh 100 1.23 0.91 1 25 1.07 1.25
cyl3 1.22 1.06 1 23 1.10 1.23
Averace 0.96 1.02

388

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

much faster than TCM). SM & SCM were 3.3% & 1.8% faster respectively than TCM.
Overall this suggests that TCM is the algorithm of choice although there is little benefit
over SM & SCM.

4 The Kernighan-Lin optimisation algorithm

In this section we discuss the key features of an optimisation algorithm, fully described
in [19] and then in §4.3 describe how it can bemodified to optimise for AR. It is a
Kernighan-Lin (KL) type algorithm incorporating a hill-climbing mechanism to enable
it to escape from local minima. The algorithm uses bucket sorting (§4.4), the linear time
complexity improvement of Fiduccia & Mattheyses, [9], and is a partition optimisation
formulation; in other words it optimises a partition of P subdomains rather than a bisec-
tion.

4.1 The gain function

A key concept in the method is the idea of gain. The gain g(v. q) of a vertex v in sub-
domain SP can be calculated for every other subdomain, Sq, q ^ p, and expresses how
much the cost of a given partition would be improved were v to migrate to Sq. Thus,
if K denotes the current partition and n' the partition if v migrates to Sq then for a cost
function /\ the gain g(v, q) = r(ff') - r(7r). Assuming the migration oft' only affects
the cost of SP and Sg (as is true for rt and T,) then we get

g(v, q) = AR{Sg + v) - AR(Sq) + AR{SP - v) - AR(SP). (5)

For Ft this gives an expression which cannot be further simplified, however, for rs,
since

AR(Sq + v) - AR(Sq) = — {tfiSq + v) - d'Sg}
A"

= ^-{diSg + dir-2\(S,,.v)\-diSq}
Al

= -L{ö'V-2|(S',.«)|}
Al

(where \(Sq, v)\ dem*c\ th* «.urn of edge weights between Sq and v), we get

...... >,) = -^{\(SP,v)\-\(Sgiv)\) (6)
Ai

Noticeinparticularih.it v . . is the same as the cut-edge weight gain function and that it
is entirely localised, u- ihc am of a vertex only depends on the length of its boundaries
with a subdomain ;ind noi >n .my intrinsic qualities of the subdomain which could be
changed by non-local mitrrjiion.

4.2 The iterative optimisation algorithm

The serial optimisation algorithm, as is typical for KL type algorithms, has inner and
outer iterative loops with the outer loop terminating when no migration takes place dur-
ing an inner loop. The optimisation uses two bucket sorting structures or bucket trees

389

FEUP - Faculdade de Engenharia da Universidade do Porto

(see below, §4.4) and is initialised by calculating the gain tor all border vertices and in-
serting them into one of the bucket trees. These vertices will subsequently be referred to
as candidate vertices and the tree containing them as the candidate tree.

The inner loop proceeds by examining candidate vertices, highest gain first (by al-
ways picking vertices from the highest ranked bucket), testing whether the vertex is ac-
ceptable for migration and then transferring it to the other bucket tree (the tree of exam-
ined vertices). This inner loop terminates when the candidate tree is empty although it
may terminate early if the partition cost (i .e. the number of cut edges) rises too far above
the cost of the best partition found so far. Once the inner loop has terminated any vertices
remaining in the candidate tree are transferred to the examined tree and finally pointers
to the two trees are swapped ready for the next pass through the inner loop.

The algorithm also uses a KL type hill-climbing strategy; in other words vertex mi-
gration from subdomain to subdomain can be accepted even if it degrades the parti-
tion quality and later, based on the subsequent evolution of the partition, either rejected
or confirmed. During each pass through the inner loop, a record of the optimal parti-
tion achieved by migration within that loop is maintained together with a list of vertices
which have migrated since that value was attained. If subsequent migration finds a 'bet-
ter' partition then the migration is confirmed and the list is reset. Once the inner loop
is terminated, any vertices remaining in the list (vertices whose migration has not been
confirmed) are migrated back to the subdomains they came from when the optimal cost
was attained.

The algorithm, together with conditions for vertex migration acceptance and confir-
mation is fully described in [19].

4.3 Incorporating aspect ratio: localisation

One of the advantages of using cut-edge weight as a cost function is its localised nature.
When a graph vertex migrates from one subdomain to another, only the gains'of adja-
cent vertices are affected. In contrast, when using the graph to optimise AR, if a vertex v
migrates from Sr to Sq, the volume and surface of both subdomains will change. This in
turn means that, when using the template cost function (2), the gain of all border vertices
both within and abutting subdomains Sp and Sq will change. Strictly speaking, all these
gains should be adjusted with the huge disadvantage that this may involve thousands of
floating point operations and hence be prohibitively expensive. As an alternative, there-
fore, we propose two localised variants:

Surface Gain/Surface Cost (SGSC). The simplest way to localise the updating of
the gains is to make the assumption in §2.1 that the subdomains all have approximately
equal volume and to use the surface cost function f, from (4). As mentioned in §2.2 the
problem immediately reduces to the cut-edge weight problem, albeit with non-integer
edge weights, and from (6) only the gains of the vertices adjacent to the migrating vertex
will need updating. However, if this assumption is not true, it is not clear how well rt

will optimise the AR and below we provide some experimental results.
Surface Gain/Template Cost (SGTC). The second method we propose for localis-

ing the updates of gain relies on the observation that the gain is simply used as a method
of rating the elements so that the algorithm always visits those with highest gain first
(using the bucket sort). It is not clear how crucial this rating is to the success of the al-
gorithm and indeed Karypis & Kumar demonstrated that (at least when optimising for
cut-edge weight) almost as good results can be achieved by simply visiting the vertices
in random order, (14]. We therefore propose approximating the gain with the surface cost
function rt from (4) to rate the elements and store them in the bucket tree structure, but

390

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

using the template cost function rt from (2) to assess the change in cost when actually
migrating an element. This localises the gain function.

4.4 Incorporating aspect ratio: bucket sorting with non-integer gains

The bucket sort is an essential tool for the efficient and rapid sorting and adjustment of
vertices by their gain. The concept was first suggested by Fiduccia & Mattheyses in [9]
and the idea is that all vertices of a given gain g are placed together in a 'bucket' which
is ranked g. Finding a vertex with maximum gain then simply consists of finding the
(non-empty) bucket with the highest rank and picking a vertex from it. If the vertex is
subsequently migrated from one subdomain to another then the gains of any affected
vertices have to be adjusted and the list of vertices which are candidates for migration
resorted by gain. Using a bucket sort for this operation simply requires recalculating the
gains and transferring the affected vertices to the appropriate buckets. If a bucket sort
were not used and, say, the vertices were simply stored in a list in gain order, then the
entire list would require resorting (or at least merge-sorting with the sorted list of ad-
justed vertices), an essentially 0{N) operation for every migration.

The implementation of the bucket sort is fully described in [19]. It includes a ranking
for prioritising vertices for migration which incorporates their weight as well as their
gain. The non-empty buckets are stored in a binary-tree to save excessive memory use
(since we do not know a priori how many buckets will be needed) and this structure is
referred to above as a bucket tree.

The only difficulty in adapting this procedure to AR optimisation is that with non-
integer edge weight, the gains are also real non-integer numbers. This is not a major
problem in itself as we can just give buckets an interval of gains rather than a single in-
teger, i.e. the bucket ranked 1 could contain any vertex with gain in the interval [1.0,2.0).
However, if using the surface gain function, the issue of scaling then arises since for a
mesh entirely contained within the unit square/cube, all the vertices are likely to end up
in one of two buckets (dependent only on whether they have positive or negative gains).
Fortunately, if using T, as a gain function, as in SGSC and SGTC, we can easily calcu-
late the maximum possible gain. This would occur if the vertex with the largest surface,
v G SP say, were entirely surrounded by neighbours in Sq. The maximum possible gain
is then 2 max„er dv (strictly speaking 2 max„6y d'v) and similarly the minimum gain
is -2 max,,e v dv. This means we can easily choose the number of buckets and scale the
gain accordingly. A problem still arises for meshes with a high grading because many
of the elements will have an insignificant surface area compared to the maximum. How-
ever the experiments carried out here all used a scaling which allowed a maximum of
100 buckets and we have tested the algorithm with up to 10,000 buckets without signif-
icant penalty in terms either memory or run-time.

4.5 Results for different optimisation functions

Table 6 compares SGSC against the SGTC results in Table 2. Both set of results use
template cost matching (TCM). The table is in the same form as those in §3.3 and shows
that there is on average only a tiny difference between the two (SGTC is 0.5% better than
SGSC) and again, with the exception of the 'uk' mesh for P = 16 & 32, all results have
an average AR of less than 1.30. This implication of this table is that the assumption
made in §2.1, that all subdomains have approximately the same volume, is reasonably
good. However this assumption is not necessarily true, because for example, for P =
128, the 'dime20' mesh, with its high grading, has a ratio of maxi?Sr/ minfiSp =

391

FEUP - Faculdade de Engenharia da Universidade do Porto

2723. A possible explanation is that although the assumption is false globally, it is true
locally, since the mesh density does not change too gradually (as should be the case with
most meshes generated by adaptive refinement) and so the volume of each subdomain
is approximately equal to that of its neighbours.

Table 6. Surface gain/surface cost optimisation compared with surface gain/template cost
P = 16 P = 32 P = 64 P = 128

mesh r, n
SGSC)-i - r, r

n
SGSC)-i
SGTC)- • r, r

r
SGSC)-i
SGTC)-! r, r(SGSC)-i

r(SÜTC)-i

uk 1.49 1.02 1.32 1.05 1.24 1.02 1.23 0.92
t60k 1.15 0.95 1.10 0.96 1.12 1.07 1.12 1.11
dime20 1.23 1.03 1.17 0.86 1.15 0.98 1.11 0.91
cs4 1.20 0.90 1.23 1.05 1.24 1.03 1.22 0.97
mesh 100 1.24 0.95 1.26 1.10 1.27 1.06 1.27 0.97
cy!3 1.23 1.10 1.22 1.08 1.24 1.06 1.22 1.00
Average 0.99 1.01 1.04 0.98

Again we are not not primarily concerned with partitioning times, but it was surpris-
ing to see that SGSC was an average 30% slower than SGTC. A possible explanation is
that although the cost function F, is a good approximation, r, is a more global function
and so the optimisation converges more quickly.

5 Discussion

5.1 Comparison with cut-edge weight partitioning

In Table 7 we compare AR as produced by the edge cut partitioner (EC) described in
[19] with the results in Table 2. On average AR partitioning produces results which are
16% better than those of the edge cut partitioner (as could be expected). However, for
the mesh 'cs4' EC partitioning is consistently better and this is a subject for further in-
vestigation.

Table 7. AR result-, tor the edec cut partitioner compared with the AR partitioner
P = i. /' = 32 P = 64 P = 128

mesh r rEC -
'' r.AR -

, r(EC)-i
'' /.AR,-, ■ r, r(EC)-i

r(AR)-i ■ r,

1.28

r(EC)-i
r(ARi-i

uk 1.52 Mi" ' " 1.07 1.26 1.09 1.14
t60k 1.19 1 l» ■ « 1.76 1.17 1.47 1.17 1.55
dime20 1.32 14« ■ > 1.34 1.25 1.65 1.21 1.72
cs4 1.19 <)** ' :. 0.93 1.20 0.87 1.21 0.92
mesh 100 1.22 0 v> i ;: 0.91 1.26 1.03 1.24 0.86
cy!3 1.22 l.oi 1.09 1.23 1.00 1.23 1.02
Average !.(>«> 1.18 1.19 1.20

Meanwhile in Table K »t compare the edge cut produced by the EC partitioner with
that of the AR partitioner Again as expected. EC partitioning produces the best results
(about 11 % better than AR i In terms of time, the EC partitioner is about 26% faster than
AR on average. Again this is no surprise since the AR partitioninginvol ves floating point
operations (assessing cost and combining elements) while EC partitioning only requires
integer operations.

392

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Table 8. |£r| results for the edge cut partitioner compared with the AR partitioner

P = 16 P = 32 P = 64 P = 1 28

mesh \Ec\ |£
IE

l(RM)
-I(AR) \Ec\

|£cl(RM)
|£cl(AR) \Ec\

|£cl(RM)
|Ecl(AR) \E,:\ IE.

|(RM)
l(AR)

uk 189 0.92 290 0.88 478 0.88 845 0.92
t60k 974 0.97 1588 1.03 2440 1.00 3646 1.00
dime20 1326 -0.82 2294 0.80 3637 0.83 5497 0.83
cs4 2343 0.86 3351 0.90 4534 0.89 6101 0.90
mesh 100 4577 0.77 7109 0.81 10740 0.86 14313 0.83
cyl3 10458 0.94 14986 0.94 20765 0.93 27869 0.94

Average 0.88 0.89 0.90 0.90

5.2 Generic multilevel mesh partitioning

In this paper we have adapted a mesh partitioning technique originally designed to solve
the edge cut partitioning problem to a different cost function. The question then arises,
is the multilevel strategy an appropriate technique for solving partitioning problems (or
indeed other optimisation problems) with different cost functions? Clearly this is an im-
possible question to answer in general but a few pertinent remarks can be made:

- For the AR based cost functions at least, the method seems relatively sensitive to
whether the cost is included in the matching. This suggests that, if possible, a generic
multilevel partitioner should use the cost function to minimise the cost of the match-
ings. Note, however, that this may not be possible as a cost function which, say, mea-
sured the cost of a mapping onto a particular processor topology would be unable
to function since at the matching stage no partition, and hence no mapping exists.

- The optimisation relies, for efficiency at least, on having a local gain function in
order that the migration of a vertex does not involve an 0(N) update. Here we were
able to localise the cost function by making a simple approximation to give a local
gain function, however, it is not clear that this is always possible.

- The bucket sort is reasonably simple to convert to non-integer gains, however this
relies on being able to estimate the maximum gain. If this is not possible it may not
be easy to generate a good scaling which separates vertices of different gains into
different buckets.

5.3 Conclusion and future research

We have shown that the multilevel strategy can be modified to optimise for aspect ra-
tio. To fully validate the method, however, we need to demonstrate that the measure of
aspect ratio used here does indeed provide the benefits for DD preconditioned that the
theoretical results suggest. It is also desirable to measure the correlation between aspect
ratio and convergence in the solver.

Also, although parallel implementations of the multilevel strategy do exist, e.g. [20],
it is not clear how well AR optimisation, with its more global cost function, will work in
parallel and this is another direction for future research. Some related work already ex-
ists in the context of a parallel dynamic adaptive mesh environment, [5,6,16], but these
are not multilevel methods and it was necessary to use a combination of several com-
plex cost functions in order to achieve reasonable results so the question arises whether
multilevel techniques can help to overcome this.

393

FEUP - Faculdade de Engenharia da Universidade do Porto

References

1. S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recursive Spectral
Bisection for Partitioning Unstructured Problems. Concurrency: Practice & Experience
6(2):10I-1I7, 1994.

2. S. Blazy, W. Borchers, and U. Dralle. Parallelization methods for a characteristic's pressure
correction scheme. In E. H. Hirschel, editor, Flow Simulation with High Performance Com-
puters II, Notes on Numerical Fluid Mechanics, 1995.

3. N. Bouhmala. Partitioning of Unstructured Meshes for Parallel Processing. PhD thesis, Inst.
d'Informatique, Univ. Neuchatel, 1998.

4. J. H. Bramble, J. E. Pasciac, and A. H. Schatz. The Construction of Preconditioned for El-
liptic Problems by Substructuring I+II. Math. Comp., 47+49,1986+87.

5. R. Diekmann, B. Meyer, and B. Monien. Parallel Decomposition of Unstructured FEM-
Meshes. Concurrency: Practice & Experience, 10(l):53-72, 1998.

6. R. Diekmann, F. Schlimbach, and C. Walshaw. Quality Balancing for Parallel Adaptive FEM.
To appear in Proc. Irregular '98.

7. C. Farhat. N. Maman, and G. Brown. Mesh Partitioning for Implicit Computations via Do-
main Decomposition. Int. J. Num. Meth. Engng., 38:989-1000,1995.

8. C. Farhat, J. Mandel, and F. X. Roux. Optimal convergence properties of the FET1 domain
decomposition method. Comp. Meth. Appl. Mech. Engrg., 115:367-388, 1994.

9. C. M. Fiduccia and R. M. Mattheyses. A Linear Time Heuristic for Improving Network Par-
titions. In Proc. 19th IEEE Design Automation Conf., pages 175-181, IEEE, Piscatawav NJ
1982.

10. A. Gupta. Fast and effective algorithms for graph partitioning and sparse matrix reordering.
IBM Journal of Research and Development, 41(1/2): 171-183, 1996.

11. B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. Tech. Rep.
SAND 93-1301, Sandia National Labs, Albuquerque, NM, 1993.

12. B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. In Proc.
Supercomputing '95, 1995.

13. G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Ir-
regular Graphs. TR 95-035, Dept. Comp. Sei., Univ. Minnesota, Minneapolis, MN 55455,
1995.

14. G. Karypis and V. Kumar. Multilevel fc-way partitioning scheme for irregular graphs. TR
95-064, Dept. Comp. Sei.. Univ. Minnesota. Minneapolis, MN 55455. 1995.

15. S. A. Mitchell and S. A. Vasavis. Quality Mesh Generation in Three Dimensions. In Proc.
ACM Conf. Comp Geometry, pages 212-221,1992.

16. F. Schlimbach. Load Balancing Heuristics Optimising Suhdomain Shapes for Adaptive Finite
Element Simulations. Diploma Thesis, Dept. Math. Comp. Sei., Univ. Paderborn, 1998.

17. D. Vanderstraeten.C. Farhat, P. S. Chen,R. Keunings.and O. Zone. A Retrofit Based Method-
ology for the Fast Generation and Optimization of Large-Scale Mesh Partitions: Beyond the
Minimum Interface Size Criterion. Comp. Meth. AppLMech. Engrg., 133:25-45,1996.

18. D. Vanderstraeten. R. Keunings, and C. Farhat. Beyond Conventional Mesh Partitioning Al-
gorithms and the Minimum Edge Cut Criterion: Impact on Realistic Applications. In D. Bai-
ley et al, editor, Parallel Processing for Scientific Computing, pages 611-614. SIAM, 1995.

19. C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balancing and Refinement AI20-
rithm. Tech. Rep. 98/IM/35. Univ. Greenwich. London SEI« 6PF. UK. March 1998.

20. C. Walshaw, M. Cross, and M. Everett. Parallel Dynamic Graph Partitioning for Adaptive
Unstructured Meshes. ./. Par. Dist. Comput., 47(2): 102-108. 1997.

394

VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing

Visualization of HPF data mappings and of their
communication cost

Christian Lefebvre * and Jean-Luc Dekeyser

Laboratoire d'Informatique Fondamentale de Lille Universite des Sciences et
Technologies de Lille, France

Abstract. HPF-BuiLDER graphical environment provides an interac-
tive and visual solution to edit and visualize HPF data mapping direc-
tives. It frees the HPF programmers of edl the syntactic constraints. Gen-
eral and detailled visualizations give complete information about data
distribution along the grids of processors.
Compare several mappings implies to evaluate some statistics about load
distribution and communications. This paper introduces an evolution of
HPF-BuiLDER which produces such statistics, and provides a graphical
way to visualize them.

1 Introduction

With the emergence of parallel and massively parallel machines and of clusters
of communicating computers, where the memory is physically distributed on a
large number of processors, new parallel programming techniques have appeared.

With data parallel model, the program is replicated over all the processors,
and vectors or matrices are distributed across them, parallel operations being
processed simultaneously by each processor.

Data parallelism is well suited in the domain of scientific computing: algo-
rithms have to manage with large regular data structures (vector, matrix), and
the same treatment has to be achieved onto each item of the structures.

The expression of parallelism at the data level has the advantage of main-
taining a single control flow. A data parallel algorithm consists of a sequence of
elementary instructions applied to scalar or parallel data.

As FORTRAN is the standard language for scientific computing, FORTRAN 90,
a data parallel extension, has been developed. It allows programmers to benefit
of the data parallel model without having to rewrite their codes in a completly
new language.

FORTRAN 90 promotes arrays as global parallel entities. It supports array
expressions and proposes restructuring operations onto them (gather, scatter,
reductions ...).

The compilation for distributed memory machines relies on the notion of
data distribution by the use of mapping directives. These directives specify sets
of elementary data that should be allocated on the same processor. HPF (High

tel.: +33-3 20 43 47 30, fax.: +33-3 20 43 65 66, e-mail:lefebvreolifl.fr

395

FEUP - Faculdade de Engenharia da Universidade do Porto

Performance FORTRAN) [6,7] is an example of this approach and seems to be
becoming the most popular language for data parallel scientific programming.

A distributed data parallel algorithm designer usually starts from a FOR-

TRAN 90 code and inserts HPF directives respecting the HPF syntactic rules.
The FORTRAN 90 parts express the data parallel algorithm itself and the HPF
directives ensure the mapping of the data without semantic contribution. The ef-
fects of these directives are essential in balancing between the parallel processing
and communications. The programmer has to insert by hand all these mapping
directives. Therefore the scientific programmer must learn a third generation
dialect of FORTRAN to take advantage of parallel machines.

Furthermore, the programmer have to evaluate himself the accuracy of his
mappings.

Like FORTRAN 90, HPF supports regular data structures (multi-dimensional
arrays). Furthermore, HPF provides a geometrical support to express the distri-
bution of data among grids of abstract processors.

The expression of parallelism at the data level allows the programmer to
have a visual perception of the distribution of data in space (at least for 1, 2
and 3-dimensional arrays and grids). Often programmers use papers and colour
pencils to draw and improve their mapping before translating the drawing into
HPF directives.

The first goal of the HPF-BuiLDER project[5] is to provide a tool to help
the programmer at this level. It proposes to replace the paper and pencils by a
screen and a mouse. Then it automatically generates the HPF directives from
the drawing.

HPF-BUILDER graphical environment frees the programmer from all the
syntactic constraints due to the data mapping. Furthermore, it verifies the co-
herence of mappings and avoids errors (like shifts in indices) during the phase
of translation from drawing to HPF code.

HPF-BUILDER respects the hierarchical HPF programming model (arrays
aligned together, or with templates, and distribution of them into virtual proces-
sor grids). For each level, HPF-BuiLDER provides a graphical interactive editor.
In a WYSIWYG way each editor is able to generate the appropriate directives
according to the data manipulation of the programmer.

2 The hierarchical HPF programming model

A complete use of HPF directives respects a three level hierarchical approach
(see figure 1).

For each operation in the code involving data parallel handling, remote ac-
cesses imply communications. In order to minimize this overcost, programmers
need to specify how each part of arrays has to be placed relatively to other ones.
HPF alignment directives implement these specifications.

The second level is the template, with which arrays are aligned.
The third level, the processors, defines multidimensionnal grids of abstract

processors into which the templates are distributed.

396

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Mm '

(Implementation
ik-pendent directive)

Griiup til aligned iihjeci

TBOLUI

Physical pnicesxorx

Fig. 1. Hierarchical HPF programming model

It is the compiler charge (eventually helped by compiler specific directives)
to decide which physical computation node will correspond to a given processors
item.

This construction ensures a progressive refinement of the data mapping on
the physical processors. In this way the programmer is able to group in the same
template all the arrays that interact. It avoids a number of levels due to array
with array alignments.

This three level hierarchy is the more complete use of HPF directives. HPF
directives as alignment between arrays, or distribution of arrays directly onto
processors can bypass the template definition.

All of these directives are supported by HPF-BuiLDER.

3 Graphical interfaces and HPF

To replace papers and pencils, a graphical editor has to provide several features:

- a display of the source code and/or a summary of its syntactic architecture
(modules, subroutines, array declarations ...),

- a global view of the hierarchical HPF construction,
- a general visualization of each directive,
- a detailed visualization, with the possibility of tracing the mapping of each

item of objects,
- a WYSIWYG editing of mapping HPF directives,
- a graphical tool to visualize and modify existing directives,

397

FEUP - Faculdade de Engenharia da Universidade do Porto

- the automatic generation of the HPF directives,

- the interpretation of directives to help the programmer in evaluating the
quality of mappings (array load balancing on virtual processors, evaluation
of the redistribution and realignment cost in "term of communications ...).

A few visual tools already exist to help the HPF programmers. Some of them
are limited to visualization, they do not help with directive editing.
It's the case of Annai/DDV[4], developped at CSSE/NEC, which allows to visu-
alize distributed data. It is integrated into a debugger, which implies to execute
the code. Its goal is more to look at data values than at their mappings.

Often, such tools need to execute the code to process effectively the data
mapping.
For example, DAQV[11] or Prism[12], allows to trace communications at runtime,
and to generate accurate statistics, but the user has to execute heavy codes with
large amount of data, for each mapping he wants to test.

We prefer to evaluate the mapping during the editing phase.

Another limitation we want to avoid is to be dedicated to a particular com-
piler, as GDDT[8] does into the Vienna Fortran environment. It is well suited to
visualize mapping onto physical processors, and to generate real communication
statistics, but it limits the user to a particular kind of targets.

Lastly, our goal is to work only on mapping, and not on the code production.
We don't wish a complete visual programming solution, like HELP-DRAW [1],
where the user programs everything from scratch to get automatical}' a HPF
code.

4 HPF-Builder

HPF-BuiLDER is built according to the HPF programming model. For each level
of the data mapping hierarchical representation a graphical editor is defined to
visualize and modify in a WYSIWYG way the corresponding HPF directives. This
procures a step by step transformation from a FORTRAN 90 code towards an
HPF version. The data parallel algorithm expressed in FORTRAN 90 is never
modified. The HPF transformations concern exclusively the data mapping.

For each level, we present the corresponding editor with its main specifica-
tions.

4.1 Example program

This matrix/vector product example is used along this paper to describe the
step by step transformation:

398

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

integer :: NCol, NLine
parameter (NCol=20)

subroutine MV(M,V,R, NLine)
integer :: NLine
real, dimension(NLine,NCol), intent(in):: H
real, dimension(NCol), intent(in) :: V
real, dimension(NLine), intent(out) :: R

R(l:NLine)= 0.0
do k = l.NCol
forall(i= 1:NLine)

R(i)=R(i) + V(k)*M(i,k)
end forall

end do
end subroutine

To generate an efficient V(k)*M(i,k) product, we must align together the
parts of M and V that interact. That means, each item V(k) must be aligned with
M(i,k) for each i. So, V items must be replicated along columns of M.

In the same way, the sum implies to replicate R along the lines of M.
The processor grid used is a 2D mesh. The matrix M is arbitrarily distributed

Cyclic, Block on this grid: Implicit communications will be produced by the
compiler to update the R values replicated on the second dimension.

Finally, we obtain this HPF code:

subroutine MV(M,V,R, NLine)
integer :: NLine
real, dimension(NLine,NCol), intent(in):: M
real, dimension(NCol), intent(in) :: V
real, dimension(NLine), intent(out) :: R

!HPF$ PROCESSORS MyProc(NUMBER_0F_PR0CESS0RS(l), &
!HPF$ NUMBER.0F.PROCESS0RS(2))
!HPF$ DISTRIBUTE «(Cyclic, Block) ONTO MyProc

!HPF$ ALIGN V(:) WITH H(*,:)
!HPF$ ALIGN R(:) WITH H(:,*)

R(l:NLine)= 0 0
do k = l.NCoi

forall(i= 1 «LIB«)

R(i)=R(i) ♦ V<k)*M(i,k)
end forall

end do
end subroutine

399

FEUP - Faculdade de Engenharia da Universidade do Porto

4.2 Source editing and parsing

The first phase of HPF-BuiLDER concerns the analysis of the source file. A
modified version of Cocktail HPF parser[9] is used. It supports FORTRAN 90
and almost all the data mapping directives of HPF. From both FORTRAN 90
and HPF code, HPF-BUILDER is able to build the syntactic tree of array and
HPF directive declarations and the hierarchical skeleton of the program.

Stwssoi
subroutine HV(M,V,K, NLlne)

integer :: m.ln«
real, dimenslonHILlne.llCol), lnt«nt(in)
real, dlaenslon(NCol), Intent (In)
real, dinension(HLine), lntent(out)

RUiNUne)- 0.0
do Ic - l.NCöl

foralld- l:NLin«)
R<i)-R(i) ♦ V(k)«M(i,k)

end forall

l III! =
■■ - '.'r

(a) Source (b) Tree

Fig. 2. Source and syntactic tree at begining

™ttjbotriMlitonfl|HH=ft^tjri

Fig. 3. skeleton

At this step, HPF-BuiLDER presents:

- A full screen editor opened in the source window
(2(a)). The content of this editor is updated with
any interactive graphical manipulation. Underlined
pieces of text indicate selectable objects.

- The syntactic tree summary, in the tree window
(2(b)).

- array and variable declarations, represented by icons
in the skeleton window (3).

The main window for visualization and edition is the
skeleton. The other windows add informations in the syn-
tactic structure of the program, and reflect automaticaly
any modification made by the user.

Clicking an entry anywhere selects it in the three win-
dows. Several different objects can be opened at a time.
This lets the user see details about several objects at a
time.

In the skeleton window, selection changes the icon in
a subwindow (array M in figure 3) which presents some

400

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

.|lVB>»ot «tahmni

details about the object: Its name, rank and size, and a wire representation in
which directives will be displayed.

We can see in the subwindow of array M that an interprocedural analysis is
performed to find the value of the constant NCol. On the other hand, as NLine
as an unknown value at parsing time, a default value of 10 (marked by a "?") is
taken (the user can specify other values to test different cases).

4.3 Processors and distributions

In the skeleton, clicking on an subwindow opens a menu from which new direc-
tives can be created. A drag'n drop to another icon specifies the second entry to
set an alignment or distribution. A creation menu allows to create new templates
and processors.

HPF imposes some restrictions about alignments and distributions. For ex-
ample, an already distributed object can't be realigned.

To avoid the user to create such an invalid directive, the creation menu is
adapted for each object. For a distributed object, the "realign" entry is disabled.

Furthermore, HPF imposes
that processors size matches the
number of physical processors.
The intrisic numberjof_proce-
ssors returns this number.

As HPF-BUILDER is not
dedicated to a given target com-
puter, a configuration option
defines this value. Therefore,
the parser is able to evaluate
this function call as a constant
value.

Thus, HPF-BUILDER let
the user create graphically the
global structure of its HPF
skeleton, and verifies their co-

herency.
Once the two dimensionnal processor mesh MyProc is created, a distribution

directive can be setted between M and MyProc (figure 4).
Into the editing window associated with this directive, a block, cyclic, or

collapsed distribution can be specified for each dimension of the distributee.
Then, into the wire representation of the processors, the projection of M is

drawn. It shows cyclic distribution by an arrow ended by a small loop. A dashed
line is added for cyclic(k) and block(k) specifications.

Beside each distribution specification, a formula describe in detail the dis-
tribution. In the example the expression (2 x 3) -I- (2 x 2) specifies that the 2
first lines contains 3 lines of the template, and the 2 last contains 2 lines. This
describes a cyclic distribution which does 2 loops and a half.

.««fapg» r vtth gp,,. 2 I CIO»« \

Fig. 4. Distribution specification

401

FEUP - Faculdade de Engenharia da Universidade do Porto

On the other dimension, the block distribution cuts the template in 4 blocks of
5 columns.

These two parts of the visualization let the user see a global draft of its
distribution, and a more detailled aspect of the processor load.

4.4 Alignments

As for the distribution, a drag'n drop between V and M let specify an alignement
directive (see the creation menu in figure 5(a)).

Link.. r ««Align 1

(a) 2D (b)3D

Fig. 5. alignments visualization and edition

In the same way, R will be replicated along the lines of M.
By default, direct alignment is chosen, after what selecting the alignment

icon allows to change its specifications: Here, we modify the direction where V
must be aligned, and then we apply the replicate action in the other direction.

These specification» »re displayed in the alignment selection (central selection
of figure 5(a))

Now, in the w\v ^presentation of the array M, the image of V is drawn. It
follows the column- >>(H and its replication is shown by a curve along the lines
(right selection in ficur*- ii*i|.

Collapsing is slmwn U a double arrow, and stepped alignment by a dashed
line (figure 5(b)).

This wire representation let the user see globally where its data are aligned.
Replications and step* appear clearly, following the geometrical aspect of HPF.

Visualization subwmdows can be resized and zoomed in or out, therefore, the
size of the objects is not a limit.

402

VECPAR'98 • 3rd International Meeting on Vector and Parallel Processing

4.5 Detailled visualization

Once all of the directives are defined, one wants to know if data are really mapped
as he was thinking. For that, HPF-BuiLDER uses a zoom effect to watch exactly
what parts of data are mapped onto a given processor.

The small compas under each edition subwindow, let the user move a cursor
along the objects. Its projection into and from its upper and lower subwindows
is drawn. Therefore, the user can see where a given item is projected and what
parts of other objects are projected into it. Beside this compas, a label indicates
exact coordinates of the cursor and of its projection. Thus, when data are very
large, the draft gives a graphical information, and this label gives numeric values.

In figure 6, V(10) (the cube in the upper left selection) is mapped onto all
the 10th column of M (bar in the center selection), itself distributed into the
second column of MYPROC (the column of the right hand selection).

To see the processors load, the zoom effect can be used in the other sense:
We can see that P(l,2) (upper left cube in right hand selection) contains lines
1 to 3 and columns 2, 6 ... 18 of M (bars in the central selection), items 2, 6, 10
... 18 of V, and items 1 to 3 of R

So, when i = 1 and jfc = 10, the instruction R(1)=R(1)+V(10)*M(1,10) will
find all its operands onto the same processor MYPROC(1,2).

Fig. 6. Detailled visualization

Now, the user can change distribution specifications. HPF-BuiLDER auto-
matically update all the visual perception of this code. Programmer can con-
cludes distribution don't change the locality of interacting items of M, V and
R.

After that, other experimentations using realignment directives could pro-
duce less implicit communications due to replications.

403

FEUP - Faculdade de Engenharia da Universidade do Porto

This example shows how, even without execution and without knowing all
variables values and physical distributions, HPF-BuiLDER can help the user in
choosing a priori a better data mapping.

5 Communication visual predictions

Once the programmer created its mapping, efficiency have to be demonstrated.
This is achieved by using tools to visualize data distribution load and commu-
nication cost predictions.

The following instruction, with cyclic or block distribution, is taken as an
example:

forall(i=2:size(A,l), j=2:size(a,2))
A(i,j)= B(i)+A(i-l,j-l)

These predictions can be classified in several parts:

- The amount of data stored on each virtual processor. In order to know the
efficiency of data distribution, a simple histogram with a bar per processor
is used (figure 7). Clicking one of these bars can display a list with details
of data stored on it (like in the zoom effect described in 4.5).

Airay A

AirayB

ArreyG

Cyclic distribution Block distribution

Fig. 7. load histogram example

For a given instruction, the number of operations needed onto each virtual
processor. This is equivalent to the number of LHS data onto each processor
(assuming the owner computing rule). Thus, the visualization is the same.
The number of data movements implied by an instruction, for a given pro-
cessor, in input (respectively output). From the instruction to be executed
onto a given processor, we can deduce which data have to be read (written).
Then, we can obtain histograms showing where these data come from (go
to).

404

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Figure 8 shows data movements around processors (3,3). Movements come
from white blocks and go to black ones. In the example, the processor reads
data from (2,2) and (3,4) and sends other ones to (4,4).

I Inputs

ra outputs

Cyclic distribution Block distribution

Fig. 8. data movements from and to one processor

The total number of movements implied by an instruction. This means to
iterate the previous results in one graph for all the processors (figure 9).
Here again, the user can click a bar to see details about data origins and
destinations.

Cyclic distribution Block distribution

Fig. 9. global data movements

The same visualization tool can be extended for a loop nest, or a block of
instructions. The computation can be iterated for each instruction of a block,
and then iterated for each loop of the nest. The CPU time could become huge
according to the number of abstract processors.

405

FEUP - Faculdade de Engenharia da Universidade do Porto

Implementation

All the informations needed to evaluate the distribution load are the same as
the ones needed to accurately visualize the mappings. During the visualization,
the user can specify default values for variables and runtime data. Thus, the
load distribution is calculable at visualization time, without execution or even
compilation of the program.

Evaluation of communication costs uses the same methods than HPF com-
pilers: for each processor, we have to identify which data has to been sent to
(received from) every other processors.

A solution currently studied in [2] consists in identify how communications
are computed into the code generated by a compiler as Adaptor.

For large data or grids of processors, the calculation time could become huge
(too huge for interactive evaluation).

Assuming the owner compute rule, any given instruction implies data move-
ments for each remote access. Their number can be interpreted as an enumera-
tion of common points between two sets of positions. These calculations may not
need to enumerate all data movements. It is possible to eval them with symbolic
methods, to obtain formulas depending of variables and runtime data. While the
user sets this values, it is possible to visualize data movements without having
to compute everything from scratch. Furthermore, this method is independent
of the size of data. First results were obtained in [3] for a global communication
cost evaluation.

6 Conclusion

Data parallel programming is still a difficult art. Scientific programmers have
expended a lot of efforts in learning vector programming. Now they have to
learn a third generation dialect of FORTRAN to map their data onto distributed
memory machines. To succeed in this task, they need some tools to help them
to manage their data distributions. HPF-BuiLDER is a first step in Computer
Assisted High Performance Programming. The automatic insertion of HPF di-
rectives in a FORTRAN 90 code frees the programmer from the new syntactic
constraints.

Optimization of both load distribution and communication overhead is a key
element for parallel programming. The extension of HPF-BuiLDER presented in
this paper gives more informations to guide the programmer during this devel-
opment phase in HPF.

Visualization of distribution and prediction of communication costs lead the
user to refine his HPF directives during the editing phase.

HPF-BuiLDER is a good plateform into which such tools can be plugged in.
The user still decides if a solution is better than another one. Future works

should include more complex evaluation methods to guide the user to better
mappings.

406

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

More target specific informations like computation/communication overlap-
ping, netword capabilities, cache effects ... may be taken into account in these
methods.

The last version of HPF-BUILDER is always available on the Web[10]. All
are welcomed to use it and report all comments on improving the functionalities
of this tool.

References

1. A. Benalia, J.-L. Dekeyser, and P. Marquet. HelpDraw graphical environment: A
step beyond data parallel programming languages. In Fifth Int'l Conf. on Human-
Computer Interaction, pages 591-596, Orlando, FL, Aug. 1993. Elsevier Science
Publishers.

2. P. Boulet, J.-L. Dekeyser, C. Lefebvre, and D. Ruckebusch. Communication pre-
visualization. In HPF Second User Group Meeting, Porto, Portugal, June 1998.

3. P. Boulet and X. Redon. communication pre-evaluation in HPF. In EuroPar'98,
SouthHampton, UK, Sept. 1998.

4. K. M. Decker and B. J. Wylie. Software tools for scalable multi-level applica-
tion engineering. In Workshop on Environments and Tools For Parallel Scientific
Computing, Aug. 1996.

5. J.-L. Dekeyser and C. Lefebvre. Hpf-builder: A visual environment to transform
fortran 90 codes to hpf. International Journal of Supercomputing Applications and
High Performance Computing, 11(2):95-102, Summer 1997.

6. H. P. F. Forum. High Performance Fortran language specification, version 1.0.
Rice University, Houston, TX, May 1993.

7. H. P. F. Forum. High Performance Fortran language specification, version 2.0.
Rice University, Houston, TX, Jan. 1997.

8. R. K. S. Grabner and J. Volkert. Graphical support for data distribution in spmd
parallelization environments. In Proc. IEEE 2nd International Conference on Al-
gorithms and Parallel Processing, Singapore, 1996.

9. http://www.gmd.de/SCAI/lab/adaptor/cocktail.html. Cocktail compiler .toolbox.
10. http://www.lifl.fr/west/hpf-builder. the hpf-builder web page.
11. S. T.Hackstadt and A. D.Malony. Distributed array query and visualization for

high performance fortran. In Proc of Euro-Par'96. Lyon. France. August 1996,
Aout 1996.

12. Thinking Machines Corporation. Prism User's Guide for the CM-5, Dec. 1991.

407

FEUP - Faculdade de Engenharia da Universidade do Porto

408

VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing

Parallel and Distributed Computing
in Education

Peter H. Welch

Computing Laboratory, University of Kent at Canterbury, CT2 7NF.
P.H.Welch8ukc.ac.uk

Abstract. The natural world is certainly not organised through a cen-
tral thread of control. Things happen as the result of the actions and
interactions of unimaginably large numbers of independent agents, oper-
ating at all levels of scale from nuclear to astronomic. Computer systems
aiming to be of real use in this real world need to model, at the appro-
priate level of abstraction, that part of it for which it is to be of service.
If that modelling can reflect the natural concurrency in the system, it
ought to be much simpler

Yet, traditionally, concurrent programming is considered to be an ad-
vanced and difficult topic - certainly much harder than serial computing
which, therefore, needs to be mastered first. But this tradition is wrong.

This talk presents an intuitive, sound and practical model of parallel
computing that can be mastered by undergraduate students in the first
year of a computing (major) degree. It is based upon Hoare's mathe-
matical theory of Communicating Sequential Processes (CSP), but does
not require mathematical maturity from the students - that maturity is
pre-engineered in the model. Fluency can be quickly developed in both
message-passing and shared-memory concurrency, whilst learning to cope
with key issues such as race hazards, deadlock, livelock, process starva-
tion and the efficient use of resources. Practical work can be hosted on
commodity PCs or UNIX workstations using either Java or the occam
multiprocessing language. Armed with this maturity, students are well-
prepared for coping with real problems on real parallel architectures that
have, possibly, less robust mathematical foundations.

1 Introduction

At Kent, we have I**»-« learning parallel computing at the undergraduate level
for the past ten yaus (>n«inally, this was presented to first-year students before
they became too s«>t m tlw ways of serial logic. When this course was expanded
into a full unit (aUmt Hi hours of teaching), timetable pressure moved it into
the second year. Either way, the material is easy to absorb and, after only a
few (around 5) hour* <»(teaching, students have no difficulty in grappling with
the interactions of 2 j *a\ threads of control, appreciating and eliminating race
hazards and deadlock

409

FEUP - Faculdade de Engenharia da Universidade do Porto

Parallel computing is still an immature discipline with many conflicting cul-
tures. Our approach to educating people into successful exploitation of parallel
mechanisms is based upon focusing on parallelism as a powerful tool for simpli-
fying the description of systems, rather than simply as a means for improving
their performance. We never start with an existing serial algorithm and say:
'OK, let's parallelise that!'. And we work solely with a model of concurrency
that has a semantics that is compositional - a fancy word for WYSIWYG - since,
without that property, combinatorial explosions of complexity always get us as
soon as we step away from simple examples. In our view, this rules out low-level
concurrency mechanisms, such as spin-locks, mutexes and semaphores, as well
as some of the higher-level ones (like monitors).

Communicating Sequential Processes (CSP)[l-3] is a mathematical theory for
specifying and verifying complex patterns of behaviour arising from interactions
between concurrent objects. Developed by Tony Hoare in the light of earlier
work on monitors, CSP has a compositional semantics that greatly simplifies
the design and engineering of such systems - so much so, that parallel design
often becomes easier to manage than its serial counterpart. CSP primitives have
also proven to be extremely lightweight, with overheads in the order of a few
hundred nanoseconds for channel synchronisation (including context-switch) on
current microprocessors [4,5].

Recently, the CSP model has been introduced into the Java programming
language [6-10]. Implemented as a library of packages [11,12], JavaPP[10] en-
ables multithreaded systems to be designed, implemented and reasoned about
entirely in terms of CSP synchronisation primitives (channels, events, etc.) and
constructors (parallel, choice, etc.). This allows 20 years of theory, design pat-
terns (with formally proven good properties - such as the absence of race hazards,
deadlock, livelock and thread starvation), tools supporting those design patterns,
education and experience to be deployed in support of Java-based multithreaded
applications.

2 Processes, Channels and Message Passing

This section describes a simple and structured multiprocessing model derived
from CSP. It is easy to teach and can describe arbitrarily complex systems. No
formal mathematics need be presented - we rely on an intuitive understanding
of how the world works.

2.1 Processes

A process is a component that encapsulates some data structures and algorithms
for manipulating that data. Both its data and algorithms are private. The outside
world can neither see that data nor execute those algorithms. Each process is
alive, executing its own algorithms on its own data. Because those algorithms are
executed by the component in its own thread (or threads) of control, they express

410

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

the behaviour of the component from its own point of view1. This considerably
simplifies that expression.

A sequential process is simply a process whose algorithms execute in a single
thread of control. A network is a collection of processes (and is, itself, a process).
Note that recursive hierarchies of structure are part of this model: a network is
a collection of processes, each of which may be a sub-network or a sequential
process.

But how do the processes within a network interact to achieve the behaviour
required from the network? They can't see each other's data nor execute each
other's algorithms - at least, not if they abide by the rules.

2.2 Synchronising Channels

The simplest form of interaction is synchronised message-passing along channels.
The simplest form of channel is zero-buffered and point-to-point. Such channels
correspond very closely to our intuitive understanding of a wire connecting two
(hardware) components.

Fig. 1. A simple network

In Figure 1, A and B are processes and c is a channel connecting them. A wire
has no capacity to hold data and is only a medium for transmission. To avoid
undetected loss of data, channel communication is synchronised. This means
that if A transmits before B is ready to receive, then A will block. Similarly, if
B tries to receive before A transmits, B will block. When both are ready, a data
packet is transferred - directly from the state space of A into the state space of
B. We have a synchronised distributed assignment.

2.3 Legoland

Much can be done just with this simple model - from the design of self-timed dig-
ital logic (no global clock) through to the wide range of industrial multiprocessor
embedded control for which occam[13-16] was orignally designed.

Here are some simple examples to build up fluency. First we introduce some
elementary components from our 'teaching' catalogue - see Figure 2. All pro-
cesses are cyclic and all transmit and receive just numbers. The Id process cycles

1 This is in contrast with simple 'objects' and their 'methods'. A method body nor-
mally executes in the thread of control of the invoking object. Consequently, object
behaviour is expressed from the point of view of its environment rather than the
object itself. This is a slightly confusing property of traditional 'object-oriented'
programming.

If

411

FEUP - Faculdade de Engenharia da Universidade do Porto

through waiting for a number to arrive and, then, sending it on. Although in-
serting an Id process in a wire will clearly not affect the data flowing through
it, it does make a difference. A bare wire has no buffering capacity. A wire con-
taining an Id process gives us a one-place FIFO. Connect 20 in series and we
get a 20-place FIFO - sophisticated function from a trivial design.

id (in, out) Succ (in, out)

Delta (in, outO, outl)

in out ,

Prefix (n, in, out) Tail (in, out)

Fig. 2. Extract from a component catalogue

Succ is like Id, but increments each number as it flows through. The Plus
component waits until a number arrives on each input line (accepting their arrival
in either order) and outputs their sum. Delta waits for a number to arrive and,
then, broadcasts it in parallel on its two output lines - both those outputs must
complete (in either order) before it cycles round to accept further input. Prefix
first outputs the number stamped on it and then behaves like Id. Tail swallows
its first input without passing it on and then, also, behaves like Id. Prefix
and Tail are so named because they perform, respectively, prefixing and tail
operations on the streams of data flowing through them.

It's essential to provide a practical environment in which students can develop
executable versions of these components and play with them (by plugging them
together and seeing what happens). This is easy to do in occam and now, with
the JCSP libraryfll], in Java. Appendices A and B give some of the details. Here
we only give some CSP pseudo-code for our catalogue (because that's shorter
than the real code):

Id (in, out) = in ? x —> out ! x —> Id (in, out)

Succ (in, out) = in ? x —> out ! (x+1) --> Succ (in, out)

412

VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing

Plus (inO, inl, out)
= ((inO ? xO --> SKIP) II (inl ? xl —> SKIP)); '

out ! (xO + xl) —> Plus (inO, inl, out)

Delta (in, outO, outl)
= in ? x —> ((outO ! x --> SKIP) II (outl ! x --> SKIP));

Delta (in, outO, outl)

Prefix (n, in, out) = out ! n —> Id (in, out)

Tail (in, out) = in ? x —> Id (in, out)

[Notes: 'free' variables used in these pseudocodes are assumed to be locally
declared and hidden from outside view. All these components are sequential pro-
cesses. The process (in ? x —> P (...)) means: "wait until you can engage
in the input event (in ? x) and, then, become the process P (...)". The input
operator (?) and output operator (!) bind more tightly than the -->.]

2.4 Plug and Play

Plugging these components together and reasoning about the resulting behaviour
is easy. Thanks to the rules on process privacy2, race hazards leading to unpre-
dictable internal state do not arise. Thanks to the rules on channel synchronisa-
tion, data loss or corruption during communication cannot occur3. What makes
the reasoning simple is that the parallel constructor and channel primitives are
deterministic. Non-determinism has to be explicitly designed into a process and
coded - it can't sneak in by accident!

Figure 3 shows a simple example of reasoning about network composition.
Connect a Prefix and a Tail and we get two Ids:

(Prefix (in, c) II Tail (c, out)) = (Id (in, c) |I Id (c, out))

Equivalence means that no environment (i.e. external network in which they
are placed) can tell them apart. In this case, both circuit fragments implement a
2-place FIFO. The only place where anything different happens is on the internal
wire and that's undetectable from outside. The formal proof is a one-liner from
the definition of the parallel (II), communications (!, ?) and and-then-becomes
(-->) operators in CSP. But the good thing about CSP is that the mathematics
engineered into its design and semantics cleanly reflects an intuitive human feel
for the model. We can see the equivalence at a glance and this quickly builds
confidence both for us and our students.
2

3

No external access to internal data. No external execution of internal algorithms
(methods).
Unreliable communications over a distributed network can be accommodated in this
model - the unreliable network being another active process (or set of processes)
that happens not to guarantee to pass things through correctly.

413

FEUP - Faculdade de Engenharia da Universidade do Porto

flft in ^y c out

Fig. 3. A simple equivalence

numbers (out)

Integrate (in, out)

Pairs (in, out)

Fig. 4. Some more interesting circuits

414

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Figure 4 shows some more interesting circuits with the first two incorporating
feedback. What do they do? Ask the students! Here are some CSP pseudo-codes
for these circuits:

Numbers (out)
= Prefix (0, c, a) II Delta (a, out, b) II Succ (b, c)

Integrate (in, out)
= Plus (in, c, a) II Delta (a, out, b) II Prefix (0, b, c)

Pairs (in, out)
= Delta (in, a, b) II Tail (b, c) II Plus (a, c, out)

Again, our rule for these pseudo-codes means that a, b and c are locally .
declared channels (hidden, in the CSP sense, from the outside world). Appendices
A and B list occam and Java executables - notice how closely they reflect the
CSP.

Back to what these circuits do: Numbers generates the sequence of natural
numbers, Integrate computes running sums of its inputs and Pairs outputs
the sum of its last two inputs. If we wish to be more formal, let c<i> represent
the i'th element that passes through channel c - i.e. the first element through
is c<l>. Then, for any i >= 1:

numbers: out<i> = i - 1
integrate: out<i> = Sum {in<j> I j = l..i}
pairs: out<i> = in<i> + in<i + 1>

Be careful that the above only details part of the specification of these circuits:
how the values in their output stream(s) relate to the values in their input
stream (s). We also have to be aware of how flexible they are in synchronising
with their environments, as they generate and consume those streams. The base
level components Id, Succ, Plus and Delta each demand one input (or pair of
inputs) before generating one output (or pair of outputs). Tail demands two
inputs before its first output, but thereafter gives one output for each input.
This effect carries over into Pairs, Integrate adds 2-place buffering between
its input and output channels (ignoring the transformation in the actual values
passed). Numbers will always deliver to anything trying to take input from it.

If necessary, we can make these synchronisation properties mathematically
precise. That is, after all, one of the reasons for which CSP was designed.

2.5 Deadlock - First Contact

Consider the circuit in Figure 5. A simple stream analysis would indicate that:

Pairs2: a<i> = in<i>
Pairs2: b<i> = in<i>
Pairs2: c<i> = b<i + 1> = in<i + 1>
Pairs2: d<i> = c<i + 1> = in<i + 2>
Pairs2: out<i> = a<i> + d<i> = in<i> + in<i + 2>

415

FEUP - Faculdade de Engenharia da Universidade do Porto

Pair«2 (in, out)

Fig. 5. A dangerous circuit

But this analysis only shows what would be generated if anything were gen-
erated. In this case, nothing is generated since the system deadlocks. The two
Tail processes demand three items from Delta before delivering anything to
Plus. But Delta can't deliver a third item to the Tails until it's got rid of its
second item to Plus. But Plus won't accept a second item from Delta until it's
had its first item from the Tails. Deadlock!

In this case, deadlock can be designed out by inserting an Id process on
the upper (a) channel. Id processes (and FIFOs in general) have no impact on
stream contents analysis but, by allowing a more decoupled synchronisation, can
impact on whether streams actually flow. Beware, though, that adding buffering
to channels is not a general cure for deadlock.

So, there are always two questions to answer: what data flows through the
channels, assuming data does flow, and are the circuits deadlock-free? Deadlock
is a monster that must - and can - be vanquished. In CSP, deadlock only occurs
from a cycle of committed attempts to communicate (input or output): each pro-
cess in the cycle refusing its predecessor's call as it tries to contact its successor.
Deadlock potential is very visible - we even have a deadlock primitive (STOP) to
represent it, on the grounds that it is a good idea to know your enemy!

In practice, there now exist a wealth of design rules that provide formally
proven guarantees of deadlock freedom[17-22]. Design tools supporting these
rules - both constructive and analytical - have been researched[23,24]. Deadlock,
together with related problems such as livelock and starvation, need threaten us
no longer - even in the most complex of parallel system.

2.6 Structured Plug and Play

Consider the circuits of Figure 6. They are similar to the previous circuits,
but contain components other than those from our base catalogue - they use
components we have just constructed. Here is the CSP:

Fibonacci (out)
= prefix (0, d, a) II prefix (1, a, b) II

delta (b, out, c) II pairs (c, d)

Squares (out)

= Numbers (a) I I Integrate (a, b) I I Pairs (b, out)

416

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Demo (out)
= Numbers (a) I I Fibonacci

Tabulate3 (a, b, c, out)
(b) II Squares (c) II

a _ w&ik b (M out ni|^/

d\ /c

Fibonacci (out)

Squaraa (out)

b jj y.&jthgümcci,: \
*" .' -•rr **■ ■

T3fH|th"»iit'-
c/^

out "

.-..^auai»« ■

Darno (out)

Fig. 6. Circuits of circuits

One of the powers of CSP is that its semantics obey simple composition rules.
To understand the behaviour implemented by a network, we only need to know
the behaviour of its nodes - not their implementations.

For example, Fibonacci is a feedback loop of four components. At this level,
we can remain happily ignorant of the fact that its Pairs node contains another
three. We only need to know that it requires two numbers before it outputs
anything and that, thereafter, it outputs once for every input. The two Prefixes
initially inject two numbers (0 and 1) into the circuit. Both go into Pairs,

417

FEUP - Faculdade de Engenharia da Universidade do Porto

but only one (their sum) emerges. After this, the feedback loop just contains a
single circulating packet of information (successive elements of the Fibonacci
sequence). The Delta process taps this circuit to provide external output.

Squares is a simple pipeline of three components. It's best not to think of
the nine processes actually involved. Clearly, for i >= 1:

Squares: a<i> = i - 1
Squares: b<i> = Sum {j - 1 I j = 1. .i} = Sum {j | j = 0..(i - 1)}
Squares: out<i> = Sum {j I j = 0..(i - 1)} + Sum {j I j = 0..i} = i * i

So, Squares outputs the increasing sequence of squared natural numbers. It
doesn't deadlock because Integrate and Pairs only add buffering properties
and it's safe to connect buffers in series.

Tabulate3 is from our base catalogue. Like the others, it is cyclic. In each
cycle, it inputs in parallel one number from each of its three input channels and,
then, generates a line of text on its output channel consisting of a tabulated
(15-wide, in this example) decimal representation of those numbers.

Tabulate3 (inO, inl, in2, out)
= ((inO ? xO - SKIP) II (inl ? xl - SKIP) || (in2 ? x2 - SKIP));

print (xO, 15, out); print (xl, 15, out); println (x2, 15, out);
Tabulate3 (inO, inl, in2, out)

Connecting the output channel from Demo to a text window displays three
columns of numbers: the natural numbers, the Fibonacci sequence and perfect
squares.

It's easy to understand all this - thanks to the structuring. In fact, Demo
consists of 27 threads of control, 19 of them permanent with the other 8 being
repeatedly created and destroyed by the low-level parallel inputs and outputs
in the Delta, Plus and Tabulate3 components. If we tried to understand it on
those terms, however, we would get nowhere.

Please note that we are not advocating designing at such a fine level of gran-
ularity as normal practice! These are only exercises and demonstrations to build
up fluency and confidence in concurrent logic. Having said that, the process
management overheads for the occam Demo executables are only around 30 mi-
croseconds per output line of text (i.e. too low to see) and three milliseconds
for the Java (still t<*> low to see). And, of course, if we are using these tech-
niques for designing M-AJ hardware[25], we will be working at much finer levels
of granularity than thi»

2.7 Coping with th* Real World - Making Choices

The model we have < .Ui»«i.-red so far - parallel processes communicating through
dedicated (point-to-j« nut < hannels - is deterministic. If we input the same data
in repeated runs, we »til always receive the same results. This is true regardless
of how the processes <ue « heduled or distributed. This provides a very stable
base from which to explore the real world, which doesn't always behave like this.

418

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Any machine with externally operatable controls that influence its internal
operation, but whose internal operations will continue to run in the absence of
that external control, is not deterministic in the above sense. The scheduling of
that external control will make a difference. Consider a car and its driver heading
for a brick wall. Depending on when the driver applies the brakes, they will end
up in very different states!

CSP provides operators for internal and external choice. An external choice
is when a process waits for its environment to engage in one of several events -
what happens next is something the environment can determine (e.g. a driver
can press the accelerator or brake pedal to make the car go faster or slower).
An internal choice is when a process changes state for reasons its environment
cannot determine (e.g. a self-clocked timeout or the car runs out of petrol). Note
that for the combined (parallel) system of car-and-driver, the accelerating and
braking become internal choices so far as the rest of the world is concerned.

occam provides a constructor (ALT) that lets a process wait for one of many
events. These events are restricted to channel input, timeouts and SKIP (a null
event that has always happened). We can also set pre-conditions - run-time tests
on internal state - that mask whether a listed event should be included in any
particular execution of the ALT. This allows very flexible internal choice within a
component as to whether it is prepared to accept an external communication4.
The JavaPP libraries provide an exact analogue (Alternative. select) for these
choice mechanisms.

If several events are pending at an ALT, an internal choice is normally made
between them. However, occam allows a PRI ALT which resolves the choice be-
tween pending events in order of their listing. This returns control of the opera-
tion to the environment, since the reaction of the PRI ALTing process to multiple
communications is now predictable. This control is crucial for the provision of
real-time guarantees in multi-process systems and for the design of hardware.
Recently, extensions to CSP to provide a formal treatment of these mechanisms
have been made[26,27].

tnJ»ot lindeot

Replac« ila. wc. inject) Seals (in, out, indect)

Fig. 7. Two control processes

4 This is in contrast in ". r.,r,irs, whose methods cannot refuse an external call when
they are unlocked <m<l i.^-- •• to wait on condition variables should their state prevent
them from servicing t !.•• -iJl The close coupling necessary between sibling monitor
methods to undo the r<->ui1111 g mess is not WYSIWYG[9].

419

FEUP - Faculdade de Engenharia da Universidade do Porto

Figure 7 shows two simple components with this kind of control. Replace
listens for incoming data on its in and inject lines. Most of the time, data
arrives from in and is immediately copied to its out line. Occasionally, a signal
from the inject line occurs. When this happens, the signal is copied out but,
at the same time, the next input from in is waited for and discarded. In case
both inject and in communications are on offer, priority is given to the (less
frequently occurring) inject:

Replace (in, inject, out)
= (inject ? signal --> ((in ? x —> SKIP) || (out ! signal --> SKIP))

[PRI]
in ? x --> out ! x —> SKIP

);
Replace (in, inject, out)

Replace is something that can be spliced into any channel. If we don't use
the inject line, all it does is add a one-place buffer to the circuit. If we send
something down the. inject line, it gets injected into the circuit - replacing the
next piece of data that would have travelled through that channel.

RNumbers (out, reset)

RIntegrate (in, out, reset)

Fig. 8. Two controllable processes

420

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Figure 8 shows RNumbers and RIntegrate, which are just Numbers and
Integrate with an added Replace component. We now have components that
are resettable by their environments. RNumbers can be reset at any time to
continue its output sequence from any chosen value. RIntegrate can have its
internal running sum redefined.

Like Replace, Scale (figure 7) normally copies numbers straight through,
but scales them by its factor m. An inject signal resets the scale factor:

Scale (m, in, inject, out)
= (inject ? m --> SKIP

[PRI]
in ? x —> out ! m*x --> SKIP

);
Scale (m, in, inject, out)

Figure 9 shows RPairs, which is Pairs with the Scale control component
added. If we send just +1 or -1 down the reset line of RPairs, we control whether
it's adding or subtracting successive pairs of inputs. When it's subtracting, its
behaviour changes to that of a differentiator - in the sense that it undoes the
effect of Integrate.

RPairs (in, out, reset)

Fig. 9. Sometimes Pairs, sometimes Differentiate

This allows a nice control demonstration. Figure 10 shows a circuit whose
core is a resettable version of the Squares pipeline. The Monitor process reacts
to characters from the keyboard channel. Depending on its value, it outputs an
appropriate signal down an appropriate reset channel:

Monitor (keyboard, resetN, resetl, resetP)
■ (keyboard ? ch —>

CASE ch
'N'
*I'
' + '

resetN ! 0 --> SKIP
resetl ! 0 --> SKIP
resetP ! +1 —> SKIP
resetP ! -1 --> SKIP

);■

Monitor (keyboard, resetN, resetl, resetP)

421

FEUP - Faculdade de Engenharia da Universidade do Porto

keyboard

''
IP -w"~*S

r VTJL?

1
" ' 1 '

nhobtri • ÜJSJffliKM^ji^--'..■■1 _ >a *t * 1<P«lr»

■

SpBs^ 1

■creen

Demo2 (keyboard, screen)

Fig. 10. A user controllable machine

When Demo2 runs and we don't type anything, we see the inner workings of
the Squares pipeline tabulated in three columns of output. Keying in an 'N',
'I', '+' or '-' character allows the user some control over those workings5. Note
that after a '-', the output from RPairs should be the same as that taken from
RNumbers.

2.8 A Nastier Deadlock

One last exercise should be done. Modify the system so that output freezes if an
'F' is typed and unfreezes following the next character.

Two 'solutions' offer themselves and Figure 11 shows the wrong one (Demo3).
This feeds the output from Tabulate3 back to a modified Monitor2 and then on
to the screen. The Monitor2 process PRI ALTs between the keyboard channel
and this feedback:

Monitor2 (keyboard, feedback, resetN, resetl, resetP)
= (keyboard ? ch —>

CASE ch
... deal with 'N\ 'I', ' + ', '-' as before
'F': keyboard ? ch —> SKIP

[PRI]
feedback ? x —> screen ! x --> SKIP

);
Monitor2 (keyboard, feedback, resetN, resetl, resetP)

In practice, we need to add another process after Tabulate3 to slow down the rate of
output to around 10 lines per second. Otherwise, the user cannot properly appreciate
the immediacy of control that has been obtained.

422

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

keyboard

■ ".'jlfm^.^gH'j

^Sobers

feedback

Demo3 (keyboard, screen)

Fig. 11. A machine over which we may lose control

Traffic will normally be flowing along the feedback-screen route, inter-
rupted only when Monitor2 services the keyboard. The attraction is that if
an 'F' arrives, Monitor2 simply waits for the next character (and discards it).
As a side-effect of this waiting, the screen traffic is frozen.

But if we implement this, we get some worrying behaviour. The freeze oper-
ation works fine and so, probably, do the 'N' and 'I' resets. Sometimes, however,
a '+' or '-' reset deadlocks the whole system - the screen freezes and all further
keyboard events are refused!

The problem is that one of the rules for deadlock-free design has been broken:
any data-flow circuit must control the number of packets circulating! If this num-
ber rises to the number of sequential (i.e. lowest level) processes in the circuit,
deadlock always results. Each node will be trying to output to its successor and
refusing input from its predecessor.

The Numbers, RNumbers, Integrate, RIntegrate and Fibonacci networks
all contain data-flow loops, but the number of packets concurrently in flight is
kept at one6.

In Demo3 however, packets are continually being generated within RNumbers,
flowing through several paths to Monitor2 and, then, to the screen. Whenever
Monitor2 feeds a reset back into the circuit, deadlock is possible - although not
certain. It depends on the scheduling. RNumbers is always pressing new packets
into the system, so the circuits are likely to be fairly full. If Monitor2 generates
a reset when they are full, the system deadlocks. The shortest feedback loop is
from Monitor2, RPairs. Tabulate3 and back to Monitor2 - hence, it is the '+'
and '-' inputs from keyboard that are most likely to trigger the deadlock.

Initially, Fibonacci has two packets, but they combine into one before the end of
their first circuit.

423

FEUP - Faculdade de Engenharia da Universidade do Porto

I keyboard

HDiafaara

Damol (keyboard, »green)

Fig. 12. A machine over which we will not lose control

The design is simply fixed by removing that feedback at this level - see Demo4
in Figure 12. We have abstracted the freezing operation into its own component
(and catalogued it). It's never a good idea to try and do too many functions in
one sequential process. That needlessly constrains the synchronisation freedom
of the network and heightens the risk of deadlock. Note that the idea being
pushed here is that, unless there are special circumstances, parallel design is
safer and simpler than its serial counterpart!

Demo4 obeys another golden rule: every device should be driven from its own
separate process. The keyboard and screen channels interface to separate de-
vices and should be operated concurrently (in Demo3, both were driven from one
sequential process - Monitor2). Here are the driver processes from Demo4:

Freeze (in, freeze, out)
= (freeze ? x --> freeze ? x —> SKIP

[PRI]
(in ? x --> out ! x —> SKIP

);
Freeze (in, freeze, out)

Monitor3 (keyboard, resetN, resetl, resetP, freeze)
= (keyboard ? ch —>

CASE ch

... deal with 'N\ 'I', ' + ', '-' as before

'F': freeze ! ch —> keyboard ? ch —> freeze ! ch —> SKIP

);
Monitor3 (keyboard, resetN, resetl, resetP, freeze)

424

FEUP - Faculdade de Engenharia da Universidade do Porto

A channel structure is just a record (or object) holding two or more CSP
channels. Usually, there would be just two channels - one for each direction of
communication. The channel structure is used to conduct a two-way conversation
between two processes. To avoid deadlock, of course, they will have to understand
protocols for using the channel structure - such as who speaks first and when the
conversation finishes. We call the process that opens the conversation a client
and the process that listens for that call a server8.

Fig. 13. A many-many shared channel

The CSP model is extended by allowing multiple clients and servers to share
the same channel (or channel structure) - see Figure 13. Sanity is preserved
by ensuring that only one client and one server use the shared object at any
one time. Clients wishing to use the channel queue up first on a client-queue
(associated with the shared channel) - servers on a server-queue (also associated
with the shared channel). A client only completes its actions on the shared
channel when it gets to the front of its queue, finds a server (for which it may
have to wait if business is good) and completes its transaction. A server only
completes when it reaches the front of its queue, finds a client (for which it may
have to wait in times of recession) and completes its transaction.

Note that shared channels - like the choice operator between multiple events
- introduce scheduling dependent non-determinism. The order in which processes
are granted access to the shared channel depends on the order in which they join
the queues.

Shared channels provide a very efficient mechanism for a common form of
choice. Any server that offers a non-discriminatory service9 to multiple clients
should use a shared channel, rather than ALTing between individual channels
from those clients. The shared channel has a constant time overhead - ALTing
is linear on the number of clients. However, if the server needs to discriminate
between its clients (e.g. to refuse service to some, depending upon its internal
state), ALTing gives us that flexibility. The mechanisms can be efficiently com-
bined. Clients can be grouped into equal-treatment partitions, with each group
clustered on its own shared channel and the server ALTing between them.

In fact, the client/server relationship is with respect to the channel structure. A
process may be both a server on one interface and a client on another.
Examples for such servers include window managers for multiple animation processes,
data loggers for recording traces from multiple components from some machine, etc.

426

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

2.9 Buffered and Asynchronous Communications

We have seen how fixed capacity FIFO buffers can be added as active processes
to CSP channels. For the occam binding, the overheads for such extra processes
are negligible.

With the JavaPP libraries, the same technique may be used, but the channel
objects can be directly configured to support buffered communications - which
saves a couple of context switches. The user may supply objects supporting any
buffering strategy for channel configuration, including normal blocking buffers,
overwrite-when-full buffers, infinite buffers and black-hole buffers (channels that
can be written to but not read from - useful for masking off unwanted outputs
from components that, otherwise, we wish to reuse intact). However, the user
had better stay aware of the semantics of the channels thus created!

Asynchronous communication is commonly found in libraries supporting inter-
processor message-passing (such as PVM and MPI). However, the concurrency
model usually supported is one for which there is only one thread of control on
each processor. Asynchronous communication lets that thread of control launch
an external communication and continue with its computation. At some point,
that computation may need to block until that communication has completed.

These mechanisms are easy to obtain from the concurrency model we are
teaching (and which we claim to be general). We don't need anything new.
Asynchronous sends are what happen when we output to a buffer (or buffered
channel). If we are worried about being blocked when the buffer is full or if we
need to block at some later point (should the communication still be unfinished),
we can simply spawn off another process7 to do the send:

(out ! packet --> SKIP IPRII SomeMoreComputation (...));
Continue (...)

The Continue process only starts when both the packet has been sent
and SomeMoreComputation has finished. SomeMoreComputation and sending the
packet proceed concurrently. We have used the priority version of the parallel
operator (IPRII, which gives priority to its left operand), to ensure that the send-
ing process initiates the transfer before the SomeMoreComputation is scheduled.
Asynchronous receives are implemented in the same way:

(in ? packet —> SKIP IPRII SomeMoreComputation (...));
Continue (...)

2.10 Shared Channels

CSP channels are strictly point-to-point. occam3[28] introduced the notion of
(securely) shared channels and channel structures. These are further extended
in the KRoC occam[29] and JavaPP libraries and are included in the teaching
model.

The occam overheads for doing this are less than half a microsecond.

425

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

For deadlock freedom, each server must guarantee to respond to a client call
within some bounded time. During its transaction with the client, it must follow
the protocols for communication defined for the channel structure and it may
engage in separate client transactions with other servers. A client may open a
transaction at any time but may not interleave its communications with the
server with any other synchronisation (e.g. with another server). These rules
have been formalised as CSP specifications[21]. Client-server networks may have
plenty of data-flow feedback but, so long as no cycle of client-server relations
exist, [21] gives formal proof that the system is deadlock, livelock and starvation
free.

Shared channel structures may be stretched across distributed memory (e.g.
networked) multiprocessors^]. Channels may carry all kinds of object - includ-
ing channels and processes themselves. A shared channel is an excellent means for
a client and server to find each other, pass over a private channel and communi-
cate independently of the shared one. Processes will drag pre-attached channels
with them as they are moved and can have local channels dynamically (and
temporarily) attached when they arrive. See David May's work on Icarus[30,31]
for a consistent, simple and practical realisation of this model for distributed
and mobile computing.

3 Events and Shared Memory

Shared memory concurrency is often described as being 'easier' than message
passing. But great care must be taken to synchronise concurrent access to shared
data, else we will be plagued with race hazards and our systems will be useless.
CSP primitives provide a sharp set of tools for exercising this control.

3.1 Symmetric Multi-Processing (SMP)

The private memory/algorithm principles of the underlying model - and the
security guarantees that go with them - are a powerful way of programming
shared memory multiprocessors. Processes can be automatically and dynami-
cally scheduled between available processors (one object code fits all). So long
as there is an excess of (runnable) processes over processors and the scheduling
overheads are sufficiently low, high multiprocessor efficiency can be achieved -
with guaranteed no race hazards. With the design methods we have been de-
scribing, it's very easy to generate lots of processes with most of them runnable
most of the time.

3.2 Token Passing and Dynamic CREW

Taking advantage of shared memory to communicate between processes is an
extension to this model and must be synchronised. The shared data does not
belong to any of the sharing processes, but must be globally visible to them -
either on the stack (for occam) or heap (for Java).

427

FEUP - Faculdade de Engenharia da Universidade do Porto

The JavaPP channels in previous examples were only used to send data values
between processes - but they can also be used to send objects. This steps outside
the automatic guarantees against race hazard since, unconstrained, it allows
parallel access to the same data. One common and useful constraint is only to
send immutable objects. Another design pattern treats the sent object as a token
conferring permission to use it - the sending process losing the token as a side-
effect of the communication. The trick is to ensure that only one copy of the
token ever exists for each sharable object.

Dynamic CREW (Concurrent Read Exclusive Write) operations are also pos-
sible with shared memory. Shared channels give us an efficient, elegant and easily
provable way to construct an active guardian process with which application pro-
cesses synchronise to effect CREW access to the shared data. Guarantees against
starvation of writers by readers - and vice-versa - are made. Details will appear
in a later report (available from [32]).

3.3 Structured Barrier Synchronisation and SPMD

Point-to-point channels are just a specialised form of the general CSP multi-
process synchronising event. The CSP parallel operator binds processes together
with events. When one process synchronises on an event, all processes registered
for that event must synchronise on it before that first process may continue.
Events give us structured multiway barrier synchronisation[29].

bO b2 bO bl bO b2 bO bl

Fig. 14. Multiple barriers to three processes

We can have mam ewnt barriers in a system, with different (and not neces-
sarily disjoint) suhs#>t« ..f processes registered for each barrier. Figure 14 shows
the execution trao-s f.* three processes (P, M and D) with time flowing horizon-
tally. They do not .til pfgress at the same - or even constant - speed. From
time to time, tha f.iM.-i .n#~, will have to wait for their slower partners to reach
an agreed barrier l»-f. *#• <<il of them can proceed. We can wrap up the system in
typical SPMD form .t.»

II <i = 0 FOR 3>
S (i, ..., bO, bl. b2)

428

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

where bO, bl and b2 are events. The replicated parallel operator runs 3 instances
of S in parallel (with i taking the values 0, 1 and 2 respectively in the different
instances). The S process simply switches into the required form:

S (i bO, bl, b2)
= CASE i

0 : P (..., bO, bl)
1 : M (..., bO, bl, b2)
2 : D (..., bl, b2)

and where P, M and D are registered only for the events in their parameters. The
code for P has the form:

P (..., bO, bl)
= someWork (...); bO --> SKIP;
moreWork (...); bO --> SKIP;
lastBitOfWork (...); bl --> SKIP;
P (..., bO, bl)

3.4 Non-Blocking Barrier Synchronisation

In the same way that asynchronous communications can be expressed (section
2.9), we can also achieve the somewhat contradictory sounding, but potentially
useful, non-blocking barrier synchronisation.

In terms of serial programming, this is a two-phase commitment to the bar-
rier. The first phase declares that we have done everything we need to do this
side of the barrier, but does not block us. We can then continue for a while, doing
things that do not disturb what we have set up for our partners in the barrier
and do not need whatever it is that they have to set. When we need their work,
we enter the second phase of our synchronisation on the barrier. This blocks us
only if there is one, or more, of our partners who has not reached the first phase
of their synchronisation. With luck, this window on the barrier will enable most
processes most of the time to pass through without blocking:

doOurWorkNeededByOth«rs (...);
barrier.firstPh«»« ();
privateWork (.);
barrier.secondPfcu« ();
useSharedResourc««Prot«ctedByTheBarrier (...);

With our lightwfinht C'SP processes, we do not need these special phases to
get the same effert

do0urWorkNeedadByOtk«rt (...);
(barrier --> SKIP ; Mil I privateWork (...));
useSharedResourc«tProt»ctedByTheBarrier (...);

The explanation a.» to why this works is just the same as for the asynchronous
sends and receives.

429

FEUP - Faculdade de Engenharia da Universidade do Porto

3.5 Bucket Synchronisation

Although CSP allows choice over general events, the occam and Java bindings
do not. The reasons are practical - a concern for run-time overheads10. So,
synchronising on an event commits a process to wait until everyone registered for
the event has synchronised. These multi-way events, therefore, do not introduce
non-determinism into a system and provide a stable platform for much scientific
and engineering modelling.

Buckets[15] provide a non-deterministic version of events that are useful for
when the system being modelled is irregular and dynamic (e.g. motor vehicle
traffic[33]). Buckets have just two operations: jump and kick. There is no limit
to the number of processes that can jump into a bucket - where they all block.
Usually, there will only be one process with responsibility for kicking over the
bucket. This can be done at any time of its own (internal) choosing - hence the
non-determinism. The result of kicking over a bucket is the unblocking of all the
processes that had jumped into it11.

4 Conclusions

A simple model for parallel computing has been presented that is easy to learn,
teach and use. Based upon the mathematically sound framework of Hoare's CSP,
it has a compositional semantics that corresponds well with out intuition about
how the world is constructed. The basic model encompasses object-oriented de-
sign with active processes (i.e. objects whose methods are exclusively under their
own thread of control) communicating via passive, but synchronising, wires. Sys-
tems can be composed through natural layers of communicating components so
that an understanding of each layer does not depend on an understanding of the
inner ones. In this way, systems with arbitrarily complex behaviour can be safely
constructed - free from race hazard, deadlock, livelock and process starvation.

A small extension to the model addresses fundamental issues and paradigms
for shared memory concurrency (such as token passing, CREW dynamics and
bulk synchronisation). We can explore with equal fluency serial, message-passing
and shared-memory logic and strike whatever balance between them is appro-
priate for the problem under study. Applications include hardware design (e.g.
FFGAs and ASICs), realtime control systems, animation, GUIs, regular and
irregular modelling, distributed and mobile computing.

occam and Java bindings for the model are available to support practical
work on commodity PCs and workstations. Currently, the occam bindings are

Synchronising on an event in occam has a unit time overhead, regardless of the num-
ber of processes registered. This includes being the last process to synchronise, when
all blocked processes are released. These overheads are well below a microsecond for
modern microprocessors.
As for events, the jump and kick operations have constant time overhead, regardless
of the number of processes involved. The bucket overheads are slightly lower than
those for events.

430

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

the fastest (context-switch times under 300 nano-seconds), lightest (in terms
of memory demands), most secure (in terms of guaranteed thread safety) and
quickest to learn. But Java has the libraries (e.g. for GUIs and graphics) and
will get faster. Java thread safety depends on following the CSP design patterns,
but these are easy to acquire12.

The JavaPP JCSP library[ll] also includes an extension to the Java AWT
package that drops channel interfaces on all GUI components13. Each item (e.g.
a Button) is a process with a configure and action channel interface. These are
connected to separate internal handler processes. To change the text or colour
of a Button, an application process outputs to its configure channel. If some-
one presses the Button, it outputs down its action channel to an application
process (which can accept or refuse the communication as it chooses). Exam-
ple demonstrations of the use of this package may be found at [11]. Whether
GUI programming through the process-channel design pattern is simpler than
the listener-callback pattern offered by the underlying AWT, we leave for the
interested reader to experiment and decide.

All the primitives described in this paper are available for KRoC occam and
Java. Multiprocessor versions of the KRoC kernel targeting NOWs and SMPs
will be available later this year. SMP versions of the JCSP[11] and CJT[12]
libraries are automatic if your JVM supports SMP threads. Hooks are provided
in the channel libraries to allow user-defined network drivers to be installed.
Research is continuing on portable/faster kernels and language/tool design for
enforcing higher level aspects of CSP design patterns (e.g. for shared memory
safety and deadlock freedom) that currently rely on self-discipline.

Finally, we stress that this is undergraduate material. The concepts are ma-
ture and fundamental - not advanced - and the earlier they are introduced the
better. For developing fluency in concurrent design and implementation, no spe-
cial hardware is needed. Students can graduate to real parallel systems once they
have mastered this fluency. The CSP model is neutral with respect to parallel
architecture so that coping with a change in language or paradigm is straight-
forward. However, even for uni-processor applications, the ability to do safe and
lightweight multithreading is becoming crucial both to improve response times
and simplify their design.

The experience at Kent is that students absorb these ideas very quickly and
become very creative14. Now that they can apply them in the context of Java,
they are smiling indeed.
12 Java active object (i.e. processes) do not invoke each other's methods and commu-

nicate only through shared passive objects with carefully designed synchronisation
properties (e.g. channels and events). Shared use of user-defined passive objects will
be automatically thread-safe so long as the shared memory usage patterns are kept.
We do not need to get involved with the monitor model within Java.

13 We believe that the new Swing GUI libraries from Sun (that will replace the AWT)
can also be extended through a channel interface for secure use in parallel designs -
despite the warnings concerning the use of Swing and multithreading[34].

14 The JCSP libraries used in Appendix B were produced by Paul Austin, an under-
graduate student at Kent.

431

FEUP - Faculdade de Engenharia da Universidade do Porto

References

1. C.A. Hoare. Communication Sequential Processes. CACM, 21(8):666-677 August
1978.

2. C.A. Hoare. Communication Sequential Processes. Prentice Hall, 1985.
3. Oxford University Computer Laboratory. The CSP Archive. <URL: http://

www.comlab.ox.ac.uk/ archive/ csp.html>, 1997.
4. P.H. Welch and D.C. Wood. KRoC - the Kent Retargetable occam Compiler. In

B. O'Neill, editor, Proceedings of WoTUG 19, Amsterdam, March 1996. WoTUG,
IOS Press. <URL:http:// www.hensa.ac.uk/ parallel/ occam/ projects/ occam-
for-all/ kroc/>.

5. Peter H. Welch and Michael D. Poole. occam for Multi-Processor DEC Alphas.
In A. BakkerS", editor, Parallel Programming and Java, Proceedings of WoTUG
20, volume 50 of Concurrent Systems Engineering, pages 189-198, Amsterdam,
Netherlands, April 1997. World occam and Transputer User Group (WoTUG),
IOS Press.

6. Peter Welch et al. Java Threads Workshop - Post Workshop Discus-
sion. <URL:http://www.hensa.ac.uk/parallel/groups/wotug/java/discussion/>,
February 1997.

7. Gerald Hilderink, Jan Broenink, Wiek Vervoort, and Andre Bakkers. Communi-
cating Java Threads. In Parallel Programming and Java, Proceedings of WoTUG
20, pages 48-76, 1997. (See reference [5]).

8. G.H. Hilderink. Communicating Java Threads Reference Manual. In Parallel
Programming and Java, Proceedings of WoTUG 20, pages 283-325, 1997. (See
reference [5]).

9. Peter Welch. Java Threads in the Light of occam/CSP. In P.H.Welch
and A. Bakkers, editors, Architectures, Languages and Patterns, Proceedings of
WoTUG 21, volume 52 of Concurrent Systems Engineering, pages 259-284, Am-
sterdam, Netherlands, April 1998. World occam and Transputer User Group
(WoTUG), IOS Press. ISBN 90-5199-391-9.

10. Alan Chalmers. JavaPP Page - Bristol. <URL:http://www.cs.bris.ac.uk/ "alan/
javapp.html/>, May 1998.

11. P.D.Austin. JCSP Home Page. <URL:http://www.hensa.ac.uk/parallel/languages/
java/jcsp/>, May 1998.

12. Gerald Hilderink. JavaPP Page - Twente. <URL:http://www.rt.el.utwente.nl/
javapp/>, May 1998.

13. Ian East. Parallel Processing with Communication Process Architecture. UCL
press, 1995. ISBN 1-85728-239-6.

14. John Galletly. occam 2 - including occam 2.1. UCL Press, 1996. ISBN 1-85728-
362-7.

15. occam-for-all Team, occam-for-all Home Page. <URL:http://www.hensa.ac.uk/
parallel/occam/occam-for-all/>, February 1997.

16. Mark Debbage, Mark Hill, Sean Wykes, and Denis Nicole. Southampton's Portable
occam Compiler (SPoC). In R. Miles and A. Chalmers, editors, Progress in Trans-
puter and occam Research, Proceedings of WoTUG 17, Concurrent Systems En-
gineering, pages 40-55. Amsterdam, Netherlands, April 1994. World occam and
Transputer User Group (WoTUG), IOS Press. <URL:http://www.hensa.ac.uk/
parallel/ occam/ compilers/ spoc/>.

17. J.M.R. Martin and S.A. Jassim. How to Design Deadlock-Free Networks Using
CSP and Verification Tools - a Tutorial Introduction. In Parallel Programming
and Java, Proceedings of WoTUG 20, pages 326-338, 1997. (See reference [5]).

432

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

18. A.W. Roscoe and N. Dathi. The Pursuit of Deadlock Freedom. Technical Re-
port Technical Monograph PRG-57, Oxford University Computing Laboratory,
1986.

19. J. Martin, I. East, and S. Jassim. Design Rules for Deadlock Freedom. Transputer
Communications, 2(3):121-133, September 1994. ISSN 1070-454X.

20. P.H. Welch, G.R.R. Justo, and C. Willcock. High-Level Paradigms for Deadlock-
Free High-Performance Systems. In Grebe et al., editors, Transputer Applications
and Systems '93, pages 981-1004, Amsterdam, 1993. IOS Press. ISBN 90-5199-
140-1.

21. J.M.R. Martin and P.H. Welch. A Design Strategy for Deadlock-Free Concurrent
Systems. Transputer Communications, 3(4):215-232, October 1996. ISSN 1070-
454X.

22. A.W. Roscoe. Model Checking CSP, A Classical Mind. Prentice Hall, 1994.
23. J.M.R. Martin and S.A. Jassim. A Tool for Proving Deadlock Freedom. In Par-

allel Programming and Java, Proceedings of WoTUG 20, pages 1-16, 1997. (See
reference [5]).

24. D.J. Beckett and P.H. Welch. A Strict occam Design Tool. In Proceedings of UK
Parallel '96, pages 53-69, London, July 1996. BCS PPSIG, Springer-Verlag. ISBN
3-540-76068-7.

25. M. Aubury, I. Page, D. Plunkett, M. Sauer, and J. Saul. Advanced Silicon Proto-
typing in a Reconfigurable Environment. In Architectures, Languages and Patterns,
Proceedings of WoTUG 21, pages 81-92, 1998. (See reference [9]).

26. A.E. Lawrence. Extending CSP. In Architectures, Languages and Patterns, Pro-
ceedings of WoTUG 21, pages 111-132, 1998. (See reference [9]).

27. A.E. Lawrence. HCSP: Extending CSP for Co-design and Shared Memory. In
Architectures, Languages and Patterns, Proceedings of WoTUG 21, pages 133-156,
1998. (See reference [9]).

28. Geoff Barrett. occam3 reference manual (draft). <URL:http:// www.hensa.ac.uk/
parallel/ occam/ documents/>, March 1992. (unpublished in paper).

29. Peter H. Welch and David C. Wood. Higher Levels of Process Synchronisation. In
Parallel Programming and Java, Proceedings of WoTUG 20, pages 104-129, 1997.
(See reference [5]).

30. David May and Henk L Müller. Icarus language definition. Technical Report
CSTR-97-007, Department of Computer Science, University of Bristol, January
1997.

31. Henk L. Müller and David May. A simple protocol to communicate channels
over channels. Technical Report CSTR-98-001, Department of Computer Science,
University of Bristol, January 1998.

32. D.J. Beckett. Java Resources Page. <URL:http://www.hensa.ac.uk/parallel/
languages/java/>, May 1998.

33. Kang Hsin Lu, Jeff Jones, and Jon Kerridge. Modelling Congested Road Traf-
fic Networks Using a Highly Parallel System. In A. DeGloria, M.R. Jane, and
D. Marini, editors, Transputer Applications and Systems '94, volume 42 of Con-
current Systems Engineering, pages 634-647, Amsterdam, Netherlands, September
1994. The Transputer Consortium, IOS Press. ISBN 90-5199-177-0.

34. Hans Müller and Kathy Walrath. Threads and swing. <URL:http://java.sun.com/
products/jfc/swingdoc-archive/threads.html>, April 1998.

433

FEUP - Faculdade de Engenharia da Universidade do Porto

Appendix A: occam Executables

Space only permits a sample of the examples to be shown here. This first group are
from the 'Legoland' catalogue (Section 2.3):

PROC Id (CHAN OF INT in, out)
WHILE TRUE

INT x:
SEQ

in ? x
out ! x

PROC Succ (CHAN OF INT in, out)
WHILE TRUE

INT x:
SEQ

in ? x
out ! x PLUS 1

PROC Plus (CHAN OF INT inO, inl, out)
WHILE TRUE

INT xO, xl:
SEQ

PAR
inO ? xO
inl ? xl

out ! xO PLUS xl

PROC Prefix (VAL INT n, CHAN OF INT in, out)
SEQ

out ! n
Id (in, out)

Next come four two of the 'Plug and Play' examples from Sections 2.4 and 2.6:

PROC Numbers (CHAN OF INT out)
CHAN OF INT a, b, c:
PAR

Prefix (0, c, a)
Delta (a, out, b)
Succ (b, c)

PROC Integrate (CHAN OF INT in, out)
CHAN OF INT a, b, c:
PAR

Plus (in, c, a)
Delta (a, out, b)
Prefix (0, b, c)

PROC Pairs (CHAN OF INT in, out) PROC Squares (CHAN OF INT out)
CHAN OF INT a, b, c: CHAN OF INT a, b:
PAR PAR

Delta (in, a, b) Numbers (a)
Tail (b, c) Integrate (a, b)
Plus (a, c, out) Pairs (b, out)

434

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Here is one of the controllers from Section 2.7:

PROC Replace (CHAN OF INT in, inject, out)
WHILE TRUE

PRI ALT
INT x:
inject ? x
PAR

INT discard:
in ? discard

out ! x
INT x:
in ? x

out ! x

Asynchronous receive from Section 2.9:

SEQ
PRI PAR

in ? packet
SomeMoreComputation (...)

Continue (...)

Barrier synchronisation from Section 3.3:

PROC P (..., EVENT bO, b2)
local state declarations

SEQ
initialise local state

WHILE TRUE
SEQ

someWork (...)
synchronise.event (bO)
moreWork (...)
synchronise.event (bO)
lastBitOfWork (...)
synchronise.event (bl)

Finally, non-blocking barrier synchronisation from Section 3.4:

SEQ
doOurWorkNeededByOthers (...)
PRI PAR

synchronise.event (barrier)
privateWork (...)

useSharedResourcesProtectedByTheBarrier (...)

435

FEUP - Faculdade de Engenharia da Universidade do Porto

Appendix B: Java Executables

These examples use the JCSP library for processes and channels[ll]. A process is an
instance of a class that implements the CSProcess interface. This is similar to, but
different from, the standard Runable interface:

package jcsp.lang;

public interface CSProcess {
public abstract void run ();

}

For example, from the 'Legoland' catalogue (Section 2.3):

import jcsp.lang.*;

class Succ implements CSProcess {

private Channellnputlnt in;

private ChannelOutputlnt out;

public Succ(Channellnputlnt in, ChannelOutputlnt out) {
this.in = in;
this.out = out;

}

public void run() {
while (true) {

int x = in.read ();
out.write (x + 1);

}
}

}

class Prefix implements CSProcess {

private int n;

private Channellnputlnt in;
private ChannelOutputlnt out;

public Prefix(int n, Channellnputlnt in, ChannelOutputlnt out) {
this.n = n;
this.in = in;
this.out = out;

}

public void run() {
out.write (n);
new Id (in, out).run ();

}
}

436

VECPAR '98 ■ 3rd International Meeting on Vector and Parallel Processing

JCSP provides a Parallel class that combines an array of CSProcesses into a CSProcess.
It's execution is the parallel composition of that array. For example, here are two of
the 'Plug and Play' examples from Sections 2.4 and 2.6:

class Numbers implements CSProcess {

private ChannelOutputlnt out;

public Numbers (ChannelOutputlnt out) {
this.out = out;

}

public void run() {
0ne20neChannelInt a - new 0ne20neChannelInt 0
Dne20neChannelInt b - nev 0ne20neChannelInt 0
0ne20neChannellnt c - new 0ne20neChannelInt 0
nev Parallel (

new CSProcess [] {
new Delta (a, out, b),
new Succ (b, c),
new Prefix (0, c, a),

}
) .runO;

class Squares implements CSProcess {

private ChannelOutputlnt out;

public Squares (ChannelOutputlnt out) {
this.out = out;

}

public void runO {
0ne20neChannelInt a = new 0ne20neChannelInt 0;
Dne20neChannelInt b = new 0ne20neChannelInt 0;
nev Parallel (

new CSProcess [] {
new Numbers (a),
new Integrate (a, b),
new Pairs (b, out),

}
).run();

}

437

FEUP - Faculdade de Engenharia da Universidade do Porto

Here is one of the controllers from Section 2.7. The processes Readlnt and Writelnt
just read and write a single integer (from and to a public value field):

class Replace implements CSProcess {

private AltingChannellnputlnt in;
private AltingChannellnputlnt inject;
private ChannelOutputlnt out;

public Replace (AltingChannellnputlnt in,

AltingChannellnputlnt inject,
ChannelOutputlnt out) {

this, in = in;
this.inject = inject;
this.out = out;

}

public void run() {

Alternative alt = new Alternative();

AltingChannellnputlnt[] altChans = {inject, in};

CSProcess writelnt = new Writelnt (out);
CSProcess readlnt = new Readlnt (in);

CSProcess parlO = new Parallel (new CSProcess[] {readlnt, writelnt});

while (true) {

switch (alt.select (altChans)) {
case 0:

writelnt.value = inject.read ();
parlO.run ();

break;
case 1:

out.write (in.read ());
break;

}
}

}
}

JCSP also has channel for sending and receiving arbitrary Objects. Here is an asyn-
chronous receive (from S*-» tion 2.9) of an expected Packet:

// set up proc«i»«g one« (before we start looping ...)

CSProcess readObj • a«v ReadObj (in);

CSProcess som«Hort • »•• SomeHoreComputation (...);
CSProcess async • «•« PriParallel (new CSProcess[] {readObj, someMore});

while (looping) {
async.run ();

Packet packet • P«c««t) readObj.object
Continue (...).

}

438

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

An ISA comparison between Superscalar and
Vector Processors

Francisca Quintana K Roger Espasa^, and Mateo Valero^

'University of Las Palmas de Gran Canada, Edificio de Informätica y Matemäticas, Cam-
pus de Tafira, 35017 Las Palmas de Gran Canada, Canary Islands, Spain

fquintan@dis.ulpgc.es
^U. Politecnica Catalunya-Barcelona, Computer Architecture Department, Campus Nord

{roger,mateo} @ac.upc.es

Abstract. This paper presents a comparison between superscalar and vector
processors. First, we start with a detailed ISA analysis of the vector machine,
including data related to masked execution, vector length and vector first fa-
cilities. Then we present a comparison of the two models at the instruction set
architecture (ISA) level that shows that the vector model has several advan-
tages: executes fewer instructions, fewer overall operations, and generally exe-
cutes fewer memory accesses. We then analyse both models in terms of specu-
lative execution, each one in its context. Results show that superscalar proces-
sors make an extensive use of speculation and that there is a large ammount of
misspeculated instructions. In the vector model, speculation is achieved using
vector masks and, in general, fewer operations are misspeculated.

1 Introduction

Traditionally, there have been different approaches aimed at improving microproces-
sor performance. One of them has been the exploitation of data level parallelism
(DLP). The DLP paradigm uses vectorization techniques to discover data level paral-
lelism in a sequentialK specified program and expresses this parallelism using vector
instructions[l][2][3] A single vector instruction specifies a series of operations to be
performed on a stream ol d*u Each operation performed on each individual element
is independent of all others «HJ. therefore, a vector instruction is easily pipelineable
and highly parallel[4|l< '.;*' Another approach aimed at reaching high performance in
a program's execution iv the exploitation of instruction level parallelism (ILP). Cur-
rent state-of-the-art mut.ifn>>».cssors all include 4-wide fetch engines coupled with
sophisticated branch prcdi«.i<*\. large reorder buffers to dynamically schedule in-
structions and non-blocking .*.hes to allow multiple outstanding misses. All these
techniques focus on a single goal: executing several instructions that are known to be
independent, in parallel!11 T"hc larger the number of instructions that can be launched
on each cycle, the better the performance achieved.

439

FEUP - Faculdade de Engenharia da Universidade do Porto

There are two very important advantages in using vector instructions to express
data-level parallelism. First, the total number of instructions that have to be executed
to complete a program is reduced because each vector instruction has more semantic
content that the corresponding scalar instructions. Second, the fact that the individual
operations in a single vector instruction are independent allows a more efficient exe-
cution: once a vector instruction is issued to a functional unit, it will use it with useful
work for many cycles. During those cycles, the processor can look for other vector
instructions to be launched to the same or other functional units. It is very likely that,
by the time a vector instruction completes all its work, there is already another vector
instruction ready to occupy the functional unit. Meanwhile, in a scalar processor,
when an instruction is launched to a functional unit, another instruction is required at
the very next cycle to keep the functional unit busy. Unfortunately, many hazards can
get in the way of this requirement: true data dependencies, cache misses, branch mis-
speculation, etc.

The combination of these two effects has many related advantages. First, the pres-
sure on the fetch unit is greatly reduced. By specifying many operations with a single
instruction, the total number of different instructions that have to be fetched is re-
duced. Many branches disappear embedded in the semantics of vector instructions. A
second advantage is the simplicity of the control unit. With relatively few control
effort, a vector architecture can control the execution of many different functional
units, since most of them work in parallel in a fully synchronous way. A third advan-
tage is related to the way the memory system is accessed: a single vector instruction
can exactly specify a long sequence of memory addresses. Consequently, the hard-
ware has considerable advance knowledge regarding memory references, can sched-
ule these accesses in an efficient way[8], and needs to access no more data than is
actually needed. In addition, a vector memory operation is able to amortize start-up
latencies over a potentially long stream of vector elements.

In this paper we make a comparison between vector and superscalar processors by
analysing the behaviour of a Mips R10000[9] superscalar processor and a Convex
C4[10] vector processor. This study is carried out from different points of view. First
of all we introduce an initial analysis of the Convex C4 vector processor. This in-
cludes an overview of several intrinsic characteristics of vector processing: we will
analyze the effect of execution under mask and execution using the vector first facil-
ity. Then we will compare the superscalar and vector approaches from the ISA point
of view. We will present data about the number of instructions and operations exe-
cuted in both processors. Finally, we will present a comparison about speculative
execution in the two approaches.

2 Convex C4 Analysis

We will start by analyzing the vector length and vector mask facilities of vector proc-
essors. We will also present the vector first facility which is specific of the Convex
C4 machine. Then we will compare the number of instructions, operations and mem-
ory traffic of vector processors and superscalars.

440

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

This study will be carried out using the six more vectorizable programs from
Specfp92. We have measured the vectorization percentage using the Dixie tool[l 1].
We have generated the execution traces of the Specfp92 programs when running on a
Convex C4 machine, and then we have used the Jinks simulator to measure the
amount of vector and scalar operations carried out by the programs. The vectorization
percentage has been calculated as the ratio between vector operations and the addition
of vector and scalar operations.

2.1 Operation Distribution

Table 1 presents the basic operation distribution for the five more vectorizable pro-
grams of the Specfp92. First column shows the total number of basic blocks (in mil-
lions) executed for each program. Next two columns present the total number of in-
structions broken down into scalar and vector instructions. We will distinguish be-
tween instructions and operations. A scalar instruction performs only one operation,
while a vector instruction performs several operations, depending on the value of the
vector length (VL) register. Fifth column is the percentage of vectorization for each
program, defined as the ratio between the number of vector operations and the total
number of operations performed. Finally column sixth presents the average vector
length used in vector instructions. An interesting point from this table is the average
vector length observed in the programs, which is not heavily related to the percentage
of vectorization.

Table 1. Operation distribution

Program # basic # instructions # vector % Avg.
blocks Scalar Vector operations Vect VL

Swm256 2.57 27.46 74.82 8127.98 99.7 93

Hydro2d 4.74 38.85 35.43 3684.89 99.0 101

Nasa7 16.79 139.80 55.98 3885.02 96.5 62

Su2cor 22.53 143.95 24.08 3066.07 95.5 125

Tomcatv 19.95 126.66 6.37 644.41 83.6 99

Wave5 48.99 579.77 35.88 1615.04 73.6 43

2.2 Vector Length Distributions

Vector execution is based on executing a certain operation specified in one instruction
over a large amount of independent data. The amount of data specified in each in-
struction is dinamically specified with the value of the Vector Length register
(VL).The latency of the operation being carried out is then amortized across all VL
elements. Therefore, the larger the VL, the better the performance. Fig. 1 presents the

441

FEUP - Faculdade de Engenharia da Universidade do Porto

100-

80-

60-

40-

20-

0-
0

100

80-|

1 40-H

U 20-1

0

lOO-i

80-

1 ' ' I ' ' ■ ' I '
50 J00

VL value (nasa7)
128

0 50 100 128

VL value (su2cor)

60-

40-

20-

100

80

60-

40-

W 20-

100n

80'

■M- ■ i ■
0 50 100 128

VL value (hydro2d)

0 50

VL value (tomcatv)

100 128

60

40-

3 u 20-

100'

80-

60-

40-

20-

0-

1 ' I ' ' ' ' I '
50 100

VL value (swm256)

128

T1

50 100 128

VL value (waveS)

Fig. 1. VL Distribution tor Specfp92 programs

VL distribution for the six more vectorizable Specfp92 benchmarks. As we can see,
the vector length distributions follow several patterns. Swim256, Tomcatv and Su2cor
have the majority of their vector lengths clustered around 128. Hydrold has a single
dominant vector length which is the number of grid points used in the z-direction of
the problem. Nasa7 and WaveS have a distribution that follows a staircase, having
several dominant vector lengths. AH this data suggest that even among vectorizable
programs the utilisation of the vector registers varies a lot.

2.3 Vector First Capability

A new capability in the Convex C4 processor is the Vector First facility which allows
specifying the first element in the vector register on which the instruction will be
executed. That is, an instruction executes VL operations starting at element VF. This
facility avoids having to reload data in the cases of recurrences as those presented in
Fig. 2(a). In these cases, instead of executing two load instructions for matrix B (for
position I and 1+1, as presented in Fig. 2(b)), only one load instruction is executed.
Fig. 2(b) shows the assembly code without vector first. Every add instruction involves
two vector load instructions, which is redundant. In Fig. 2(c), using vector first, the
same data can be reused in the loop body just using the appropriate vector first value,
so just one vector load is needed for each add instruction. [Note that the notation
'Av0* means execution under vector first].

442

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

DO J = 1, N

DO I = 1, N

A(. .,1, ..) = B(. ,1 + 1, .) + B(. .,1,••)

ENDDO

ENDDO

(a)

-

mov N -> vl

LI: . . .
load (B), vO

load (B+4), vl

add vl, vO -> v2

mov N -> a4

add #l,a4 -> a5

mov #1 -> vf

LI: . . .
mov a5 -> vl

load (B), vO

mov a4 -> vl

add "vO, vO -> vl

(b) (c)

Fig. 2. Typical vector loop at Hydro2d benchmark, (a) Source code for a vector loop with a
recurrence of distance 1. (b) Assembly code without using vector first facility, with add in-
volving two load instructions, (c) Assembly code using vector first so that every data must be
loaded just once

Table 2 presents the distribution of the vector first values for the same Specfp92
benchmarks as Fig. 1. This table shows the total number of operations carried out
under vector first and the respective percentages of operations that have been exe-
cuted with vector first equal to 1, 2 or other values. The compiler is not able to use
the vector first neither in benchmark Nasa7 nor in Su2cor. Moreover, these programs
only present low order recurrences (with distance lor 2).

Table 2. Vector First distribution for Specfp92 programs

Program # Ops under VF Value rin percentages)

VF (x 10f>)
1 2 Other

Swm256 2.841 76 24 0

Hydro2d 11.060 100 0 0

Nasa7 - - - -

Su2cor - - - ~

Tomcatv 1.124 50 50 0

Wave5 1.449 97 3 ■ 0

443

FEUP • Faculdade de Engenharia da Universidade do Porto

2.4 Vector Mask Execution

The Convex C4 vector processor allows the execution of instructions under a calcu-
lated mask stored in the Vector Mask (VM) register. The VL operations will be car-
ried out, but only those that have the correct value stored in the ith position of the
mask will be finally stored in the destination register of the instruction. We have
made an analysis of the masks used during the execution of the benchmarks so to test
the effectiveness of masked execution. Table 3 shows the total ammount of instruc-
tions executed under mask and the percentage of instructions with respect to the total
ammount of instructions. This data shows a relatively small use of the execution un-
der mask in the C4 vector processor. However, taking into account that each vector
instruction implies the execution of VL operations, table 3 also shows the total am-
mount of operations executed under mask and the percentage of operations referred to
the total ammount of operations. From this table we can see that the most intensive
use of the masked execution is made by the Hydrold benchmark with more than 15%
of their operations executed under mask. Programs Su2cor and Wave5 execute 3.95%
and 3.64% of their operations under mask, respectively. The remaining programs
execute either very few operations under mask (Swm256 and NasaT) or none at all
(Tomcatv).

The execution of operations under mask can be considered as speculative execu-
tion, as all VL operations are carried out but only those that correspond to the right
value in the mask are used. We can think of the extra operations as misspeculative
execution. The analysis of the masks, as we will show, has allowed us to measure the
amount of speculative work carried out by the vector processor.

Table 3. Instructions and operations executed under vector mask

Program Instructions executed under
vector mask

Operations executed under
vector mask

Total Number
(x 106)

% over total
instructions

Total Number
(x 10")

% over total
operations

Swm256 0.01 0.015 0.13 0.016

Hydro2d 5.75 7.75 582.91 15.65

Nasa7 0.07 0.036 8.02 0.20

Su2cor 1.06 0.63 130.75 3.95

Tomcatv 0.00 0.00 0.00 0.00

WaveS 5.17 0.84 80.00 3.64

3 Scalar and Vector ISA's Comparison

In this section we present a comparison between superscalar and vector processors at
the instruction set architecture level. We will look at three different issues that are

444

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

determined by the instruction set being used and by the compiler: number of instruc-
tions executed, number of operations executed and memory traffic generated, the
distinction between instructions and operations is necessary because in.the vector
architecture, a vector instruction executes several operations (between 1 and 128 in
our case).

3.1 Instructions Executed

As already mentioned, vector instructions contain a high semantic content in terms of
operations specified. The result is that, to perform a given task, a vector program
executes many fewer instructions than a scalar program, since the scalar program has
to specify more address calculations, loop counter increments and branch computa-
tions that are typically implicit in vector instructions. The net effect of vector instruc-
tions is that, in order to specify all the computations required for a certain program,
much less instructions are needed. Fig. 3(a) presents the total number of instructions
executed in the Mips R10000 (using Mips IV Instruction Set [12]) and the Convex C4
machines for the six benchmark programs. In the Mips R10000 case, we use the val-
ues of graduated instructions gathered using the hardware performance counters. In
the Convex C4 case we use the traces provided by Dixie[12]. As it can be seen, the
differences are huge. Obviously, as vectorization degree decreases, this gap is dimin-
ished. Although several compiler optimizations (loop unrolling, for example) can be
used to lower the overhead of typical loop control instructions in superscalar code,
vector instructions are inherently more expressive. Having vector instructions allows
a loop to do a task in fewer iterations. This implies fewer computations for address
calculations and loop control, as well as less instructions dispatched to execute the
loop body itself. As a direct consequence of executing less instructions, the instruc-
tion fetch bandwidth required, the pressure on the fetch engine and the negative im-
pact of branches are all three reduced in comparison to a superscalar processor. Also,
relatively simple control unit is enough to dispatch a large number of operations in a
single go, whereas the superscalar processor devotes an always increasing part of its
area to manage out-of-order execution and multiple issue. This simple control, in
turn, can potentially yield a faster clocking of the whole datapath. It is interesting to
note that the ratio of number of instructions can be larger than 128. Consider, for
example, Swm256. In vector mode, it requires 102.28 million instructions while in
superscalar mode requires 11466 million instructions. If, on average, each vector
instruction performs 93 iterations then all these vector instructions would be roughly
equivalent to 102.28*93 = 9512 million superscalar instructions. The difference be-
tween 9512 and 11466 is the extra overhead that the supercalar machine has to pay
due to the larger number of loop iterations it performs.

3.2 Operations Executed

Although the comparison in terms of instructions is important from the point of view
of the pressure on the fetch engine, a more accurate comparison between the super-

445

FEUP - Faculdade de Engenharia da Universidade do Porto

scalar and vector model comes from looking at the total number of operations per-
formed. As already mentioned in the previous section, the reduction of overhead due
to the semantic content of vector instructions should translate into an smaller number
of operations executed in the vector model. Fig. 3(b) plots the total number of opera-
tions executed on each platform for each program. These data has been gathered from
the internal performance counters of the Mips R1000 processor, and from the traces
obtained with Dixie. As expected, the total number of operations in the superscalar
platform is greater than in the vector machine, for all programs. The ratio of super-
scalar operations to vector operations can be favourable to the vector model by
factors that go from 1.24 up to 1.88.

J—U L. ^ ^ L

■ Convex C4 <»
a MipsRIOUXI .£

S. 40

I Oiinvcx C4

1 Mips RKKXX)

(a) (b)

Fig. 3. Vector - Superscalar ISA comparison, (a) Instructions executed, (b) Operations exe-
cuted

3.3 Memory Traffic

Another analysis that we have carried out is the study of memory traffic both in vec-
tor and superscalar processors. Superescalar processors have a memory hierarchy in
which data is moved up and down in terms of cache lines. Some of this data is thrown
away from the cache before it is used so there is an amount of traffic that is not
strictly useful. In vector processors, every data item that is brought from main mem-
ory is used, so there is no useless traffic in vector processors. Moreover, depending
on the data size of the program there will be different behaviours in superscalar proc-
essors. If data fits in LI, there will be almost no traffic between the LI and the L2
caches. However, if data doesn't fit in LI but fits in L2, there will be a lot of traffic
between the LI and L2 caches because of conflicts. If data doesn't fit in the L2 cache,
traffic will increase a lot between the two memory hierarchy levels. These behaviours
can be seen if Fig. 4.

446

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

■ Convex C4
■ RHXXXHRqi-LI)
0 R1(XXX)(LI-L2>
O RI(XXH)(L2-Mcm)

S\v\\s
Fig. 4. Vector - Superscalar Memory traffic comparison

4 Speculative Execution in Superscalar and Vector Processors

In this section we will make a study about speculative execution in superscalar and
vector processors. Each architecture is able to speculatively execute instructions,
although each one in its particular way. Superscalar processors execute speculatively
instructions based upon predictions of conditional branches. Vector processors exe-
cute instructions under vector masks and only those that have the correct value in the
mask are definitely stored. This section is intended to study the effectiveness of the
speculative execution in both architectures.

4.1 Speculation in Superscalar Processors

The increase'in SS processors aggressiveness regarding issue width and out of order
execution has made branch prediction and speculative execution essential techniques
in taking advantage of processor capabilities. When a branch is reached, and the re-
sult of the condition evaluation is not known, a speculation of the final result of the
branch is made, so that the execution continues along the speculated direction. When
the actual result of the branch condition is obtained, the executed instructions are
validated if the prediction was correct, and rejected if not.

The amount of misspeculative instructions in the SS processor is presented in Fig.
5. This data has been gathered using the Mips R10000 performance internal counters.
This speculative work includes all types of instructions. As we can see in Fig.5(a) the
misspeculated execution of instructions (referred to the total number of issued in-
structions) for the six programs goes from 14% to 25%.

Among the misspeculative work, the load/store misspeculation is specially impor-
tant because it wastes non-blocking cache resources, bandwidth, and can pollute the
cache (and memory hierarchy in general) by making data movements between differ-

447

FEUP - Faculdade de Engenharia da Universidade do Porto

ent levels that won't be used in the future. Fig. 5(b) shows the load/store misspecula-
tion degree for the benchmarks with respect to the total number of load/store instruc-
tions. In some of them, the misspeculation percentage is as large as 40%, although the
mean value is about 15%.

30

© 20

s u
a

4- J) % *>-„

%

40

30

s
u 20

s o

■

■

■ 1
1 4

% *J-

(a) (b)

4).. \.
X

Fig. 5. (a) Misspeculative execution in superscalar processors, (b) Load misspeculation in
superscalar processors

4.2 Speculation in Vector Processors

Vector processors are also able to speculatively execute instructions, but in a different
way than superscalar processors. It is based on the execution under vector mask.
When an instruction is executed under vector mask, all the operations are carried out,
but only those having the correct value in the itn position of the vector mask is defi-
nitely stored in the destination register. We have previously presented the values of
masked executions referred i<> the total number of instructions and operations carried
out by the programs However, as masked execution is only carried out in vector
mode, a more precise mcasurr about the use of masked execution is presented in table
4. Measures in table 4 »h.'» that the behaviour differs from one program to another.
Program Hydro2d executes a considerable ammount of operations under mask (16%).
Swm256 and Nasa7 makr almost no use of the execution under mask and finally,
Sulcor and Wave5 execute ■»;»<* and 4.95% of their operations under mask.

An interesting anal\sis m.k-pendent from the use of masked execution, is the ef-
fectiveness of masked caution. All these instructions executed under mask, are
properly speculated or n.-r ■Vn operation is speculated "right" if after the operation
has been carried out the result is effectively stored in its destination. All those opera-
tion that were carried out but not stored are misspeculated work. Fig. 6(a) shows the

448

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

distribution of right and wrong speculated operations in the five programs (recall that
program Tomcatv does not execute instructions speculatively). Three of the programs
{Nasa7, Su2cor and Wave5) have good values of right prediction: Nasa7 and Wave5
are above 63% of right speculation and Sulcor is more than 56%. The other two
programs (Swm256 and Hydro2d) have low values of right speculation, with
Swim256 being the program with the worst behaviour (only 2.58% of right specula-
tion).

Table 4. Instructions and operations executed under vector mask

Program Instructions executed under
vector mask

Operations executed under
vector mask

Total Number
(x 106)

% over total
vector in-
structions

Total Number
(x 106)

% over total
vector opera-

tions
Swm256 0.01 0.002 0.13 0.016

Hydro2d 5.75 16.25 582.91 16.00

Nasa7 0.07 0.12 8.02 0.20

Su2cor 1.06 4.41 130.75 4.23

Wave5 5.17 14.40 80.00 4.95

Another interesting consideration that we have studied regards the distribution of
operations executed under mask among the different instruction types. This study has
allowed us to establish the ammount of instructions executed under mask for each
type of instructions. We have considered six types of instructions: add-like, mul-like,
div, diadic, load and store.

I HI-

i
40-

ffl
I Wniim
I Right 8. e

TT

B
TT"

(a) (b)

Fig. 6. (a) Distribution ot Ri^hi * rong speculation operation, (b) Distribution of instruction
executed under vector mask amon^ the different instruction types

449

FEUP - Faculdade de Engenharia da Universidade do Porto

The first consideration comes from the fact that none of the programs execute load
instructions under mask, which may be explained because of the possibility of gather
instructions. Fig 6(b) shows the breakdown of instructions executed under mask
among the different instruction types. Division and add-like instructions are the most
used instructions for execution under mask.

Finally, we have also studied the effectiveness of execution under mask among the
different types of instructions. Results in Fig. 7 show that, in general, there is not a
clear correlation between the instruction type and the misspeculation rate. Division
instructions are an exception. For divisions the misspeculation rates are higher than
for the rest of instruction in all cases. This result is not unreasonable since division
instructions are typically executed in statements such as the following,

if A(i)<> 0 then B(i)=B(i)/A(i)

In such a case, misspeculation is determined by the value stored in A(i). In our programs, the
A(i) vector is sparsely populated and causes large numbers of misspeculations.

100

80

60

40

20

1 II 1 l!l 1
• 1

1 I
1 - i \<

■

i i l
i 1 « 1

IT

1 1 fj-jli

• ■i

i M

6 p?

<■

-H-r i i ■ r-'r rnrr M- in ir ii-

W*^ -1&&&& t&w
Swm2S6 Hydro2d Nasa7 Su2cor

Fig. 7. Break-down of Right - Wrong speculated operations

■ Wrong
□ Right

-iJ>fAA^f

Wave5

5 Conclusions

We have outlined a comparison between superscalar and vector processors from sev-
eral points of view. Vector processors have different possibilities that allow them to
decrease the memory traffic and branch impact in a program's execution. Their SIMD
model is especially interesting because the initial latency of the operations is amor-
tized across the VL operations that each instruction executes.

We have studied the behaviour at the ISA level of the superscalar and vector proc-
essors. We looked at total number of instructions executed, number of operations

450

VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing

executed and memory traffic. The vector processor executes much less instructions
than the superscalar machine due to the higher semantic content of its instructions.
This translates into a lower pressure on the fetch engine and the branch unit. Moreo-
ver, the vector model executes less operations than the superscalar machine. The
analysis of memory traffic reveals that, in general, and ignoring spill code effects, the
vector machine performs less data movements than the superscalar machine.

We have also studied the speculative execution behaviour of superscalar and vec-
tor processors. Superscalar processors make an extensive use of speculative execution
and the misspeculation rates are important. On the other hand, vector processors exe-
cute speculatively by using the vector mask. Vector processors make a lower use of
execution under mask and the misspeculation rates are also important, although many
of them are produced because of prediction in div instructions.

References

1. Roger Espasa and Mateo Valero. "Multithreaded Vector Architectures". Third Internationl
Symposium on High-Performance Computer Architecture, IEEE Computer Society Press,
pag. 237-249, San Antonio, TX, February 1997.

2. Roger Espasa and Mateo Valero. "Decoupled Vector Architectures". Second Internationl
Symposium on High-Performance Computer Architecture, IEEE Computer Society Press,
pag. 281-290, San Jose, CA, February 1996.

3. Luis Villa, Roger Espasa and Mateo Valero. "Effective Usage of Vector Registers in Ad-
vanced Vector Architectures". Parallel Architectures and Compilation Techniques
(PACT'97), IEEE Computer Society Press, San Francisco, CA, USA, Nov. 1997

4. Roger Espasa, Mateo Valero. "Exploiting Instruction- and Data-Level Parallelism" IEEE
Micro, Sept/Oct. 1997 (In conjunction with the IEEE Computer Special Issue on Comput-
ing with a Billion Transistors)

5. Roger Espasa and Mateo Valero. "A Victim Cache for Vector Registers". International
Conference on Supercomputing, ACM Computer Society Press, Vienna, Austria, July 1997.

6. Roger Espasa, Mateo Valero and James E. Smith. "Out-of-order Vector Architectures". 30th
International Symposium on Microarchitecture (MICRO-30) North Carolina, December 1-
3, 1997.

7. Norman P. Jouppi and David W. Wall. "Available instruction level parallelism for super-
scalar and superpipelined machines", ASPLOS, pages 272-282, 1989.

8. M. Peiron, M. Valero, E. Ayguade and T. Lang. "Vector Multiprocessors with Arbitrated
Memory Access". In 22nd Annual International Symposium on Computer Architecture,
Santa Margherita Ligura, Italy, June 22-24, 1995, pp. 243-252.

9. K. Yeager et al. "The MIPS R10000 Superscalar Microprocessor". IEEE Micro, vo! 16, No
2, April 1996, pp 28-40.

lO.Convex Assembly Language Reference Manuel (C Series). Convex Press, 1991.
11.Charles Price. MIPS IV Instruction Set, revision 3.1. MIPS Technologies, Inc., Mountain

View, California, January, 1995.
12.Roger Espasa and Xavier Martorell. "Dixie: a trace generation system for the C3480".

Technical Report CEPBA-RR-94-08, Universität Politecnica de Catalunya, 1994.

451

FEUP - Faculdade de Engenharia da Universidade do Porto

13.Doug Burger, Todd M. Austin and Steve Bennett. "Evaluating Future Microproc-
essors: The SimpleScalar ToolSet". University of Wisconsin-Madison. Computer
Sciencies Department. Technical Report CS-TR-1308, July 1996.

14.F. Quintana, R. Espasa and M. Valero. "A Case for Merging the ILP and DLP
Paradigms". In 6th Euromicro Workshop on Parallel and Distributed Processing,
Madrid, Spain, January 21-23, 1998, pp. 217-224.

452

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Implementing the Time-Warp Simulation Model in
Java

Pedro Bizarro, Luis M. Silva, Joäo Gabriel Silva

Departamento de Engenharia Informätica
Universidade de Coimbra

POLO II, Vila Franca
3030 Coimbra
PORTUGAL

bizarro@dei.uc.pt. luis@dei.uc.pt. igabriel@dei.uc.pt

Abstract This paper presents JWarp, a Java library that implements an
optimistic model of discrete-event parallel simulation: the Time-Warp model.
Java fits well in the field of simulation and offers some important advantages
over other languages: modularity, flexibility, robustness, support for
multithreading and exception handling. The paper presents the main features of
the library, the programming interface and some of its implementation details.
JWarp is one of the first libraries to implement Time-Warp in Java.

1. Introduction

There are several areas like engineering, computer science, economics and military
that are particularly interested in using simulation to study the behaviour of complex
models. The execution of some of those simulation models can be a very time
consuming task. For statistical reasons it might be necessary to simulate a model for
quite a long time, or to perform the same simulation several times with different
parameter values.

A possible solution to reduce the execution times of long-running simulations is by
using multiple processors operating in parallel [Fujimoto90]. A typical simulation
model involves several components or entities. By exploiting this inherent model of
parallelism it would be possible to speed up the performance of the simulations by
decomposing these components through several processors.

Every simulation model is a specification of the corresponding physical model and
is composed by a set of states and events. In a discrete event simulation the state of
the system only changes at discrete points in simulated time.

A natural decomposition strategy can result in an object-oriented system design,
where an object corresponds to some component of the real system and is represented
by a computational task that is assigned to a processor for execution. In this way, a
logical process (LP) simulates every component of the model. A discrete-event

453

FEUP - Faculdade de Engenharia da Universidade do Porto

simulation requires the existence of multiple LP entities, a time-ordered event list
holding timestamped events to be processed in the future, a global discrete clock that
indicates the current simulation time and a set of state variables that define the state of
the simulation.

The most simple way for managing the event-list would be based on a centralized
strategy: the list of events is managed by a single process (master), and there would
be a pool of slave processes running on the parallel system that would execute those
events in a concurrent way. However, the existence of a centralized queue of events
would represent a bottleneck to the simulation thereby clearly reducing the potential
for parallelism.

The most permissive way of conducting parallel simulations is to eliminate the
globally shared-event list and use a completely distributed list of events. Each LP will
be assigned to a processor that maintains its own local simulation clock, a local event
list and a set of state variables. Events are modeled as timestamped messages, which
are exchanged between the physical objects of the application (LP).

However, the schemes that follow a distributed strategy would require some
synchronization protocols to make sure the events are processed in a consistent order
by all the LP entities. These synchronization protocols may increase the costs of
communication between processors. Nevertheless, they have been deserved a
considerable attention by the parallel simulation research community [Lin95].

In order to understand the main issue behind the use of distributed event-lists lets
take a look at Figure 1. It represents the temporal execution of two logical processes
^ k _ (LP1 and LP2). The LP1 entity is processing event alpha

while LP2 is processing event beta. The execution of
 event alpha generates a new event {Gama) that is sent to

ZT^ LP2. This Gama event has a lower timestamp than event
beta, and thus should have been consumed before that
one. Due to the asynchrony of the LP entities it was not
possible to assure a consistent order in the processing of

LP2 event list events> thereby resulting in a causality error
[Fujimoto90].

LP1 time

--\.PI{ alPna

current
time

--LP2'
current

LP1 event list

^Tgamaj

Fig. 1. The causality problem

The synchronization protocols have been broadly classified as Conservative or
Optimistic [Reynolds88]. Both schemes are based on the sending of messages
carrying some causality information.

The Conservative approach [Chandy79] strictly avoids the possibility of any
causality error ever occurring. This is achieved by stopping each process until the
system is sure that no other event will be scheduled by any other LP with a timestamp
smaller than the one in the top of the local list of events. This method introduces some
blocking on the execution of processes and restricts the potential for parallelism.
Besides it is prone to the occurrence of deadlock and thus requires a deadlock
detection and recovery scheme.

The Optimistic approach tries to exploit all the potential parallelism available in
the simulations. The Time Warp mechanism is a well known optimistic approach

454

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

based upon the Virtual Time paradigm [Jefferson85]. It relies upon a scheme for
causality error detection and a recovery scheme based on a rollback technique. An
optimistic LP progresses simulation and advances its local virtual time as far as
simulation is possible without occurring any causality error.

If an event is scheduled in some LP with a timestamp in the local past relative to
the local virtual clock, i.e. out of chronological order (straggler message), then the LP
entity is forced to roll back to the most recently saved state in the simulation history
consistent with the arrival of that event message and restarts the simulation at that
point thereby correcting the causality error.

In order to allow this rollback operation every LP entity is forced to save its
simulation state from time to time. All the messages that were sent previously after
that instant of time should be undone. This is achieved by sending .some sort of anti-
messages to annihilate the original messages. If these ones were already consumed by
the destination processes they will be force to roll back as well to a previous saved
state. It was proved by [Jefferson85] that the protocol will not roll back until the
beginning of the simulation and always assures some forward progress for the
computation.

Anti-messages (also called negative messages) are exact copies of normal
(positive) messages with a single difference: they have the sign field with a
different value. When a process sends an anti-message it passes part of its
responsibility of rollback to the other process. The other may or may not rollback
depending of its internal state: if the message corresponding to the anti-message was
already consumed then it must rollback.

The major drawback of the Time Warp approach is the need to save each process
state periodically [Jefferson87]. To free up some of the used memory the simulation
system calculates a time limit, called Global Virtual Time (GVT) [Belenot90] beyond
which no process is required to roll back and thereby the system can perform some
garbage collection scheme. Alternative solutions are also required to optimize the
rollback operation [Gafni88] and to achieve load-balanced simulations [Das94].

Time Warp is a relatively complex simulation protocol but it has been proved to be
a very effective technique for running complex asynchronous simulations
[Wieland89][Presley89]. We foresee that with an implementation in Java the use of
Time Warp could become more widespread for use by the research community as
well as for educational purposes.

2. The Importance of Java

In the past few years, Java as received a great deal of attention from several fields of
computing including network and distributed programming.

A comprehensive list of computing platforms has been enhanced with the support
of Java Virtual Machine (JVM)[Oasisj. Since Java programs are entirely portable
across the systems that have a JVM we will be able to execute parallel simulations in
heterogeneous systems, comprising networks of personal computers running a
Microsoft Windows operating system or clusters of workstation machines running

455

FEUP - Faculdade de Engenharia da Universidade do Porto

some flavor of Unix. All this will be possible with a simulation tool like JWarp.
Programmers are not required to change any line of code of their simulations since
Java provides the necessary support to deal with the heterogeneity.

The main handicap of Java is still its poor performance. However, recent studies,
have proved that the use of JIT, Java as enhanced its performance to the C++ level
[Mangione98]. With the foreseed improvement in the JVMs available, Java will close
the performance gap even more in the near future.

3. JWarp Internal Architecture

OB
Output Buffer

IQ
Input Queue

OQ
Output Queue

Figure 2 represents the JWarp
internal architecture. In this
Figure, the ovals represent
threads, the rectangles represent
data buffers and full lines
represent data transfers. In this
first approach, only positive
messages (thin lines) and state
saving and restoring (thick lines)
are represented. It will be shown
latter all the other kinds of
message flows.

Events arrive to every LP by
being first received in cs2ib,
placed in IB, received in ib2iq
and placed in IQ. Outgoing
events are placed in OQ by LP,
received by oq2ob, placed in OB,
received by ob2cs and sent into
the network.

Fig. 2. JWarp architecture

LP state variables (defined by the programmer) are saved from time to time in the
State Stack (ss).

The threads cs2ib, oq2ob and ob2cs are just running an infinite cycle fetchina
data from one side and placing it in the other. Thread ob2cs analyses one field of the
messages to know where to send them over the network.

Thread ib2iq detects the messages out-of-order and causality errors. It will
command the state restoring, anti-message sending, and will process GVT calculation
requests.

If there were no straggler messages the JWarp internal behaviour would be the
following:

1. The message arrives at cs2ib from the network through TCP/IP.

456

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

2. The message is placed in IB in arriving order.
3. It is fetched by ib2iq.
4. A corresponding acknowledge message is put in OB by ib2iq.
5. The acknowledge message is sent by ob2cs.
6. ib2iq puts the received message in IQ ordered by the simulation time.
7. Depending on the checkpoint frequency, the LP'S state is saved in ss.
8. Just after the state saving the message finally arrives to LP. LVT is updated to a

new value that corresponds
to the incoming message
processing time.

9. LP consumes the message
and responds by sending
none, one or more messages,
to one or more recipients,
that are placed in the
Output Queue in arriving
order.

lO.The messages are then
fetched from OQ and placed
in OB by oq2ob.

11.They are finally sent over
the network if they are
remote events or placed in
IQ if they are local events.

Fig. 3. Buffer behaviour

' ' '
evl ev3 ev2 evl

3 4 5 7

* * *
IQ

Input Queue

1 1

ev4 •v6 evl tv2

4 5 8 9

* * * *

/
OQ

Output Queue

3.1. Buffers

In JWarp, when a buffer is asked to retrieve the next event it can do one of two things:
i) retrieve, return and delete the message or ii) just retrieve and return. Buffers IB
and OB delete retrieved messages while IQ and OQ do not. Events are kept and not
deleted in IQ and OQ because when there is a rollback operation those events must
be consumed again. Likewise, the events that were sent must be maintained because
there could be a potential need to send anti-messages. Fetching an event in IQ or OQ
only means to retrieve a copy of it and move LVT pointer forward.

Although the pointers are called LVT and GVT they do not store LVT and GVT
time values. They are just a reference in the array buffers. Buffers IB and OB do not
need to keep any of its messages. All the information needed for a rollback is stored
in IQ, OQ and ss between the GVT and LVT pointers.

IQ - Input Queue
In IQ, the events after GVT pointer are the ones that have simulation time bigger than
GVT time. Events after LVT pointer are the ones that have simulation time bigger

457

FEUP - Faculdade de Engenharia da Universidade do Porto

than LVT time. Thus events after LVT pointer have not been processed yet and the
ones between LVT and GVT pointers have been processed but can not be discarded
because they might be needed in a rollback situation.

Events in IQ are placed in increasing simulation time order. The fetched event is
always the one with (LVT pointer)+1.

OQ - Output Queue
In OQ, the events after LVT pointer have not been sent already, and the ones between
GVT and LVT pointers have been sent but can not be deleted because they might be
needed for anti-messaging. Note that IQ'S LVT pointer is directly related with LVT

value: it defines a frontier splitting events with simulation time smaller than LVT
from those with simulation time bigger than LVT. However, in OQ, there is no such
relationship. LVT pointer is just a frontier splitting sent and unsent events. This
means that events in OQ are sent as soon as possible even if they have simulation
times much bigger than LVT. Events in OQ are placed and retrieved in FIFO order.

SS - State Stack
States are saved from time to time and placed in ss in FIFO order. There are no state
records above LVT pointer or below GVT pointer as it can be seen in Figure 3.

IB - Input Buffer & OB - Output Buffer
Events are put and get in FIFO order. When an event is get from IB or OB it is
removed from there.

3.2. Threads

After the initial synchronization phase there will be the following threads: cs2ib,
ib2iq, LP, oq2ob, ob2cs and GVTmaster.

cs2ib - From Communication System to Input Buffer
It is only listening for incoming messages. It will receive every kind of message
(normal events, acknowledge messages, GVT start request and GVT broadcasts)
and will treat them all »nh the ume procedure: place incoming message in IB.

oq2ob - From Output Own« to Output Buffer
Runs an infinite loop fen. hut? trom OQ and putting in OB. This operation, updates
automatically OQ'S LVT p»»w«

ob2cs - From Output Buffer to Communication System
This thread fetches messages Irom OB and if the message is normal message or it is
an anti-message, an acknowledge message, or a GVT report message, it will peek

458

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

into its receiver ID field and send it there. If the message is a GVT start or GVT

broadcast message it will send the message to every possible LP over the network.

ib2iq - From Input Buffer to Input Queue
Upon receiving a message it acts as follows:

A. If it receives a normal message the message is placed in IB in simulation order,
ready for being processed by LP. A corresponding acknowledge message is
immediately sent to OB.
A. 1. If when trying to place the message it realizes there was a causality error, it

initiates the rollback operation. The message is still placed in IB in
simulation order regardless of the rollback.

A.2. If there was a negative counterpart in queue then both messages are
annihilated and no rollback will happen even if the negative message had
past simulation time.

B. If is an anti-message:
B.I. With a corresponding positive (normal) message in IB it annihilates both.

B. 1.1. If the positive message was already consumed then it starts the
rollback operation.

B.2. Without a corresponding positive counterpart then it is just placed in IQ.

C. If it is an acknowledge message it will search for the corresponding
unacknowledged message in OQ and will set its status to acknowledged.

D. If it is a GVT start message it will start GVT calculation algorithm which
finishes by sending a GVT report message to OQ and from there to the
initiation GVT calculation process.

E. If it is a GVT broadcast message, the new GVT will be updated accordingly
and the garbage collection will take place.

LP - Logical Process
The programmer's thread is completely unaware
of negative and positive message differences,
GVT start, GVT report, GVT broadcast
and acknowledge messages. All messages
received by LP are positive and therefore are
treated in the same way. They are fetched from
IQ and the rest is up to the programmer. When
processing the event, none, one or more events
may be produced and then placed in OQ.

Fig. 4. Thread layers

GVT Master
This thread only exists in one process. From time to time it wakes up and initiates the
GVT calculation mechanism by sending a GVT start message into buffer OB. On

459

FEUP - Faculdade de Engenharia da Universidade do Porto

the other side of the buffer, thread ob2cs will fetch the message; it will see that it is
a message to broadcast and does so.

Layer Relations Between Threads
All JWarp threads and its communication channels (buffers) are represented in Figure
4.

In the Time Warp model every message has at least four fields: Sender ID,

Receiver ID, Sender LVT, Receiver LVT. Receiver LVT is also called
simulation time, since the message will be simulated at that particular time.

3.3. Types of Messages

Positive Events lr^«aw State Saving (activated by positive events)

Negative Events Ov~—^ Rollback Actions (due out-of-order or negative event)

GVT start and report Y^ jf GVT internal calculation phase (due to GVT start message)

GVT broadcast «. Garbage Coleclion (due to GVT broadcast]

> Acknowledgements D""*" «•£* Set message status to acknowledge (due to ack. message)

Fig. 5. Message flows - represents every kind of possible message and its consequences.
Messages are represented with full lines and actions with dotted lines. Message and action
arrows of the same style are cause and consequence.

Positive Messages
As it can be seen, only positive messages arrive to the LP. Just before arriving, the
LP's state is saved in ss, as it can be seen in Figure 5 by the dotted State Saving line.
After arriving to the LP, this message is processed and eventually some more
messages are produced and sent to the network. However, if a positive message is

460

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

timestamped in the past, a rollback will happen. In a rollback operation, the state
variables are restored from ss, the LVT pointer in IQ is adjusted to this state and the
LVT pointer in OQ is also adjusted. In OQ the messages that where to the left of LVT
pointer and are now to the right must be unsent. For every message in these
conditions, a correspondent anti-message is created and is sent while the original to
unsent message is deleted. All messages to the right of LVT pointer before adjustment
are just deleted.

Negative Messages
If the incoming message is negative it will never get to the LP. Two things may
happen: it creates a rollback or it does not produce a rollback. Other Time Warp
models allow for a negative message to arrive before its positive part if the underlying
communication system allows for out-of-order messages. JWarp uses TCP sockets
thus this is guaranteed never to happen. However, if it is possible for a negative
message to arrive before the positive, then what is needed to do is simply to place it in
IQ and do not allow LP to fetch it. Whenever the positive message arrived both
would be annihilated in the buffers.

Acknowledge Messages
When a positive message arrives to ib2iq an acknowledge message is produced and
placed in OB. When an acknowledge message arrives, ib2iq will look for its
corresponding message in OQ and change its status to "acknowledged".

GVT Start and GVT Report Messages
When a GVT start message arrives, OQ is consulted (GVT Internal Calculation
Phase line) in order to obtain the proper values to respond with a GVT report
message. That message is then sent to back to the master.

GVT Broadcast
Finally, when a GVT broadcast message arrives with a new GVT an operation of
garbage collection is started which involves removing some data from IQ, OQ and ss.

4. JWarp Interface

Like many simulation languages and environments, the JWarp library offers a event
list and functions to fetch and schedule events. Applications built with JWarp should
typically run in a cycle fetching one event at a time from the event list and processing
that event. The event processing operations may produce zero, one or more events
either to be handled by the local processor or by a remote one.

To allow rollback operations, the state variables need to be saved periodically.
JWarp offers special classes where the programmer is allowed to define which
variables (or objects) make part of the application state and, therefore, which
variables have their values restored after a rollback.

46)

FEUP - Faculdade de Engenharia da Universidade do Porto

At the programming stage, the developer is asked to define the event types that is,
the messages to be exchanged between processors at run-time. The programmer must
also define which machines and ports will be used in the distributed simulation. The
pool of processors is therefore static; removing, adding or changing any of these
entries implies a new compilation of the package.

The interface used by the application consists in only a few functions to retrieve
events and to schedule events. Network communications, location of other process,
the operations of rollback, state saving and state restoring are completely invisible to
the application.

4.1. JWarp Programming Example

Let us see through a small example of a Ping-Pong application how to program a
JWarp simulation. This example is quite simple: one process sends an event message
and the other replies with another event. Figure 6 presents the main Java file
(PingPong. Java) that specifies the LP entities and indicates the mapping of events
to the corresponding LPs.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

package pingpong;
import jwarp.*;

class PingPong{

static JwarpManager sim = new JwarpManager();

public static void main (String args[]){

Ping pPing = new PingC'l process ping events")
Pong pPong = new Pong("I process pong events")

sim.mapsEvent2LP("ping", pPing);
sim.mapsEvent2LP("pong", pPong);

sim.JWInit(args);
}

}

Fig. 6. The main class that starts the whole simulation (PingPong.java)

The things that are required to do are:

1. First, create a class with a public static main method. In this example, this
file is PingPong. java.

2. Define an JwarpManager object that will be responsible by the control of the
simulation (line 5).

3. Declare our LP entities: Ping and Pong (lines 9 and 10).

462

VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing

4. Declare which events are handled by the Logical Processes by using the method
mapsEvent2LP (lines 12 and 13).

5. Start everything with JWinit(args) (line 15).

The main () class and the help of a configuration class are used by the JWarp
package to know which processes should run on which processors, which LPs should
be executed and what is the mapping of events to LP entities.

Figure 7 shows the code of one the LP entities (Ping). The other one (Pong) is not
shown since it is quite similar. Mainly there are two things that are required for a
programmer to do:

1. Define the LP entities which will make part of the simulation. In this particular
case they are defined in Ping. Java and Pong. Java. These classes are extensions
to a JWarp abstract class: Jwarp_LP. Since this class implements Runnable the
programmer must define its code inside the run method. These classes are the ones
which define the model to be simulated;

2. Receiving and sending messages is accomplished with the getEvent and
putEvent methods.

package pingpong;
import jwarp.*;

public class Ping extends Jwarp_LP{
public void run(){

ppMessage pingOut;
pingOut = new ppMessage(2, 5, "ping", "pong", "Hi from

Ping! ") ;
putEvent(pingOut);
System.out.println("Ping sent message: " + pingOut);
ppMessage pongln = (ppMessage) getEvent();
System.out.println("Pong received message: " + pongln);

}

public PingtString name) { super(name);}
}

Fig. 7. The code of one LP entity that sends a ping event and receives a pong (Pong. j ava)

Finally Figure 8 presents the definition of an event message. The programmer is
basically required to:
1. Define the message types necessary to the simulation. In this case we define a

single one that must extend the class Message, a class belonging to the JWarp
package;

2. To print the message contents the programmer may define the toString method.

463

FEUP - Faculdade de Engenharia da Universidade do Porto

package pingpong;
import jwarp.*;

public class ppMessage extends Message {
String sentence;

public ppMessage(long sendingTime, long receivingTime,
String sender , String receiver,
String sentence){

super(sendingTime, receivingTime, sender, receiver);
this.sentence = sentence;

}

public String toString(){

return ("ppMessage " + this.getSendingTime() +
"—>" + this. getReceivingTime () +
". From: " + this.getSender() +
" To: " + this.getReceiverO) ;

}
}

Fig. 8. Definition of an event message (ppMessage. j ava)

5. Related Work

Several work about the Time Warp model has been presented in the literature
[Jefferson85][Fujimoto90][Lin95][Ferscha95]. It was firstly implemented as an
operating system - TWOS - in the Jet Propulsion Laboratory [Jefferson87]. Later on,
it was ported to several other systems [Fujimoto89][Turner94][Belenot92].

Several parallel simulation languages have also appeared in the last decade: OLPS
[Abrams88], Maisie [Bagrodia90], ModSim [West88], SCE [GÜ189], Sim++
[Baezer94] and YADDES [Preiss89].

Other approach has been followed by other researchers that chose to implement the
parallel simulation system as a run-time library written in C++: examples include
WARPED [Martin94], SPEEDES [Steinman91] and HASE++ [Howell97].

Until recently, there only two simulation libraries that were implemented in Java:
SimJava [SimJava] and SimKit [SimKit]. However, these libraries only support
sequential simulations. This year parallel discrete-event simulation Java libraries
appeared: JTED [Cowie98] following the conservative approach and Formax
[Halderen98] following a web-based optimistic approach.

464

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

6. Conclusions

This paper reports an implementation of the Time Warp model in Java. The library
implements all the internal synchronization mechanisms included in that model and
provides a very easy-to-use programming interface.

With JWarp it can be possible to execute parallel applications on clusters of
workstations and personal computers that have the support of a Java Virtual Machine.
Java assures the portability of the programs, solves the problems of heterogeneity and
provides a quite flexible programming environment.

It can be used to execute long-running complex simulation models. With the
appropriate visualization tools it can also be adopted in the class rooms for the
teaching of parallel simulation techniques and concurrent programming.

7. References

[Abrams88] M.Abrams. "The Object Library for Parallel Simulations (OLPS)", Proceedings
Winter Simulation Conference, pp. 210-219, San Diego, California, December 1988

[Baezner94] D.Baezner, G.Lomow, B.Unger. "-4 Parallel Simulation Environment Based on
Time Warp", International Journal in Computer Simulation, Vol. 4 (2), pp. 183-207, 1994

[Bagrodia94] R.L. Bagrodia, V.Jha, J.Waldorf. "The Maisie Environment for Parallel
Simulation", Proceedings 27th Annual Simulation Symposium, California, pp. 4-12, 1994

[Belenot90] S.Bellenot "Global Virtual Time Algorithms". Proceedings of SCS
Multiconference on Distributed Simulation, Vol 22, No 2, pp. 122-127, January 1990.

[Belenot92] S.Belenot. "A Network Version of the Time Warp Operating System", Proceedings
of the Workshop on Cluster Computing, Florida, 1992, 1992

[Chandy79] K.M.Chandy, J.Misra. "Distributed Simulation: A Case Study in Design and
Verification of Distributed Programs", IEEE Transactions on Software Engineering, Vol.
SE-5, No. 5, pp. 440-452, September 1979

[Cowie98] J Cowie. "JTED: Parallel Discrete-Event Simulation in Java", Proceedings of" ACM
1998 Workshop on Java for High Performance Network Computing, pp 251-254, February
1998.

[Das94] S.R.Das, R.M.Fujimoto. "An Adaptive Memory Management Protocol for Time Warp
Parallel Simulation", Proceedings of the 1994 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, Nashville, pp. 201-210, 1994

[Ferscha95] A.Ferscha, S.Tripathi. "Parallel and Distributed Simulation of Discrete-Event
Systems", Technical Report University of Vienna, 1995

[Fujimoto89] R.M. Fujimoto. "Time-Warp on a Shared-Memory Multiprocessor", Proceedings
1989 International Conference on Parallel Processing, Vol. Ill, pp. 242-249, August 1989

[Fujimoto90] R.M. Fujimoto. "Parallel Discrete Event Simulation", Communications of the
ACM, Vol.33, No 10, pp. 30-53, October 1990.

[Gafni88] A.Gafni. "Rollback Mechanisms for Optimistic Distributed Simulation Systems",
Proceedings of the SCS Multiconference on Distributed Simulation 19, pp. 61-67, 1988

[Gill89] D.H.Gill, F.X.Maginnis. "An Interface for Programming Parallel Simulations",
Proceedings of the SCS Multiconference on Distributed Simulation, Vol. 21 (2), pp. 151-
154, Tampa, Florida, March 1989

465

FEUP - Faculdade de Engenharia da Universidade do Porto

[Halderen98] B. Halderen, B. Overeinder, "Formax: Web-based Distributed Discrete Event
Simulation in Java", Proceedings of ACM 1998 Workshop on Java for High Performance
Network Computing, pp 113-122, February 1998.

[Howell97] F.Howell. "HASE++: A Discrete-Event Simulation Library for C++", Technical
Report Department of Computer Science, University of Edinburgh, Available at:
http://www.dcs.ed.ac.uk/home/hase/projects/hase++.html

[Oasis] The Java Oasis, 'The Java Oasis: Java Developers Kit (JDK) - Index",
http://www.oasis.leo.org/java/development/jdk/00-index.html

[Mangione98] C. Mangione, "Performance Tests Show Java as Fast as C++". Java World,
http://www.javaworld.com, February 1998

[SimJava] SimJava, http://www.dcs.ed.ac.uk/home/hase/simjava/simjava-l. 1/
[SimKit] SimKit, http://www.cpsc.ucalgary.ca/-adi/simkit/workshop/index.htm
[Jefferson85] D.R.Jefferson. "Virtual Time". ACM Transactions on Programming Languages

and Systems, Vol. 7, No 3, pp. 404-425, July 1985, pp. 404-425.
[Jefferson87] D.Jefferson, et al. "Distributed Simulation and the Time Warp Operating

System". Proceedings of 11th ACM Symposium on Operating Systems Principles, Vol 21
No 5, pp 77-93, November 1987.

[Lin95] Y.B.Lin, P. Fishwick. "Asynchronous Parallel Discrete Event Simulation", IEEE
Transactions on Systems, Man and Cybernetis, Vol. 26, No. 4, pp. 397-412, 1995

[Martin94] D.Martin, P:Wilsey, T.McBrayer. "The WARPED Time-Warp Simulation Kernel",
Technical Report University of Cincinnati, USA, 1994

[Naughton96] P. Naughton. "The Java Handbook". Osborne McGraw-Hill, 1996.
[Preiss89] B.R.Preiss. "The YADDES Distributed Discrete-Event Simulation Specification

Language", Proceedings of the SCS Multiconference on Distributed Simulation, Vol. 21 (2),
pp. 139-144, Tampa Florida, March 1989

[Presley89] M.Presley, M.Ebling, F.Wieland, D.Jefferson. "Benchmarking the Time Warp
Opearing System with a Computer Network Simulation", Proceedings SCS Distributed
Simulation Conference, pp. 8-13, 1989

[Reynolds88] J.P.Reynolds. "A Spectrum of Options for Parallel Simulation", Proceedings
Winter Simulation Conference, San Diego, California, pp. 325-332, December 1988 '

[Steinman91] J.S.Steinman. "SPEEDES: Synchronous Parallel Environment for Emulation and
Discrete-Event Simulation", Proceedings of Parallel and Distributed Simulation Conference
pp. 95-103, 1991

[Turner94] S'.Turner. "Distributed Simulation with a Transputer Version of the Time Warp
Operating System", Proceedings Transputers'94, Besancon, France, pp. 39-54, September
1994

[West88] J.West, A.Mullarney. "ModSim: A Language for Distributed Simulation",
Proceeedings of the 1988 SCS Multiconference on Distributed Simulation, Vol 4(2) pp
235-257, 1994

[Wieland89] F.Wieland, L. Hawley, A.Feinberg, M. DiLoreto, L.Blume, et al. "The
Performance of Distributed Combat Simulation with the Time Warp Operating System".
Concurrency: Pratice and Experience, Vol 1(1), pp. 35-40, September 1989.

466

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Lecture Notes in Computer Science

Evaluation of High Performance Fortran for an
Industrial Computational Fluid Dynamics Code

Thomas Brandes1, Falk Zimmermann1, Christian Borel2, Marc Bredif2

1 Institute for Algorithms and Scientific Computing (SCAI)
German National Research Center for Information Technology (GMD)

Schloß Birlinghoven, D-53754 St. Augustin, Germany
{Thomas.Brandes, Falk.Zimmermann} @gmd.de

2 Service Aerodynamique Numerique PV21
MATRA BAe Dynamics France, CFD Group

37, avenue Lois Breguet BP 1,
F-78146 Velizy-Villacoublay Cedex, France

{cborel, mbredif} @matra-def.fr

Abstract. The PHAROS project, funded by the European Unions ESPRIT pro-
gram for research and development in information technology, aimed to assess
High Performance Fortran (HPF) as a paradigm for porting large FORTRAN 77
scientific applications to distributed memory architectures, in comparison to
message-passing programming. The AEROLOG computational fluid dynamic-
software developed by MATRA was one of these applications that has been
ported to HPF. It is devoted to the study of compressible fluid flows around
complex geometries. This paper describes the port of the AEROLOG code to-
HPF based on the decomposition of subdomains. It outlines the parallelization
strategy, the changes of the data structures and the tuning of the boundary con-
ditions for the subdomains. Performance results for industrial test cases with
different HPF compilers are given and compared with the results of the mes-
sage-passing version.

1. Introduction

High Performance Fortran (HPF) [7,8] is a data parallel, high level programming
language for parallel computing that is expected to be more convenient in terms of
portability and maintainability than explicit message passing and to allow higher pro-
ductivity in software development. But the porting of key commercial applications to
HPF is still of critical importance for the continuing development and acceptance of
HPF as a standard and for the improvement of HPF compilers.

The ESPRIT project "Open HPF Programming Environments" (PHAROS) aimed
to assess HPF as a paradigm for porting large FORTRAN 77 scientific applications to
shared and distributed memory architectures, in comparison to message-passing pro-
gramming. The PHAROS project was funded by the European Union's ESPRIT pro-

467

FEUP - Faculdade de Engenharia da Universidade do Porto

gram for research and development in information technology. It was a two years
project, running from January 1996 until December 1997.

To this end, four major commercial FORTRAN 77 application codes have been
successfully ported to HPF (structural analysis, CFD and electromagnetism applica-
tion codes). These codes already had message-passing parallel versions. The compari-
son of HPF to message-passing considered factors such as:

• the porting effort;
• the performance of the resulting code;
• the portability and maintainability of the resulting code.

One of the PHAROS applications was the AEROLOG computational fluid dynam-
ics software of MATRA BAe Dynamics [1,5]. The AEROLOG code is a proprietary
CFD software devoted to the study of compressible fluid flows around complex
geometries. For many years, it has been systematically applied during the aeronautical
development programs MISTRAL, MICA, and APACHE, reducing the experimental
studies and consequently cutting down costs and delays.

Together with HPF experts and HPF tool providers, the version AEROLOG-v3.2e
(e for Euler inviscid fluid model) has been ported to HPF. It is an industry relevant
subset of the latest release AEROLOG-v3.2 which includes all the functionalities used
in today's applications. This full release AEROLOG-v3.2 is composed of 102 subrou-
tines with about 19000 lines of source code written in standard FORTRAN 77. The
reduced code AEROLOG V3.2e is composed of 55 subroutines with about 11500 lines
of source code. It is equivalent to the content of the message passing version of the
AEROLOG code.

In accordance to the workplan of the PHAROS project, the rest of this paper is or-
ganized as follows. Section 2 describes the AEROLOG software and section 3 out-
lines the initial port to HPF. The code review in section 4 identified the problems of
the initial version and resulted in the code tuning presented in section 5. We discuss
our expectations for the next generation of HPF compilers in section 6 to overcome
the still existing problems Finally, we compare in section 7 the results of the HPF
versions with the MP! version and conclude in section 8.

2. Description of th* AEROLOG Software and the Test Cases

2.1 The AEROLOG CFD Code

The AEROLOG-v3 2 code allows the simulation of steady or unsteady inviscid and
compressible fluid flows over three-dimensional geometries by solving the Euler sys-
tem of partial differential equations. It utilizes an explicit time integration scheme of
Lax-Wendroff type. It is second order accurate in time and allows steady flow simula-
tion with the local time-stepping technique or unsteady simulation with a uniform time

468

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

step limited by the so-called CFD stability condition. Another functionality is the
finite volume space integration scheme. It is a three-dimensional extension of the cell
vertex Ni scheme [4] which is second order accurate in space on a Cartesian grid. The
formulation is fully conservative so that shock and expansion waves are automatically
captured.

The data layout is based on a multidomain meshing strategy. The global mesh is
composed of an assembly of locally structured three-dimensional mesh blocks (I, J, K,
families of mesh lines). All types of degenerations are allowed on the mesh bounda-
ries, like mesh plans degenerating into a mesh line or a point. This is very useful for
the meshing of complex geometries, but it requires the implementation of the conven-
ient matching conditions.

The most time consuming part of the code is the subroutine that computes the time
increments for the physical variables at each time step. It is composed of a succession
of calls to subroutines that can be sorted into two groups:

• The "local" routines are called independently over subdomains. This group uses
typically up to 90% of the total CPU time within the FORTRAN 77 code.

• The "boundary" routines perform the boundary conditions: flow conditions (in-
flow, outflow, walls, etc.) and numerical matching conditions (interfaces be-
tween subdomains). These routines make an intensive use of indirect addressing
and involve dependencies between data belonging to different subdomains.

2.2 CFD Test Cases

Three meshes of increasing sizes (see Table 1) have been build around the same
geometry of blunt body. The free flow conditions are: Mach number equal to 2.96 and
angle of attack equal to lOo. With these conditions, the fluid flow over the blunt body
shows strong shock and expansion waves: characteristic of MATRA industrial appli-
cations.

Test Case Si/c\ and Number
Name .f Subdomains

Total Mesh
Points

Processing
Nodes

Small t * « Hx9)x8 154440 1-8
Medium ^(I^K9)X8 304200 2-16

Large , : > » *< x 9) x 8 603720 4-64 ■

Table 1. Industrial Test Cases.

Due to the coarse grain pjjjJIelization strategy over subdomains (see next section),
the number of HPF process is limited by the number of subdomains. In order to run
a number of HPF tasks higher than the initial number of subdomains, a pre-processor
can be applied [6]. This preprocessor takes as input a mesh file with its associated
lopological description and generates automatically a new mesh data set with respect
to the three following constraints:

469

FEUP - Faculdade de Engenharia da Universidade do Porto

• generate the given number of mesh blocks,
• optimize the load balancing (i.e. homogeneous mesh block sizes),
• minimize the size of blocks interfaces.

3. Initial Port to HPF

3.1 Porting to Fortran 90

Initially, the code was ported from FORTRAN 77 to Fortran 90. Apart from in-
serting F90 syntax, e.g. array syntax and interface blocks, we replaced the old one
dimensional "work-array" with dynamic arrays. Some of the arrays became allocat-
able arrays, other ones, especially for local data, became automatic arrays. These
changes made the code more flexible as the static size of the workspace is no longer
given. But they were also absolutely necessary to allow the HPF distribution of the
mesh data in a useful way.

The porting to Fortran 90 was supported by the Foresys (FORtran Engineering
SYStem) tool from SIMULOG [11] that is a reverse-engineering, migration and de-
velopment support system for Fortran. It was especially useful to generate interface
blocks with intentions for the dummy arguments, and to take advantage of new syntax
and new language features.

3.2 Coarse Grain Parallelization Strategy

For the HPF parallelization we have chosen the following strategy:

• The loops over the different subdomains calling the local routines provide coarse
grain parallelism without communication. The HPF mapping directives have to
guarantee that all data belonging to one subdomain is completely mapped to the
same processor.

• The matching conditions of the interfaces of adjacent subdomains are difficult to
handle. The initial strategy was the replication of the data and computations in-
volved in the boundary conditions.

In the AEROLOG code, the data of the two- or three-dimensional subdomains is
linearized and stored in a one-dimensional array. For using the coarse grain parallel-
ism, it is essential that we can distribute the data in the program in such a way that one
subdomain is completely owned by the processor that will work on this data. As the
subgrids have different sizes, it would be necessary that HPF supports generalized
block distributions where the user can pass to the compiler the corresponding block

470

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

sizes for each processor. Unfortunately, none of the commercial HPF compilers sup-
ported this feature already during the project time. For this reason, we had to reorgan-
ize the one-dimensional mesh data arrays to two-dimensional ones. The second di-
mension corresponds to the subdomains numbering and will be distributed by BLOCK
(see Fig. 1). This imposed significant changes to the code, not only for the arrays
containing mesh data, but also for all integer arrays used for indirect addressing of
mesh data.

real, dimension (NTOT) ::X

mm o

real, dimension (NMAX,NSDTOT) :: X

!hpf$ distribute (*,BLOCK) :: X

V ' -

Fig. 1. New data structures for the mesh data and their distribution.

3.3 Coarse Grain HPF Implementation

With the help of the INDEPENDENT directive, we enabled the parallelization of
the loops over the subdomains. The local routines are defined as PURE routines to
allow their parallel execution for the different subdomains (see Fig. 2). Furthermore,
the local routines have not to be parallelized at all and do not need any HPF directive.

The AEROLOG code takes advantage of sequence association. The subdomains are
implicitly reshaped within the local subroutines. Within one subroutine, one subdo-
main is always considered as a three-dimensional rectangular grid. Though the HPF
standard does not allow sequence association for mapped arguments, we could rely on
it as long as it is only used for a single subdomain that is completely mapped to one
processor.

For the boundary routines, the values of the boundary nodes of the different sub-
domains are gathered from the distributed mesh data. For the initial HPF port, the data
and computations are replicated on all nodes and every processor updates the values of
its boundary mesh nodes. The gathering of the distributed data is realized by replica-

471

FEUP - Faculdade de Engenharia da Universidade do Porto

tion of the whole mesh data. As the mesh data is not distributed within the boundary
routine, implicit remapping at subroutine boundaries is utilized (see Fig. 3).

integer :: NSDTOT ! total number of subdomains

integer :_: NMAX ! maximal size of one subdomain

real, dimension (NMAX,NSDTOT) :: F ! mesh data, e.g. force

!hpf$ distribute F (*,block) ! distribute the subdomains

integer, dimension(NSDTOT) :: IM, JM, KM ! sizes

!hpf$ independent

do NSD = 1, NSDTOT

call LOCAL_ROUTINE (F(1,NSD),IM(NSD),JM(NSD),KM(NSD), ...)
end do

call BOUNDARY (F, NMAX, NSDTOT, ...)

pure subroutine LOCAL_ROUTINE (F,IM,JM,KM,...)

integer, intent(in) :: IM, JM, KM

real, dimension(IM,JM,KM), intent(inout) :: F

end subroutine LOCAL_ROUTINE

Fig. 2. Outline of the initial HPF AEROLOG Code.

subroutine BOUNDARY (F, NMAX, NSDTOT, ISD_B, IJK_B, NB)

integer, intent (in) :: NMAX, NSDTOT, NB

integer, dimension (2, NB), intent (in) :: ISD_B, IJK_B

real, dimension (NMAX, NSDTOT), intent (inout) :: F

!hpf$ distribute F(*,*) ! replicated mesh data
real :: XI, X2, X

integer :: IB, IJK1, ISD1, IJK2, ISD2
do IB=1,NB

IJK2 = IJK_B(2,IB); ISD2 = ISD_B(2,IB)

IJK1 = IJK_B(1,IB); ISD1 = ISD_B(1,IB)

X = (FdJKl, ISD1) + F(IJK2,ISD2)) * 0.5

F (IJK1.ISD1) = X; F(IJK2,ISD2) = X

end do

end subroutine

Fig. 3. Computation of boundary conditions in the AEROLOG code.

472

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

4. Code Review

We tested the initial HPF port with the following compilers:

• NAS HPFPlus by NA Software Liverpool, Release 2.01, a commercial HPF com-
piler that was also the target compiler for all HPF codes in the PHAROS project;

• PG HPF by Portland Inc., Oregon [9], AIX Rel. 2.2-1, another commercial HPF
compiler;

• ADAPTOR HPF compiler, version 5.1 (Oct. 1997) [3], developed at SCAI in
GMD, a research compiler that is available as public domain.

All results have been measured on the IBM SP2 at the GMD. We give the execu-
tion times in seconds for 5 iterations on the 'small' test case that works on 8 subdo-
mains, every subdomain contains 65 x33 x9 mesh points (see also Table 1).

0 5 10 15 20 25 30

Fig. 4. Execution times (in seconds) of initial HPF version.

Fig. 4 shows the execution times of the initial HPF version, compiled by the native
Fortran 90 compiler (xlf) and by the different HPF compilers running on 1,2, 4, and 8
processors. The HPF version (considered as a Fortran 90 version without directives)
has nearly the same performance as the original FORTRAN 77 version. The execution
times, separated for the local and boundary routines, show that the local routines are
parallelized perfectly. They scale well and the HPF parallelization causes no overhead.

473

FEUP - Faculdade de Engenharia da Universidade do Porto

But all boundary routines do not scale. In contrary, the execution time increases with
the number of processors. This is due to the replication of distributed data that in-
volves an all-to-all communication. Furthermore, it shows that the compilers have
already different 'support for this kind of structured communication that follows a
fixed communication pattern where every processor knows which data has to be sent
and to be received.

DNAS BPGI BADP DNAS BPG1 BADP

NP=I NP=2 NP=4 NP=8 NP=16

(a) Replication of 16 kBytes

NP=1 NP=2 NP=4 NP=8 NP=I6

(b) Replication of 128 kBytes

Fig. 5. Replication of distributed data.

In order to estimate the cost of replications, we benchmarked a sample code that
performs only data replications of arrays with varying sizes. Fig. 5 shows how much
time (in milliseconds) the replication of distributed data needs for the different com-
pilers and'for the different number of processors. Array sizes of 16 Kbytes and 128
Kbytes are considered. The time for replicating distributed data increases with the size
of the array and with the number of processors. The ADAPTOR runtime system is
able to recognize at runtime that the replication of distributed data on a single proces-
sor does not require any copying at all.

5. Tuning of the HPF Code

As the results of the initial HPF port show, only the tuning of the boundary routines
is necessary. We considered two strategies:

• We let the mesh arrays distributed for the boundary routines and relied on the capa-
bilities of the HPF compiler to deal with unstructured communication. Unfortu-
nately, all HPF compilers failed to generate more efficient code than for the initial

474

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

HPF version. Especially the NAS HPFPlus compiler provided absolutely no effi-
cient support for indirect addressing.
Instead of replicating the whole array containing the mesh data, we compressed the
full mesh data to the boundary data before replicating it. This solution needed new
data structures for packing and unpacking of boundary data (see Fig. 6). The pack-
ing of the data can be done independently for all subdomains. This approach re-
quired only HPF features that were supported by all HPF compilers.

2 3 NB

\ <^'
V

Fig. 6. Packing of boundary data.

By the packing of the boundary data, much less data has to be replicated between
the different processors. Only the boundary data and not the whole mesh data is ex-
changed between the processors. The results shown in Fig. 7 verify the effectiveness
of the chosen approach. Compared to the sequential version, speedups from 4 to 5 on 8
processors are achieved.

6. Expectations for the Next Generation of HPF Compilers

The current tuned HPF version is still not fully portable between the different HPF
compilers as the calling of local subroutines within an independent loop is supported
differently. The NAS HPFPlus compiler did not act at all upon the INDEPENDENT
directive, but scheduled the local computations, defined as HPF_SERIAL routines
and not as PURE routines, on the processors owning the subdomain. The need for the

475

FEUP - Faculdade de Engenharia da Universidade do Porto

slightly different versions of the HPF code should become redundant with the next
releases of the HPF compilers.

Considering HPF 2.0 [8], we expect support for general block distributions. This
would avoid the additional dimension for the subdomains and there would be no more
wasting of memory in case of different subdomain sizes (see also Fig. 1). This feature
is absolutely necessary to combine the evolution of the serial and the HPF version of
the AEROLOG code.

■ i 1 1
F90

1 III"
NAS 1

:

- 1 III"
PGI I

1 1 1
ADP] m

1 1
NAS 2 l#&4 , , WW

PGI 2 m
1 1

ADP 2
1

NAS 4 hn*»J

1
PGI 4 ,. -m

- 1 Dlocal ■boundary ADP 4

NAS 8 mm&x-l

•A PGI 8
-

ADP 8 II

0 * 10 IS 20 25 30

Fig. 7. hiciutmn times (in seconds) of tuned HPF version.

35

The Amdahl limn fc struts the maximum speed-up as long as the boundary compu-
tations are not parallelized But then unstructured communication has to be supported.
Therefore the compiler h.4» in build a schedule required for accessing remote items of
distributed arrays and)■* vmrnunication optimization. Unfortunately, schedules can-
not be worked out ai o-mpiU: time, but only at run-time, when the values of the indi-
rection arrays are know n TV code design which first builds the schedule, then uses it
to carry out the actual communication and computation, has been coined as the in-
spector/executor scheme 110). The PGI and ADAPTOR compiler followed this de-
sign, but only the latest release of ADAPTOR tool provided sufficient support for
reusing communication schedules by an additional directive [2].

476

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Fig. 8 presents results for the 'medium' test case (100 iterations), for the local rou-
tines (local) and for different implementations of the boundary routines. The replica-
tion strategy of the initial and tuned HPF version does not scale. The unstructured
communication (unstr.) for the parallelized boundary computations scales, but pro-
duces an unacceptable overhead due to the high costs for building the communication
schedule. If the communication schedule can be reused, e.g. by tracing modifications
of the indirection array as described in [2], the unstructured communication produces
good results (traced).

□ local ■ initial ■ tuned ■ unstr. H traced

P=2 P=4 P=8 P=16

Fig. 8. Different tuning strategies of the boundary computations (ADAPTOR).

7. Benchmarking and Comparison with Message Passing

The porting of the AEROLOG code to HPF required important code changes as
well as the message passing port, but it could be done step by step, always having a
running version. This porting included useful code cleaning and modernized memory
management. The replacement of the super-array technique in favor of Fortran 90
dynamic allocation of the local arrays brings simplification and flexibility to the code.
But many code changes were only required due to the limited capabilities of the HPF
compilers.

The HPF and the message passing version achieve nearly the same performance for
smaller number of processors. But the message passing version of the AEROLOG
code scales better (see Fig. 9). It parallelizes also the boundary routines and takes
advantage of reusing explicitly communication schedules. But with an HPF compiler
that supports unstructured communication and reuses schedules the scalability of the

477

FEUP - Faculdade de Engenharia da Universidade do Porto

MPI version can be nearly achieved as the results with the ADAPTOR compilation
system verify.

From the code development and maintenance point of view, it is possible to replace
smoothly the FORTRAN 77 reference code in favor of the Fortran 90/HPF code. The
benefits of this migration will be the merging of the sequential/parallel
shared/distributed memory versions of AEROLOG, which have reached very different
levels of development at the moment. The migration of the complete AEROLOG code
(implicit solver, Navier-Stokes solver, etc.) is eased by the choice of the coarse grain
parallelization strategy based on the multidomain approach. In particular, it is not
necessary to rewrite the local algorithms which can remain FORTRAN 77, saving a
lot of porting efforts and bug risks. Experimental results with the ADAPTOR compiler
have also shown that the HPF version is well suited for shared memory architectures
by translating the HPF directives into parallelization directives for the native compiler.
Due to the shared memory, runtime support for unstructured communication is not
necessary.

In any case, we have seen from the PHAROS final benchmarks that it is not possi-
ble at the moment to get rid of the message-passing version of the code, which is the
only one able to run efficiently enough on massively parallel computers. Enhance-
ments of the HPF compiler technology are still required to a complete migration to
HPF.

DNAS (tuned) iPGI(tuned) IADP (tuned) E ADP (traced) I MPI

NP=1 NP=2 NP=4 NP=8 NP=16 NP=32

Fig. 9. Speedups on industrial test cases.

478

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

8. Conclusions

With the end of the PHAROS project, we have an HPF version of the AEROLOG
code that runs with at least three HPF compilers and produces acceptable results for a
limited number of processors. The porting effort was higher than expected because
code restructuring was required in order to achieve the HPF implementation of the
coarse grain parallel strategy. As HPF concepts, are rather complicated for non spe-
cialists, the know-how transfer from tool providers and experts to the end-user was
very important and might be considered as a major benefit of the PHAROS project.

At this time, the code is not fully portable as different language features are used
for the two commercial HPF compilers. This is not only due to the missing support in
the compilers, but also due to fact that the HPF standard was not not rigid enough, so
that HPF directives led to various interpretations. With future releases of the HPF
compilers, these problems will disappear. The tuning of the boundary conditions re-
quired a lot of effort. This effort might be less with advanced HPF compilers where
unstructured communication is better supported.

The HPF version can directly be compiled for a serial machine achieving the same
performance than the original code. While the independent computations over the
subdomains scale well, the boundary conditions remain the critical part, even in the
tuned version. Replication of mesh data is rather expensive, unstructured communica-
tion is not well supported. Due to the replication of the boundary computations, the
scalability of this version is limited in any case.

Nevertheless, experimental results with the research compilation, system ADAP-
TOR verify that a scalable and efficient HPF parallelization of the AERLOG software
is possible if general block distributions and unstructured communication are suffi-
ciently supported.

In conclusion of this project, we can state that HPF is a useful paradigm for porting
large FORTRAN 77 applications to parallel architectures and in the long run the better
alternative. But an ctfi«.ient and portable parallelization and a higher productivity in
software developmcm >. an only be achieved if HPF compilers improve substantially.

Acknowledgement1«

The support of the is »WORN group (SCAI, GMD) for access to the IBM SP2 at
the GMD is appreciaicJ

479

FEUP - Faculdade de Engenharia da Universidade do Porto

References

1. Borel, C, Bredif, M.: High Performance Parallelized Implicit Euler Solver for the
Analysis of Unsteady Aerodynamic Flows. In Eccomas'92 : Conference Proceed-
ings, pp. 1069-1076. Elsevier Science Publisher. 1992.

2. Brandes, Th., Germain, C: A Tracing Protocol for Optimizing Data Parallel Ir-
regular Computations. Accepted for publication at EuroPar'98, Southampton Sep
1998.

3. Brandes, Th., Höver-Klier, R.: ADAPTOR User's Guide (Version 5.1). Technical
documentation, GMD, Oct. 1997. Available via anonymous ftp from ftp.gmd.de as
gmd/adaptor/docs/uguide.ps.

4. Bredif, M., Chattol I, Koeck, P., Werle, C: Simulation d'un Systeme de Deviation
de Jet ä l'Aide des Equations d'Euter.AGARD C7», 412:13.1 —13.1J, 1986.

5. Bredif, M., Chapin, F., Borel, C, Simon, P.: Industrial Use of CFD for Missile
Studies: New trends at MATRA BAe Dynamics France, in NATO-AVT panel on
Missile Aerodynamics (11-15 May 98, Sorrento, Italy). Conference Proceedings, to
be published.

6. Choukroun, F., Roux, F.X., Borel, C, Bredif, M.: Implementation of an Industrial
CFD Code on a Massively Parallel Computer with Distributed Memory. In Parallel
CFD'93 : New Algorithms and Applications, pp. 271-276, Elsevier Science, 1995.

7. High Performance Fortran Forum: High Performance Fortran Language Specifica-
tion, Version 1.1, Department of Computer Science, Rice University, Nov. 1994.

8. High Performance Fortran Forum: High Performance Fortran Language Specifica-
tion, Version 2.0, Department of Computer Science, Rice University, Jan. 1997.

9. PGHPF: Reference Manual, User's Guide, Technical Report, The Portland Group,
Inc., Oregon, Nov. 1994.

lO.Mirchandaney, R. et al: Principles of run-time support for parallel processing. In
ACM Int. Conf. on Supercomputing, pages 140-152, 1988.

U.Foresys: SIMULOG. Foresys 2.0 User's Guide. Technical report, SIMULOG,
1998. http://www.simulog.fr/foresys.

480

VECPAR '98 ■ 3rd International Meeting on Vector and Parallel Processing

Automatic Detection of Parallel Program Performance
Problems1

A. Espinosa, T. Margalef, E. Luque.

Computer Science Department
Universität Autönoma de Barcelona.
08193 Bellaterra, Barcelona, SPAIN.

e-mail: iinfd@cc.uab.es

Abstract. Actual behaviour of parallel programs is of capital
importance for the development of an application. Programs will.
be considered matured applications when their performance is
under acceptable limits. Traditional parallel programming
forces the programmer to understand the enormous amount of
performance information obtained from the execution of a
program. In this paper, we propose an automatic analysis tool
that lets the programmers of applications avoid this difficult
task. This automatic performance analysis tool main objective is
to find poor designed structures in the application. It considers
the trace file obtained from the execution of the application in
order to locate the most important behaviour problems of the
application. Then, the tool relates them with the corresponding
application code and scans the code looking for any design
decision which could be changed to improve the behaviour

1. Introduction:

The performance of a parallel program is one of the main reasons for designing
and building a parallel program [1]. When facing the problem of analysing the
performance of a parallel program, programmers, designers or occasional parallel
systems users must acquire the necessary knowledge to become performance analysis
experts.

Traditional parallel program performance analysis has been based on the
visualization of several execution graphical views [2, 3, 4. 5], These high level
graphical views represent an abstract description of the execution data obtained from
many possible sources and even different executions of the same program [6].

This work has been supported by the C1CYT under contract TIC 95-0868

481

FEUP - Faculdade de Engenharia da Universidade do Porto

The amount of data to be visualized and analyzed, together with the huge number
of sources of information (parallel processors and interconnecting network states,
messages between processes, etc.) make this task of becoming a performance expert
difficult. Programmers need a high level of experience to be able to derive any
conclusions about the program behaviour using these visualisation tools. Moreover,
they also need to have a deep knowledge of the parallel system because the analysis
of many performance features must consider architectural aspects like the topology of
the system and the interconnection network.

In this paper we describe a Knowledge-based Automatic Parallel Program
Analyser for Performance Improvement (KAPPA-PI tool) that eases the performance
analysis of a parallel program. Analysis experts look for special configurations of the
graphical representations of the execution which refer to problems at the execution of
the application. Our purpose is to substitute the expert with an automatic analysis tool
which, based on a certain knowledge of what the most important performance
problems of the parallel applications are, detects the critical execution problems of
the application and shows them to the application programmer, together with source
code references of the problem found, and indications on how to overcome the
problem.

We can find other automatic performance analysis tools:

-Paradyn [7] focuses on minimising the monitoring overhead. The
Paradyn tool performs the analysis "on the fly", not having to generate a
trace file to analyse the behaviour of the application. It also has a list of
hypotheses of execution problems that drive the dynamic monitoring.

- AIMS tool [8], is a similar approach to the problem of performance
analysis. The tool builds a hierarchical account of program execution time
spent on different operations, analyzing in detail the communications
performed between the processes.

-Another approach to addressing the problem of analysing parallel
program performance is carried out by [9] and [10]. The solution proposed is
to build an abstract representation of the program with the help of an
assumed programming model of the parallel system. This abstract
representation of the program is analysed to predict some future aspects of
the program behaviour. The main problem of this approach is that, if the
program is modelled from a high level view, some important aspects of its
performance may not be considered, as they will be hidden under the
abstract representation.

- Performance of a program can also be measured by a pre-compiler, like
Fortran approaches (P3T [11], this approach is not applicable to all parallel
programs, especially those where the programmer expresses dynamic
unstructured behaviour.

482

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Our KAPPA-PI tool is currently implemented (in Perl language [12]) to analyse
applications programmed under the PVM [13] programming model. The KAPPA-PI
tool bases the search for performance problems on its knowledge of their causes. The
analysis tool makes a "pattern matching" between those execution intervals which
degrade performance and the "knowledge base" of causes of the problems. This is a
process of identification of problems and creation of recommendations for their
solution. This working model allows the "performance problem data base" to adapt to
new possibilities of analysis with the incorporation of new problems (new knowledge
data) derived from- the experimentation with programs and new types of
programming models.

In section 2, we describe the analysis methodology briefly, explaining the basis of
its operations and the processing steps to detect a performance problem. Section 3
presents the actual analysis of a performance problem detected in an example
application. Finally, section 4 exposes the conclusions and future work on the tool
development.

2.- Automatic analysis overview.

The objective of the automatic performance analysis of parallel programs is to
provide information regarding the behaviour of the user's application code.

This information may be obtained analysing statically the code of the parallel
program. However, due to the dynamic behaviour of the processes that form the
program and the parallel system features, this static analysis may not be sufficient.

Then, execution information is needed to effectively draw any conclusion about
the behaviour of the program. This execution information can be collected in a trace
file that includes all the events related to the execution of the parallel program.
However, the information included in the trace file is not significant to the user who
is only concerned with the code of the application.

The automatic performance analysis tool concentrates on analysing the behaviour
of the parallel application expressed in the trace file in order to detect the most
important performance problems. Nonetheless, the analysis process can not stop there
and must relate the problems found with the actual code of the application. In this
way, user receives meaningful information about the application behaviour.

In figure 1, we represent the basic analysis cycle followed by the tool to analyse
the behaviour of a parallel application.

483

FEUP - Faculdade de Engenharia da Universidade do Porto

Problem
Detection

Problem
Determination

KappaPi Tool

Fig. 1. Schema of the analysis of a parallel application

The analysis first considers the study of the trace file in order to locate the most
important performance problems occurring at the execution. Once those problematic
execution intervals have been found, they are studied individually to determinate the
type of performance problem for each execution interval.

When the problem is classified under a specific category, the analysis tool scans
the segment of application source code related to the execution data previously
studied. This analysis of the code brings out any design problem that may have
produced the performance problem. Finally, the analysis tool produces an explanation
of the problems found at this application design level and recommends what should
be changed in the application code to improve its execution behaviour.

In the following points, the operations performed by the analysis tool are explained
in detail.

484

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

2.1. Problem Detection

The first part of the analysis is the study of the trace file obtained from the
execution of the application. In this phase, the analysis tool scans the trace file,
obtained with the use of TapePVM [14], with the purpose of following the evolution
of the efficiency of the application. The application efficiency is basically found by
measuring the number of processors that are executing the application during a
certain time.

The analysis tool collects those execution time intervals when the efficiency is
minimum. These intervals represent those situations where the application is not
using all the capabilities of the parallel machine. They could be evidence of an
application design fault. In order to analyse these intervals further, the analysis tool
selects the most important inefficiencies found at the trace file. More importance is
given to those inefficiency intervals that affect the most number of processors for the
longest time.

2.2. Problem Determination

Once the most important inefficiencies are found, the analysis tool proceeds to
classify the performance with the help of a "knowledge base" of performance
problems. This classification is implemented in the form of a problem tree, as seen in
figure 2.

Inneficiency patterns

Lack of ready tasks Mapping Problems
CAUSES

Communication Program Structure
related related

blocked sender slowcomm. multiple output master/slave Lack of parallelism barrier problems

Fig. 2. Classification of the performance problems of an application

Each inefficiency interval at the trace is exhaustively studied in order to find which
branches in the tree describe the problem in a more accurate way. When the
classification of the problem arrives at the lowest level of the tree, the tool can
proceed to the next stage, the source code analysis

485

FEUP - Faculdade de Engenharia da Universidade do Porto

2.3. Application of the source code analysis.

At this stage of the program evaluation, the analysis tool has found a performance
problem in the execution trace file and has classified it under one category.

The aim of the analysis tool at this point is to point out any relationship between
the application structure and the performance problem found. This detailed analysis
differ from one performance problem to another, but basically consists of the
application of several techniques of pattern recognition to the code of the application.

First of all, the analysis tool must select those portions of source code of the
application that generated the performance problem when executed. In order to
establish a relationship between the executed processes and the program code, the
analysis tool builds up a table of process identificators and their corresponding code
modules names.

With the help of the trace file, the tool is able to relate the execution events of
certain operations, like sending or receiving a message, to a certain line number in the
program code. Therefore, the analysis tool is able to find which instructions in the
source code generated a certain behaviour at execution time. Each pattern-matching
technique tries to test a certain condition of the source code related to the problem
found. For each of the matches obtained in this phase, the analysis tool will generate
some explanations of the problem found, the bounds of the problem and what
possible alternatives there are to alleviate the problem.

The list of performance problems, as well as their implications of the source code
of the application is shown at table I. A more exhaustive description of the
classification can be found at [15].

486

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

NAME DESCRIPTION TRACE
INFORMATION

SOURCE CODE
IMPLICATIONS

Ma p p i n g Problems
Mapping
problem

There are idle
processors and ready-
to-execute processes
in busy processors

Processes assignments
to busy processors,
number of ready
processors

Solutions affect
the process-
processor mapping

Lack of Ready Tasks Problems
Communication Related
Blocked
Sender

A blocked process is
waiting for a message
from another process
that is already
blocked for reception.

Waiting receive times
of the blocked
processes. Process
identifiers of the
sender partner of each
receive.

Study of the
dependencies
between the
processes to
eliminate waiting.

Multiple
Output

Serialization of the
output messages of a
process.

Identification of the
sender process and the
messages sent by this
process.

Study of the
dependencies
between the
messages sent to
all receiving
processes.

Long
Communic
ation

Long communications
block the execution of
parts of the program.

Time spent waiting.
Operations performed
by the sender at that
time.

Study of the size of
data transmitted
and delays of the
interconnection
network.

Program Structure Related
Master/
Slave
problems

The number of
masters and
collaborating slaves is
not optimum.

Synchronization times
of the slaves and
master processes.

Modications of the
number of
slaves/masters.

Barrier
problems

Barrier primitive
blocks the execution
for too much time.

Identification of
barrier processes and
time spent waiting for
barrier end.

Study of the latest
processes to arrive
at the barrier.

Lack of
parallelism

Application design
does not produce
enough processes to
fill all processors

Analysis of the
dependences of the
next processes to
execute.

Possibilities of
increasing
parallelism by
dividing processes

Table 1. Performance problems detected by the analysis tool.

In the next section, we illustrate the process of analysing a parallel application with
the use of an example.

487

FEUP - Faculdade de Engenharia da Universidade do Porto

3. Example: analysis of an application.

In this example we analyse a tree-like application with important amount of
communications between processes. The application is executed mapping each
process to a different processor. From the execution of the application we obtain a
trace file, which is shown as a time-space diagram, together with the application
structure, in figure 3.

j Blocked processor

'^W^j Exeaiting processor

* Comunicationbe rween processors

Processor i

Fig. 3. Application trace file space-time diagram

In the next points we follow the operations carried out by the tool when analysing
the behaviour of the parallel application.

3.1. Problem Detection

First of all, the trace is scanned to look for low efficiency intervals. The analysis
tool finds an interval of low efficiency when processors P2 and P3 are idle due to the
blocking of the processes "Mini" and "MaxO". Then, the execution interval (tl,t2) is
considered for further study.

3.2. Problem Determination

The analysis tool tries to classify this problem found under one of the categories.
To do so, it studies the number of ready-to-execute processes in the interval. As there
are no such kind of processes, it classifies the problem as "lack of ready processes'".
The analysis tool also finds that the processors are not just idle, but waiting for a
message to arrive, so the problem is classified as a communication related.

Then, the analysis tool must find out what the appropriate communication problem
is. It starts analyzing the last process (MaxO) which is waiting for a message from
Mini process. When the tool tries to study what the Mini process was doing at that

488

VECPAR '98 ■ 3rd International Meeting on Vector and Parallel Processing

time, it finds that Mini was already waiting for a message from Max2, so the analysis
tool classifies this problem as a blocked sender problem, sorting the process
sequence: Max2 sends a message to Min 1 and Mini sends a message to MaxO.

3.3. Analysis of the source code.

In this phase of the analysis, the analysis tool wants to analyse the data
dependencies between the messages sent by processes Max2, Mini and MaxO (see
figure 3).

First of all, the analysis tool builds up a table of the process identifiers and each
source C program name of the processes.

When the program names are known, the analysis tool opens the source code file
of process Mini and scans it looking for the send and the receive operations
performed. From there, it collects the name of the variables which are actually used to
send and receive the messages. This part of the code is expressed on figure 4.

1
2
3
4
5
6
7
8
9

pvm_recv(-1,-1);

pvm_upkf1(&calc, 1,1) ;

calcl = min(calc,1);

for(i=0;i<sons ; i + +)
{

pvm_initsend(PvmData iDe fault);

11
1 T

pvm_pkf1(icalcl,1,1) ;

13
14 }

pvm_send'tid_son[i] , 1) /

Fi*. 4. Win l.c " relevant portion of source code

When the variable*, arc f.'und ("calc" and "calcl" at the example) , the analysis
tool starts searching (he s->urce code of process "Mini" to find all possible
relationships between N^h enables. As these variables define the communication
dependence of the pnKo^ ihe results of these tests will describe the designed
relationship between the- r*.«. esses.

In this example, the dependency test is found true due to the instruction found at
line 5. which relates "cuL I » nh the value of "calc". This dependency means that the
message sent to process "MaxO" depends on the message received from process
"Max2".

489

FEUP - Faculdade de Engenharia da Universidade do Porto

The recommendation produced to the user explains this situation of dependency
found. The analysis tool suggests the modification of the design of the parallel
application in order to distribute part of the code of process "Mini" (the instructions
that modify the variable to send) to process "MaxO", and then send the same message
to "Mini" and to "MaxO". This message shown to the user is expressed in figure 5.

Analysing MaxMin.

A Blocked Sender situation has been found in
execution.

the

Processes involved are:
MaxO, Mini, Max2
Recommendation: A dependency between Max2 and MaxO has

been found.
The design of the application should be revised.
Line 25 of Mini process should be distributed to MaxO.

Fig. 5. Output of the analysis tool

The line referred in the recommendations of the tool (Line 5 of Mini Process)
should be executed in the process MaxO, so variable "calc" must be sent to MaxO to
solve the expression. Then, the codes of the processes may be changed as follows in
figure 6.

pvm_recv(-1,-1) ;
pvm_upkfl(fccalc,1,1)
calcl = min(calc,1);

Process MaxO

pvm_recv(-1,-1);
pvm_upkf1(&calc,1,1)
calcl = min (calcl);

Process Min 1

calc = min(old,myvalue);
pvm_initsend(PvmDataDefault) ,-
pvm_pkfl(&calcl,1,1)
pvm_send(tid_Minl,1)
pvm_send(t id_Max2,1)

Process Max2

Fig. 6. New process code

In the new processes code, ihe dependencies between Mini and Max2 processes
have been eliminated. From the execution of these processes we obtain a new trace
file, shown in figure 7. In the figure, the process MaxO does not have to wait so long

490

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

until the message arrives. As a consequence, the execution time of this part of the
application has been reduced.

Pi

P2

P3

Fig. 7. Space-state diagram of the new execution of the application

4. Conclusions

This automatic analysis tool is designed for programmers of parallel applications
that want to improve the behaviour of their applications. The application
programmers' view of the tool is quite simple: the application is brought to the
analysis tool as input and, after the analysis, the programmer receives a list of
suggestions to improve the performance of the program. Those suggestions explain,
at programmer level, which problems have been found in the execution of the
application and how to solve them changing the program code.

Nonetheless, when applying the suggested changes to the application code, other
new performance problems could appear. Programmers must be aware of the
behaviour side-effects of introducing changes in the applications. Hence, once the
application code is rebuilt, new analysis should be considered. This new analysis
must be tested to find a set of representative input data in order to analyse the
execution of the application comprehensively with a trace file.

Moreover, some problems may be produced by more than one cause. Sometimes it
is difficult to separate the different causes of the problems and propose the most
adequate solution. This process of progressive analysis of problems with multiple
causes is one of the future fields of tool development.

Future work on the tool will consider the increment and refinement of the causes
of performance problems, the "knowledge base". The programming model of the
analysed applications must also be extended from the currently used (PVM) to other
parallel programming paradigms.

491

FEUP - Faculdade de Engenharia da Universidade do Porto

Due to the general use of a few parallel execution trace formats [16, 4] and
programming libraries, it is possible to have similar kind of performance data of
many different applications running on different parallel systems. Although we have
found that additional trace information (which is not easily obtained) can alleviate the
analysis task to a high degree.

But far greater efforts must be focused on the optimisation of the search phases of
the program. The search for problems in the trace file and the analysis of causes for a
certain problem must be optimised to operate on very large trace files. The
computational cost of analysing the trace file to derive these results is not irrelevant,
although the tool is built not to generate much more overhead than the visual
processing of a trace file.

The tree-structure of the problems helps to eliminate the testing of some
hypotheses, but may complicate the analysis when considering problems with
multiple causes (at different levels of the tree).

References:

[I] Pancake, C. M., Simmons, M. L., Yan J. C: Performance Evaluation Tools for Parallel
and Distributed Systems. IEEE Computer, November 1995, vol. 28, p. 16-19.

[2] Heath, M. T, Etheridge, J. A.: Visualizing the performance of parallel programs. IEEE
Computer. November 1995, vol. 28. p. 21-28 .

[3] Kohl, J.A. and Geist, G.A.: "XPVM Users Guide". Tech. Report. Oak Ridge National
Laboratory, 1995.

[4] Reed, D. A., Aydt , R. A., Noe . R. J., Roth, P. C, Shields. K. A., Schwartz , B. W. and
Tavera. L. F .: Scalable Performance Analysis: The Pablo Performance Analysis
Environment. Proceedings of Scalable Parallel Libraries Conference. IEEE Computer
Society, 1993.

[5] Reed, D. A.. Giles, R. C, Catlett, C. E.. Distributed Data and Immersive Collaboration.
Communications of the ACM. November 1997. Vol. 40, No 11. p. 39-48.

[6] Karavanic, K. L, Miller, B. P.. Experiment Management Support for Performance Tuning.
In Proceedings of SC'97 (San Jose, CA, USA, November 1997).

[7] Hollingsworth, J. K., Miller. B, P. Dynamic Control of Performance Monitoring on Large
Scale Parallel Systems. International Conference on Supercomputinc (Tokyo. July 19-23.
1993).

[8] Yan. Y. C, Sarukhai. S. R.: Analyzing parallel program performance using normalized
performance indices and trace transformation techniques. Parallel Computing 22 (1996)
1215-1237.

[9] Crovella. M.E. and LeBlanc. T J. . The search for Lost Cycles: A New approach to
parallel performance evaluation. TR479. The University of Rochester, Computer Science
Department. Rochester. New York. December 1994.

[10] Meira W. Jr. Modelling performance of parallel programs. TR859. Computer Science
Department, University of Rochester, June 1995.

492

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

[II] FahringerT. , Automatic Performance Prediction of Parallel Programs. Kluwer Academic
Publishers. 1996.

[12] Wall, L. , Christiansen, T. ., Schwartz, R. L. , : Programming Perl. O'Reilly and
Associates, 2nd Edition, Nov 96.

[13] Geist, A. , Beguelin, A. , Dongarra, J. , Jiang, W. , Manchek, R. and Sunderam, V. ,
PVM: Parallel Virtual Machine, A User's Guide and Tutorial for Network Parallel
Computing. MIT Press, Cambridge, MA, 1994.

[14] Maillet, E. : TAPE/PVM an efficient performance monitor for PVM applications-user
guide, LMC-IMAG Grenoble. France. June 1995.

[15] Espinosa, A., Margalef, T. and Luque, E. . Automatic Performance Evaluation of Parallel
Programs. Proc. of the 6th EUROMICRO Workshop on Parallel and Distributed
Processing, pp. 43-49. IEEE CS. 1998.

[16] Geist, G A., Heath, M.T. . Peyton, B. W. and Worley, P. H. . PICL. A portable
instrumented communication library. Tech. Report ORNL/TM-11130, Oak Ridge
National Laboratory, July 1990.

493

FEUP • Faculdade de Engenharia da Universidade do Porto

494

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Registers Size Influence on Vector
Architectures

Villa * Roger Espasa** Mateo Valero

Departement d'Arquitectura de Computadors,
Universität Politecnica de Catalunya-Barcelona, Spain

e-mail: {luisv,roger,mateo}@ac.upc.es
http://www.ac.upc.es/hpc

Abstract. In this work we have studied the influence of the vector reg-
ister size over two different concepts of vector architectures. We have
observed that, long vector registers play an important role in a conven-
tional vector architecture. However, we observed that even using highly
vectorizable codes, only a small fraction of that large vector registers is
used. Nevertheless, we have observed that, reducing vector register size on
a conventional vector architecture, result in a severe performance degra-
dation, providing slowdowns in the range of 1.8 to 3.8. When we includ-
ing an out-of-order execution on a vector architecture, the necessity of
long vector registers, is reduced. We have used a trace driven approach
to simulate a selection of the Perfect Club and Specfp92 programs. The
results of the simulations show that, the register size reduction on an out-
of-order vector architecture is less negative than in a conventional vector
machine, providing slowdowns in the range of 1.04 to 1.9. Even when
reducing the registers size to 1/4 the original size on an out-of-order ma-
chine, the slowdown provided is in the range of 1.04 to 1.5, but it still
is better than a conventional vector machine. Finally, when comparing
both architectures, using the same register file size, (8kb), we can see that
the performance gained by using out-of-order execution is in the range of
1.13 to I.40.

1 Introduction

Numerical applications have been the area where vector architectures have proved

their efficiency. This vector architectures have used in-order execution, limited

form of ILP techniques and large latencies memory systems. In order to achieve

good performance and to be able to tolerate the large latencies, this kind of

processors have exploited the data level parallelism embedded in each vector

instruction and have allowed the overlapping of vector and scalar instructions

* On leave from the Centro de Investigaciön en Computo, Instituto Politecnico Na-
cional - Mexico D.F. This work was supported by the Instituto de Cooperaciön
Iberoamericana (ICI), Consejo Nacional de Ciencia y Tecnologia (CONACYT).

** This work was supported by the Ministry of Education of Spain under contract
0429/95, and by the CEPBA.

495

FEUP - Faculdade de Engenharia da Universidade do Porto

when possible. Conventional vector architectures have used large vector registers
as one of the principals resources to hide latency. When a vector instruction is
started, it pays for some initial (potentially long) latency, but then it works on a
long stream of elements end effectively amortizes this latency across all elements.

Taking into account this point of view, we can understand why that vector
machines have been designed with vector registers as large as possible. Unfortu-
nately large registers have several disadvantages :

• When the application can not make full use of the vector register size, a
precious hardware resource is being wasted [1, 2].

• Large registers means, big number of transistors and expensive cost; this
implies that only a few of them can be implemented on the design.

• If the number of registers that the compiler sees is small, then the amount
of spill code introduced to support all live variables is considerably [5].

Reducing the vector registers length is certainly a solution to the problems
just outlined. If most applications can not fully use all elements present in each
vector register then, reducing the vector register length will reduce cost and
increase the fraction of usage of registers. The drawback of register length re-
duction is the associated performance penalty. Each time a vector instruction
is executed, its associated latencies are amortized over a smaller number of ele-
ments. This can have a significant negative impact on performance, especially for
memory accesses. Moreover, more instructions have to be executed each with a
shorter effective length, and, therefore, the number of times that latencies must
be payed is larger.

Unless some extra latency tolerance mechanism is introduced in a vector
architecture, vector length can not be reduced without a severe performance
penalty. While many techniques have been developed to tolerate memory latency
in superscalar processors, only a few studies have considered the same problem
in the context of vector architectures [3, 4, 5].

In this paper will study the influence of the vector register size over two
different concepts of vector architectures, on a conventional" vector architecture
and on an out-of-order vector machine. We will present data, confirming that
we can not reduce the vector register size on a conventional vector architecture
without suffernii; a -^vere performance penalty. We will show that combining
an out-of-ordrr fx»vution and short registers, the performance degradation is
quite small than ilie observed on a conventional vector machine. We have ob-
served thai i hi» <■'.int.mation allows not only the vector register reduction with
a good perform/UK»- hut also when comparing the performance between both
architectures id.- r-rformance of the new out-of-order vector machine is much
better.

496

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

100

80

60

40

20

0

100

80

60

40

20

0

16 32 64 12
swm256

8

100

80

60

40

20

0

100

80

60

40

20

0

16 32 64 128

hvdro2d

100-

80-

60-

40-

20-

0-

100

80

60

40

20

0

16 32 64 128

arc2d

100

80

60

40

20

0

100

80

60

40

20'

0'

16 32 64 128

flo52

100

80

60

40

20

0

100

80

60

40

20

0

16 32 64 128

nasa7

16 32 64 128

su2cor

16 32 64 128

tomcatv

16 32 64 128

bdna

16 32 64 128

trfd

16 32 64 128

dyfesm

Fig. 1. Percentage of full stripes for different vector register sizes

2 Vector Registers Usage

In this section we will investigate the relationship between the next two param-
eters :

• Vector Register Size (VRZ).
• Benchmark Programs.

High memory latencies are common in vector architectures. In order to hide
that, latency, large vector registers have been a norm in the design of this kind of
architectures. This point of view is correct, but unfortunately, with large vector
registers not everything is positive :

• Large registers mean large hardware space and more cost. The Designer,
normally, includes just few of them (eg. 8 or 16 with 128 element each).

• Having few registers, it is a drawback for the compiler because the quality
of the code that it can generate is quite poor.

We have seen [1] that, when a machine has large registers, programs do not
make use of their hardware. Many people are researching over new algorithms in
order to execute their calculus as fast as possible, physics, chemistry, mathemat-
ics, and so on, field where this kind of architectures still excel. The algorithms
characteristic are quite varied and the different architectures are trying to apply
all their capacity, but some times the data structures from the applications are
like a barrier.

497

FEUP - Faculdade de Engenharia da Universidade do Porto

In order to know how a set of applications make use of the register file on
a vector architecture, we have done the following. Having a set of registers,
where each register has as a maximum VL elements, we have executed our set of
programs, using four possible values for the vector register size: 16, 32, 64 and
128 elements.

Figure 1 presents the percentage of full stripes of a program set. If we have
an architecture where the VL maxim could be 128, and the structure of the
programs permit, the entire use of this available hardware, we will say that in
this case we have a full stripe.

Now, if we consider a maximal vector register size of 64 elements and the
program allows the use of bigger registers, then instructions would "translate"
into two instructions that could operate on 64 elements each one. For example,
the figure 1 shows how in most cases less than 50% of all executed vector instruc-
tions, used a vector register of size 128. When the vector register size was 16
elements, almost 85% of all executed vector instructions used full stripes except
the program dyfesm.

As we have expected, there is a strong dependence between the whole per-
formance and the program executed to get it. We have observed, that, if an
architecture have a long register, it does not mean that the applications will
make total use of its resource. In most cases (for our applications) we will have
better register usage when the vector registers are smaller.

We know, from [6], that a reduction of the vector registers on a conventional
vector architecture must, be enclosed by a technique which could hide that re-
duction, in order to keep or in the best of the cases improve, the performance.

3 Reducing Vector Registers Length

The architecture and compiler are reflected in the characteristics of the code that
these could generate from an application. If these are an intelligent pair, it could
be easy to obtain programs which use different vector register sizes; sections of
a register, where each section could be considerate a independent register. The
Fujitsu VPP500 [7] is an example of that kind of architectures. The VPP500
has a vector register file organized as 256 registers and each register has 64
elements (8 bytes each). Different register file configurations can be possible.
from 256 registers of 64 elements each until 8 registers of 2048 elements each.
For our purposes, this lower limit size (64 elements) is not enough, because we
want to study shorter vector register, in order to have better register usage (see
section 2).

Unfortunately, most of vector architectures does not have the VPP500 vector
register reorganization. Our reference architecture falls into this category.

The procedure that we have followed, in order to obtain a set of binaries
(from benchmarks) assuming different vector register lengths, is the following:

• For each program, we searched all the highly vectorized loops, with the help
of the compiler information.

498

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

D0 4(IJ=2JL DO 4(1 J=2JL
DO m 1=2.IL DO 4() STRIPV=2,1L,VLZ

DW(IJ.1) = DW(IJ,1) +FW(U,D CSDIR MAX TRIPS(32)
DWIUJ) = DW(IJ.2) +FW(IJ,1) DO 4« 1=STRIPV.MIN(IL,STRIPV+VLZ)
DW(1 J.3) = DW(1 J.3) +FW(IJ,3) DW(IJ,1) = DW(IJ,1) +FW(U.D
DW(I.J.4) = DW(IJ,4) +FW(1J,4) DW(IJ,2) = DW(IJ.2) +FW(IJ,2)

4(1 CONTINUE DW(IJ.I) = DW(1 J,3) +FW0J..1)
DW(IJ,4) = DW(I J,4) +FW(1J,4)

4(1 CONTINUE

(a) (b)

Fig. 2. (a) Flo52 loop without Strip-Mining, (b) Adding Strip-mining.

• First, we manually modified the benchmark sources and then, we manually
added strip-mined loop (see figure 2) performing steps of desired length VLZ
(vector length size).

• In this way, we constructed four different configurations for each source pro-
gram using VLS=16, 32, 64 and 128 elements by register.

After applying this technique, we can notice that, the architecture sees more
scalar and vector instructions. The vectorizable loop, will need more iterations to
complete the same number of vector operations and due to the scalar operations
are inside the loop, these are executed more times.

In the next section, we will describe the vector architectures examined in this
study and then; we will show the performance reached by each one.

4 Vector Architectures and Simulations Tools

In this section, we describe the main characteristics of the architectures evaluated
in this work. First, we will show the reference vector architecture used as a
baseline. Second, we will introduce the out-of-order vector architecture used.
Finally, we will describe the tools used to generate traces and for simulating
each architecture.

4.1 The Baseline Architecture

We have used a marhni»- loosely based on a Convex C3400 [8], as a baseline
vector architecture F.v.-n tdough this machine is a multiprocessor architecture.
our work assumes a unipr>M **ssor vector machine.

Figure 3 show a I>*«.K !<-•.<-ription of a C3400.

Scalar Unit
- The scalar unit

and S register*'
integer convert»

- The scalar unit
registers.

'•v <!'-» all instructions that involve scalar registers (A
i.i i« »ubtracts compares, shifts, logical operations and
An I »n issues a maximum of one instruction per cycle.

i <- -1tht 32 bits address registers and eight 64 bit scalar

This unit has a 1'• Kt lata cache, with 32 bytes line size.

499

FEUP - Faculdade de Engenharia da Universidade do Porto

B
L/S
unit @

+ i ■ ;

W-XBAR |
i i ■-! —r-1

A-regs v4

vO
11 i'

v5

vi
* 11'

v6

v2

v7 ;

v3
t^fev

,

J S-regs R-XBAR I
CS»IS»' w

1

t ' •

Fig. 3. The reference vector architecture.

Vector Unit

- The vector unit consists of two computation units (FU1 and FU2) and
one memory accessing unit. The FU2 unit, is a general purpose arith-
metic unit capable of executing all vector instructions. The FU1 unit, is
a restricted functional unit that executes all vector instructions except
multiplication, division and square root.

- The vector unit has 8 vector registers, grouped in pairs. Each register
holds up to 128 elements of 64 bits each. Each group share two read
ports and a write port, that link them to the functional units.

Requesting memory is done through only one data bus (Loads and Stores).
The reference machine implements vector chaining, from functional units to
other functional units and to store unit. Memory load does not chain with
any functional unit.

4.2 The Out-of-order Vector Architecture

For our simulations we used the out-of-order vector architecture introduced
in [5]. The out-of-order and renaming version of the reference architecture is
shown in figure A. It has the same computing capacity as the reference machine
but it is extended to use a renaming technique very similar to that found in
the R10000 [9]. We will refer to this architecture as '000'. Instructions flow
in-order through the Fetch and Decode/Rename stages and then go to one of
the four queues present in the architecture based on instruction type. At. the
rename stage, a mapping table translates each virtual register into a physical

500

VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing

EMORY

Fig. 4. The Out-of-Order vector architecture studied in this paper.

register. There are 4 independent mapping tables, one for each type of register:
A. S, V and mask registers. Each mapping table has its own associated list of
free registers. When instructions are accepted into the decode stage, a slot in the
reorder buffer is also allocated. Instructions enter and exit the reorder buffer in
strict program order. When an instruction defines a new logical register, a phys-
ical register is taken from the free list, the mapping table entry is updated with
the new physical register number and the old mapping is stored in the reorder
buffer slot allocated to the instruction. When the instruction commits the old
physical register is returned to the free list.

The A, S and V queues monitor the ready status of all instructions held in
the queue and as soon as one instruction is ready, it is sent to the appropriate
functional unit for execution. All instruction queues can hold up to 16 instruc-
tions. The machine has a 64 entry BTB, where each entry has a 2-bit saturating
counter for predicting the outcome of branches. Both scalar register files (A and
S) have 64 physicals registers each. The mask register file has 8 physical registers.
The fetch stage, the decode stage and all four queues only process a maximum
of 1 instruction per cycle. Committing instructions proceeds at a faster rate, and
up to 4 instructions may commit per cycle. The functional unit latencies of the
architecture are very similar to the R10000 ones. See [5] for further details of the
architecture.

The most important aspect of the architecture when considering final perfor-
mance is the number of physical vector registers available for renaming vector
instructions. In [5] it is shown that 16 physical vector registers is the optimum
point that maximizes performance at a reasonable cost. Unless otherwise stated,
we will use 16 physical vector registers for our simulations. In section 5, we will
vary the number of physical vector registers from 16 to 32 and to 64 to study

501

FEUP ■ Faculdade de Engenharia da Universidade do Porto

how the number of physical registers interacts with the length of each register.
As we did for the traditional machine, we define four different versions of

the 000 architecture, each having a different vector register length. The four
versions will be referred to as the 000128, 00064, 00032 and 00016 archi-
tectures and will have a vector length of 128, 64, 32 and iff elements respectively.

4.3 Simulations Tools

For our simulations, we have used a trace-driven simulations to generate all the
data, that we will show.

We have used a pixie-like tool called Dixie [10] that is able to produce a trace
of basic blocks executed as well as a trace of the values contained in the vector
length (vl) register and Jinks [11] a parameterizable simulator that implements
the reference architecture model before described. The ability to trace the value
of the vector length register is critical to have a detailed simulation of the program
execution.

5 Performance

Using the binaries gathered (see section 3), we will study different variations
of our vector architectures. For each binary (program), we have eight differ-
ent configurations. The difference among each program is the maximal vector
register size allow to use. The eight models under study, will be referred to as
the REF128, REF64, REF32, REF16, 000128, 00064, 00032 and 00016.
where 128, 64, 32 and 16, are the vector register size used by each model.

Both architectures have the same number of logical registers, that means
that the same code was introduced in both architectures. But, because the o-o-o
architecture implements renaming, it uses a total of 16 physical registers, which
are invisible for the compiler and for the user.

We will cover two points in this section. For three different latencies of 1, 50
and 100 cycles, we will show:

• How each architecture tolerates the vector register reduction plus memory
latencies effect.

• The performance of each architecture, using different vector register sizes
(Speed-Up).

5.1 Reference Architecture

In Figure 5, we can see the effect of reducing vector register sizes on the reference
vector architecture.

In this figure, we have selected the REF128 as a baseline in order to study
the register reduction effect. Using one cycle latency and register sizes of 128
and 64, the behavior seems to be constant, an ideal vector architecture behavior.
When we reduce the register size and we use a more real memory latencv. of 50

502

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

r<v, % *<i,*<& "*$!> \\% W\\
->* \ •<> 'e 4. V '■? 'e '{f V <> 'i

swm2S6 hydro2d arc2d

> +<$L *<&, V ^,, \ V V
'4. t •<> '« 4- <v <> '«

flow52 nasa7

2.5- 2.5-

2.0- ■ 2.(1-

1
1.5- jj 1.5-

1.(1 -i vHtwl 1.0 -i

tomcatv

r L- 50
I 1_= HKl

Fig. 5. Effects of memory latency and vector register size on a Conventional
Vector Architecture. X-axis is memory latency

and 100 cycles, the effect is clearly negative. It is most remarkable when the
memory latency is bigger and the vector registers are shorter.

Even though, the architecture uses large registers (REF128), the performance
degradation is quite important. The slowdown degradation can take values from
1.1-1.7. This is an important point to emphasize because large registers on vector
architectures have been once of the best tools used to attack memory latency,
but we can see that it is not sufficient.

If we compare the REF128, with the other configurations, REF64, REF32
and REF16 the slowdown can reach up to 3.5.

This behavior is not a surprise, and as we expected, reducing the vector
register size on a conventional vector architecture can be a quite negative factor.

5.2 OOO Vector Architecture

Figure 6, shows the vector register reduction effect but now on the out-of-order
vector architecture. Again, the baseline is the best configuration, in this case
is 000128. Clearly we can observe that, this architecture has better vector
reduction tolerance. Reducing the vector register size up to 1/4 (from 128 to
32), line 00032, the execution time is degraded by an factor of 1.0-1.5.

When we evaluated the memory latency effect, we saw that, the 000128,
00064 and 00032, in most cases (programs swm256, hydro2d. arc2d. nasa 7,
tomcatv, bdna) have a very good memory latency tolerance, with slowdown in the
range 1.0-1.3. Other programs, such as flow52, trfd, dyfesm. and su2cor, do not
have good behavior using short registers, but it is still better than the tolerance
showed by the reference architecture, with slowdowns in the range 1.22-1.98.

503

FEUP - Faculdade de Engenharia da Universidade do Porto

swm256 hvdro2d arc2d flow52

1.2-
1.3-

1.6-

1.2-
1.4-

l.l -

1.1 - 1.2-

1.(11 1.01 1.0 •< \<\\s i ^t\^<'-i w% > ya

nasa7

su2cor bdna trfd dyfesm

Fig. 6. Effects of memory latency and vector register length on a Out-of-order
Vector Architecture. X-axis is memory latency.

Until this point we can conclude that if an architecture uses advanced ILP
techniques like an out-of-order, it will be able to tolerate the vector register
reduction better, even across large latency range.

5.3 Performance Comparison

In this section we will present a comparison performance between both archi-
tectures. We will make this comparison using the same or less, register file size.
That is REF128 versus 00016, 00032 and 00064.

Figure 7, plots the simulated performance using three different memory laten-
cies. For each program, each configuration and each value of memory latency, we
compute the speedup relative to the performance of the REF128 configuration
at latency 1.

We can observe in Figure 7 that, using the same register file size, 8Kb.
REF128 and 00064 lines, the performance over the REF128 is much bet-
ter for all the programs and all the memory latencies, with speedups in the
range of 1.09-1.4-

Even reducing the register file size (on 00064) up to 1/2, line 00032, it is
still better than the reference machine with large registers, for all programs and
all memory latencies, with speedups in the range of 1.04-1.34.

Nevertheless, when reducing the size up to 1/4 on 00064, (00016 line), the
performance of the o-o-o machine is not always better than the REF128. The
programs hydro2d, flo52, tomcatv, bdna and trfd, show better performance than
the reference machine with speedups in the range of 1.03-1.1. Four programs,
namely swm256. arc2d and nasal, have performance that is slightly better or

504

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

| 50 l(X) I 50 KKI I 50 »XI 1 50 100 I 50 KKI

swm256 hydro2d arc2d flow52 nasa7

—•— REF12X
-■»-■00064
--•-•• 00032
-H— 0O016

50 KM) I 50 IIXI I 50 I(X) I 50 KKI I 50 I(X1

su2cor tomcatv bdna trfd dyfesm

Fig. 7. Performance comparison of the 000 architecture and the Reference
Architecture using the same or less, register file size. X-axis is memory latency
in cycles and Y-axis represent SpeedUp.

slightly worse than the REF128, but the difference is typically around the 89c.
And finally, the worse case was the performance of the program su2cor, with a
slowdown around 40%>-

6 Summary

In this paper we have studied, the influence of reducing the vector register size,
over two different concepts of vector architectures.

The in order execution, traditionally used on vector architectures, and the
long latencies payed on a memory request, have been always used with the use
of long vector registers in order to hide and amortize, this latency and this strict
program order. Nevertheless, we have showed that long registers were rarely fully-
used for a set of highly vectorizable programs. Less than ^0% of all the registers
being used are completely filled with 128 elements of data.

As expected, reducing the vector register length on a traditional vector ma-
chine results in a remarkable loss of performance. The cost savings is clearly
out-weighted by the execution time degradation. Halving the vector length yields
slowdowns in the range of 1.1-3.5. Unless some latency tolerance technique is
added to a traditional vector machine, vector register length should be kept as
long as possible.

We have used an ILP technique, out-of-order execution, in order to reduce the
need for very large vector registers without a remarkable lost on performance.
Simulations show that when the out-of-order execution is exploited, is possible

505

FEUP - Faculdade de Engenharia da Universidade do Porto

reduce the vector register size up to 1/4, without a considerable degradation in
performance (slowdowns of 1.0-1.5).

Finally we have compared the performance between architectures, where the
out-of-order vector architecture used the same or less, register file size than
the baseline architecture. Simulations showed that, using an out-of-order it is
possible to reduce the size of each vector register up to 4Kb (REF128/4) with a
better performance (speedups of 1.04-1-34) than the conventional architecture
and up to 2Kb (REF128/8), with speedup in the range 0.9-1.3.

With this work we showed that, when ILP is exploited using out-of-order
architecture, the need for very large vector registers, as we noted in our pre-
vious studies, it is substantially reduced. The vector register reduction can be
used in several different ways: either to decrease processor cost by reducing the
total amount of storage devoted to register values or to improve performance
by more effectively using the available storage. Using out-of-order execution and
short register, the vector architecture concept like a big and expensive super-
computers could change, because designers could use the actual technology and
ideas (caches, memory systems, no blocking loads, Clustering, etc.) in order to
improve the performance.

References

1. Luis Villa, Roger Espasa, and Mateo Valero. Effective usage of vector registers in
advanced vector architectures. In International Conference on Parallel Architec-
tures and Compilation Techniques (PACT97), San Francisco Cal., 1997.

2. R. Espasa, M. Valero, D. Padua, M. Jimenez, and E. Ayguade. Quantitative anal-
ysis of vector code. In Euromicro Workshop on Parallel and Distributed Processing.
IEEE Computer Society Press, January 1995.

3. Roger Espasa and Mateo Valero. Decoupled vector architectures. In HPCA-2,
pages 281-290. IEEE Computer Society Press, Feb 1996.

4. Roger Espasa and Mateo Valero. Multithreaded vector architectures. In HPCA-3,
pages 237-249. IEEE Computer Society Press, Feb 1997.

5. Roger Espasa. Mateo Valero, and James E. Smith. Out-of-order Vector Architec-
tures. In MJCRO-30, pages 160-170. IEEE Press, December 1997.

6. Luis Villa. Roger Espasa, and Mateo Valero. Effective usage of vector registers in
decoupled vector architectures. In Parallel and Distributed Processing (PDP98).
Madrid. Sp*in I'*''?.

7. T. Utsumi M Iked a. and M. Takamura. Architecture of the VPP500 Parallel
Supercomputer In Proceedings of Supercomputing'94, pages 478-487, Washington
D.C., Novrmrwr I■<•>*. IEEE Computer Society Press.

8. Convex Pie« K,. lurdson, Texas, U.S.A. CONVEX Architecture Reference Man-
ual (C St ii.. .HI h edition, April 1992.

9. Keneth (' N **• i I he Mips R10000 Superscalar Microprocessor. IEEE Micro.
pages 2fci-4n \\-i-.i !'<%.

10. Roger Esp*.4 *;.i \«\ier Martorell. Dixie: a trace generation system for the C3480.
Technical Rep.,n ■ r PBA-RR-94-08, Universität Politecnica de Catalunya. 1994.

11. Roger Espa>* ':*■ K*v A parametrizable simulator for vector architectures. Tech-
nical Report I !'< < f-:PBA-1995-31, Universität Politecnica de Catalunva. 1995.

506

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

The Adaptive Restarted Procedure for
ORTHOMIN(fc) Algorithm

Takashi NODERA and Naoto TSUNO

Department of Mathematics
Keio University

3-14-1 Hiyoshi Kohoku Yokohama 223 Japan
email: {nodera, tsuno}@math.keio.ac.jp

Abstract. An ORTHOMIN(fc) algorithm, a truncated version of GCR
(generalized conjugate residual) algorithm proposed by Eisenstat et od. [4],
has been widely used for solving large and sparse nonsymmetric linear
systems of equations Ax = b. In order to accelerate the convergence of
the ORTHOMIN(fc) method, we generally use a restart technique. But, it
is not so easy to find out the restarting timing of its algorithm. In this pa-
per, we will propose new adaptive restarted procedure which will find the
restart timing of the ORTHOMIN(fe) automatically. At last, numerical
experiments are reported that demonstrate the efficacy of the adaptive
restated procedure combined with the ORTHOMIN(fc) algorithm on a
distributed memory parallel machine AP1000.

1 Introduction

In this paper, we consider the iterative solution of large and sparse linear systems
of equations

Ax = b (1)

in which the coefficient A is a non-singular n x n matrix and 6 is a given n-
vector. To simplify in this paper, we will presume A and 6 to be a real and
large nonsymmetric matrix. The class of non-stationary iterative methods is
characterized by the fact that update for the residual vector is computed sep-
arately from the current approximation to the solution. A major class of these
methods is Krylov subspace or conjugate gradient type algorithms, like GCR
(generalized conjugate residual) [4], GMRES (generalized minimal residual) [5],
BiCG (bi-conjugate gradient) [2], and BiCGStab (bi-conjugate gradient stabi-
lized) [8, 11, 17, 18].

The ORTHOMIN(fc) algorithm [1] is the important variant of GCR algo-
rithm [4]. This algorithm converges very quickly under certain condition among
the GCR algorithm's family. However, in some case, the residual of the ORTHO-
MIN(&) algorithm may not have a faster convergence. So we present an adaptive
restarted procedure on the ORTHOMIN(A;) algorithm, principally the combined
algorithm can be better deal with a faster convergence. The adaptive restarted
procedure with the PRES (pseudo residual) [9] algorithm was primarily proposed
by Inadu and Nodera [13, 16]. In this paper, the adaptive restarted procedure

507

FEUP • Faculdade de Engenharia da Universidade do Porto

for the ORTHOMIN(fc) algorithm will be proposed, and it will be recognized to
decide the restart timing, automatically.

This paper is organized as follows. In section 2, we briefly review the ORTHO-
MIN(fc) algorithm and its associated properties. In section 3, we show the main
idea on which the adaptive restarted procedure for the ORTHOMIN(fc) algo-
rithm. In section 4, we report the numerical experiments to show the convergence
behavior of the adaptive restarted ORTHOMIN(fc) algorithm on the MIMD par-
allel machine API000, followed by some concluding remarks in section 5.

2 Review of ORTHOMIN(fc)

One kind of the most successful scheme is based on the orthogonal projec-
tion, typified by GCR [4] (generalized conjugate residual) or ORTHOMIN [1, 4]
and ORTHODIR [3, 11] or ORTHORES [9, 12] and GMRES [5] algorithm. The
GCR algorithm is mathematically equivalent to GMRES algorithm. The GCR
algorithm begins with the initial approximate solution xo and initial residual
r0 = b — Axo and characterizes kth approximate solution as Xk = xo + Zk, where
Zk solves

min ||(- A{x0 + z)\\2 = min \\r0 - Az\\2.

Here, Kk is the A;th Krylov subspace determined by the coefficient matrix A and
r0, which defined

Kk = span{r0, Ar0, A
2r0,..., A

1"1^}.

In some sense, GCR algorithm finds the best approximate solution in the Krylov
subspace. In contrast to the BiCG like algorithms [11, 8, 17] based on the Lanc-
zos process, GCR algorithm uses long recurrences. This work and storage per
step grows drastically as the number of steps increase and the algorithm be-
comes impractical for lots of iterations. As a consequence, we must restart this
algorithm in practice, which may results in very slow convergence. In order to
overcome this advantage of the long recurrences, a popular technique is to resort,
to truncated strategies. It uses only a few, say k, rather than all the vectors gen-
erated previously in recurrences to get the next vectors and can be significantly
less expensive at each restart.

The ORTHOMIN(fc) algorithm, primarily proposed by Vinsome [1] as a trun-
cated version of the GCR algorithm. Figure 1 displaies the standard ORTHO-
MIN(fc) algorithm without correction. In this algorithm, the direction vector
update can be truncated so that at most I;«" previous direction vectors are
used after iteration k.

i-l

Pi = r<+ Y, ßiJ)PJ (2)
j=i-k

In this case, the z, + 1 is local minimum, the point in

a:,-_fc + span{p,-_*,...,pj}

508

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

1: Choose XQ.

2: r0 = 6 — Axo
3: for I=r0, 1, 2, ...

3.1 if i = 0 then
3.1.1: po = ro
else
3.1.2: for j = <T, <r+ 1, ..., t-1

3.1.2.1: ßiW = -(An, APi)l(Ap„ Ap:)
endfor

3.1.3: p, = r, + J2'-lßtU)p:

endif
3.2 ati = (ri,Api)/(Api,Api)
3.3 x;+i = Xi + aipi
3.4 r,+i = r, -otiApi
3.5 If converge, escape the loop.
endfor

Where >, a = max{0, i — k}

Fig. 1. The ORTHOMIN(Jk) algorithm

whose residual norm ||r,+i||2 is minimized.
The following theorem was proposed by Eisenstat et cd. [4].

[Theorem 2.1] Let M = (A + AT)/2 denote the symmetric part of A, and
R — (A — AT)/2 denote the skew-symmetric part of A. When M is positive
definite, residuals generated by the ORTHOMIN(k) method fulfill the following
relation.

Pi 2 < 1 -
,(M)2

Amin(M)Amax(M)+/>(fl)2J

t/2

iFO 2-

where Am;n(M) and Am,K(.\/) imply the smallest and largest eigenvalues of M,
respectively. Also, p(/?'t <irnotes the spectral radius of R.

This theorem states that the residual norm of the ORTHOMIN(fc) algorithm
is decreased in every iteration «teps. Namely, we will get the approximate solution
by using this algorithm In [>r%rtice, we have found that even if this bound to be
pessimistic, this algorithm i» »n effective solution technique for large and sparse
nonsymmetric matrix pr .Mem» This algorithm is very easy to implement, but in
some case the ORTHOMIV * algorithm slows down the convergence of residual
norm. In this case, we makr the choice of new starting vector and then restarts
the algorithm once again ** > *n suitable restarting is usually necessary for this
algorithm to make the a<< ekrut ion of convergence of residual. In the next section,
we devote to the study of automatic restart of the ORTHOMIN(fc) algorithm in
adaption.

509

FEUP - Faculdade de Engenharia da Universidade do Porto

3 The adaptive restarted procedure

The restarts of ORTHOMIN(fc) algorithm are ordinarily needed to reduce for the
round off errors and the amount of the necessary computational time to satisfy
the convergence criterion. However, so many restarts slow down the convergence
of the ORTHOMIN(fc) algorithm. So the suitable restart of this algorithm can
be accelerated the convergence of the residuals. We have designed an adaptive
procedure with the automatic restart for the ORTHOMIN(A;) algorithm.

The adaptive restarted procedure, which was proposed by Inadu and Nodera
[13, 16], is the technique which is introduced to the ORTHORES(A;) algorithm
for solving the large sparse sets of nonsymmetric linear systems of equations.
The ORTHORES(fc) algorithm belongs to the class of the pseudo residual al-
gorithm [9, 10]. This technique improves the convergence of ORTHORES(fc)
method by using the restart of its algorithm, appropriately. In order to work this
approach effectively, we need to find out the timing of performing the restart.
For the pseudo residual algorithm, we decided the timing of the restart from the
two points of view: one is the observation of oscillating residual norm, and the
another is the observation of the scalar coefficients of the ORTHORES(fc) algo-
rithm. On the other hand, the ORTHOMIN(fc) algorithm has a good property
which minimizes the residual norm. Therefore, we consider to use a different
strategy that does find out about the timing of restart for the ORTHOMIN(ifc)
algorithm, adaptively.

The ORTHOMIN(fc) algorithm has very slow convergence behavior, when
the scalar |Q,| is the smallest enough. One of the reasons that the degree of
the direction polynomials does not come up higher order. So in order to im-
prove the convergence of its residual, we consider the timing of the restart of
ORTHOMIN(fc) algorithm, which is based on the scalar \at\. Also, the scalar
|a,-1 has a meaning called the distance that proceeds along a direction vector. In
fact, while the norm of residual decreasing sharply, we have a property that the
scalar |a,| stalls at the small value. Let us consider about the execution of the
adaptive restart with the following rule of the determination of the timing.

(1) Rule of deciding the timing of restart

When the scalar ||ar,-.4p,-||/||rj|| is even small more than the parameter given
e in advance, we are not able to expect a faster convergence of the ORTHO-
MIN(fc) method in the continuous iteration of k steps, and then we consider
to do the restart. In fact, while the restart is difficult to be executed for
smaller value of parameter e, the restart is easy to be executed for the
larger value of the parameter e. We have shown that the adaptive restarted
procedure stabilized to the many problems around the parameter e = 1.0, as
the results of numerous experiments coming from the discretization of the
boundary value problem of partial differential equation, etc.

For the next iteration steps of the ORTHOMIN(fc) method after performed
the restart, we expect that the scalar ||a,-Ap,-||/||r,-|| becomes the larger value.
While for smaller value of ||o;,-.Ap,-||/||r,-|| we performed the restart tentatively,

510

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Choose XQ and e.

To

...» = 0i adapt jrestart := on
= b — Axo, k.count = 0

■ (2-a)

for i = 0, 1, 2, ...
Calculate a, andp,, using ORTHOMIN(fc) method. 4.1

4.2
4.3
4.4
4.5
4.6
4.7

4.8:

z,+ i = Xi + ctip
n+i = n -a.vlpi
If converge, escape the loop.

a! = ||a.-Ap,-||/||n||
If aj > alnax, then adapt jrestart := on (2-b)
if a\ < e then
4.7.1: k.count = k.count + 1
else
4.7.2: k-count = 0, adapt jrestart := on (2-d)
endif
if k.count = k then (1)
4.8.1: if adapt jrestart = on then (2-c)

4.8.1.1: aJn,x = max a'.

adapt jrestart := off
xo = £t-H and restart (goto step 3).

4.8.1.2:
4.8.1.3:
endif

endif
endfor

Fig. 2. The algorithm of adaptive restarted procedure for the ORTHO-
MIN(fc) method, (AR-ORTHOMIN(fc))

even if the convergence of the ORTHOMIN(ä:) method is still slow, the situa-
tion becomes more worse from which the residual polynomial has remained in

this time. In this case, we better do not have to perform the restart. However,

after we restarted the algorithm, in order to know the scalar ||a,Api||/||ri|| in

advance, the additional computational cost, which is equal to the iteration steps,

is needed. Consequently, one might not expect with efficient. Therefore, we per-

form the restart in an unconditional judgment of the first restart, and then we

shall decide whether we do perform or do not perform the restart in according
to the circumstances of the former update restart after the second restart.

(2) Rule of the execution of restart
(a) The restart is done in an unconditional judgment of the 1st restart.
(b) When we performed the restart, comparing the maximum value of dis-

tance that proceeds in k iteration steps before the restart and after the

restart, we examine the efficiency of the restart. If one of the maximum

value of distance proceeding after the restart is larger, we consider that

the restart is working effectively.

511

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 1. AP1000 specification

Architecture Distributed Memory, MIMD
Number of processors 64
Inter processor networks Broadcast network(50MB/s)

Two-dimensional torus network
(25MB/s/port)
Synchronization network

4 Numerical experiments

We now give some numerical results to demonstrate the behavior of convergence
associated with the AR-ORTHOMIN(A-) algorithm. We use the test problems
coming from the boundary value problems of partial differential equation in the
scientific and industrial applications. We shall show the efficiency of the adaptive
restarted procedure. All the computations were done in double precision (64.
bits) on the MIMD parallel machine Fujitsu AP1000 with 64 processors. The
Specification of AP1000 is given in Table 1. Each cell of AP1000 employs RISC-
type SPARC or SuperSPARC processor chip. For. simplicity we did not use any
preconditioner in numerical experiments.

[Example 1] Firstly, we consider a finite difference problem, namely, central
finite differencing applied to the following Dirichlet problem:

-uxx - uyy + aux(x, y) + ruy(x, y)

= /(*, y) on Q = [0, l]2,
u(*.y) laß = l+xy.

with f{x,y) is chosen so that the true solution u(x,y) = 1 + xy on Q. Let h
represent the mesh size in each direction. This yields a matrix of size n — 66536
(where, h = 1/257), after boundary points have been eliminated. In our numer-
ical computations, the initial guess is chosen as x0 = 0, and an approximate
solution xk is considered to have converged if the residual satisfies ||rA||2/jjr0|| <
10~12. Also, the iteration was stopped, when the number of iteration exceeded
6654(« 0.1 x n). By varying the constant a and r, the amount of nonsymmetric-
ity of the coefficient matrix A may be varied.

In Table 2, we are displayed the numerical results obtained by the stan-
dard ORTHOMIN(Ar) and AR-ORTHOMIN(Ar) method. For this problem, AR-
ORTHOMIN(5) and AR-ORTHOMIN(IO) method applied to this problem worked
quite well. On the other hand, the standard ORTHOMIN(Ar), Ar = 5, or 10,
method gave an excessive computational times and the number of iterations. Fig-
ure 4 gives representative plots of the convergence behavior of ORTHOMIN(5),
ORTHOMIN(IO), AR-ORTHOMIN(5), and AR-ORTHOMIN(IO) method for
the case of h = 1/257, and {a+r)h/A = 5.0. As you can seen clearly, only the AR-
ORTHOMIN(Ar) method is successful in this example. The ORTHOMIN(Ar) with-
out, the adaptive restarted procedure has some trouble from the beginning, which

512

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Table 2. The numerical results for example 1, ((<r + r)h/4 = 0.5)

(g = r) 8:07:16:25:3 4 : 4

((execution time (Sec)»
ORTHOMIN(5) 64.01 63.98 55.20 47.76 45.37

AR-ORTHOMIN(5) 53.23 54.75 51.53 46.51 47.46
ORTHOMIN(IO) 114.06 103.27 94.08 82.08 83.55

AR-ORTHOMIN(IO) 86.00 82.00 84.60 77.61 77.16
((number of iteration))

ORTHOMIN(5) 1031 1030 891 772 732
AR-ORTHOMIN(5) 838 852 798 737 745

ORTHOMIN(IO) 1258 1139 1039 906 920
AR-ORTHOMIN(IO) 964 915 943 865 858

((number of restart))
AR-ORTHOMIN(5)

AR-ORTHOMIN(IO)

1 | 1 1 1 ! 1 1 ! 1

18-01

1e-02

1e-03

1e-04

1e-05

1e-06

1e-07

1e-08

1e-09

1e-10

>■ ' ' '1 V

 i ' f
li I ■ \ ■ \ '

x ,: -, iÖRfHÖMIN(5J r\

r tAR-ORTHOMIN(S)
\ ■

UHlt IOW1N(10)

i ,AR-OF THOMIN(10)
■ ■ ■

1e-12

1e-13
1 '

i .

0 50 100 150 200 250 300 350 400
Time(sec)

Fig. 4. The convergence behavior of residual norms vs. computational
time for example 2 ({a + T)/I/4 = 5.0, a : T = 8 : 0)

causes the stagnation. Note that in this case the AR-ORTHOMIN(5) method is
preferable, because it is more efficient: the working cost of AR-ORTHOMIN(5)
method less than AR-ORTHOMIN(IO) method. This result shows that the AR-
ORTHOMIN(fc) method keeps the residual size better behaved than the standard
ORTHOMIN(it) method, which without the adaptive restarted procedure, over
the course of run. We found that in most cases the AR-ORTHOMIN(fc) method
was more efficient than the standard ORTHOMIN(A;) method in CPU times.

[Example 2] We now consider a little bit difficult class of finite difference dis-

513

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 3. The numerical results for example 2

ah T* | 2"1 | 2U 2l I 2*
{{execution time (Sec) }}

ORTHOMIN(5)
AR-0RTH0MIN(5)

ORTHOMIN(IO)
AR-ORTHOMIN(IO)

213.55
191.54
227.48
243.68

290.96
217.57
309.03
276.74

344.28
325.40
431.88
482.00

— —

{{number of iteration))
ORTHOMIN(5)

AR-ORTHOMIN(5)
ORTHOMIN(IO)

AR-ORTHOMIN(IO)

3212
2896
2499
2723

4369
3338
3400
3111

5185
4945
4751
5447

(4e-12)*
(2e-10)*
(3e-12)*
(3e-ll)*

(le-8)*
(2e-8)*
(2e-8)*
(2e-8)*

{(number of restart))
AR-ORTHOMIN(5)
AR-ORTHOMIN(IO)

18
15

63
24

58
53

43
52

35
28

The relative residual norm after the maximum iterations

cretization of the Dirichlet boundary value problem as follows:

-Uyy + a y--2 + 1.-3
3.'*

= /(x,y)onß=[0,l]2

u{x,y)\an = 1 + xy.

Central differencing, with uniform mesh spacing h in each direction, yields a
n x n sparse coefficient matrix. The right hand side of the above equation is
taken such that the true solution is u(x, y) = 1 + xy. Problems of this type arise
frequently in many scientific problem and are significant practical importance.
The initial approximation vector is xo = 0 and no preconditioning is used for
these numerical experiments.

For the test problem we let h = 1/257 and use several value of a. We give
comparative results in Table 3 with ah — 2~2,2"1,2°, 21, 22, respectively. In the
item of execution time in this table, runs for which convergence is not possible
maximum iterations are labeled by (—).

In the Table 3, in most cases AR-ORTHOMIN(5) method worked quite well.
For the case of ah = 2~2, and 2"1, the AR-ORTHOMIN(IO) method gave an
excessive number of iterations and the computational times.

Figure 5 gives representative plots of the convergence behavior of the above
mentioned methods with no preconditioning for the case ah = 2°.

The following observations on this problem can be made. The AR-ORTHO-
MIN(5) method worked well in most cases, particularly in ah = 2-1. As you can
see that, for large k such as the AR-ORTHOMIN(IO) method, the improvement
of the computational cost is not impressive, but the residual norms of the AR-
ORTHOMIN(IO) method stay well below those of the standard ORTHOMIN(IO)

514

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

; ORTHOMIN(IO)
'%, AR-ORTHOMIN(IO)

0 50 100 150 200 250 300 350 400 450 500
Time(sec)

Fig. 5. The convergence behavior of residual norms vs. computational
time for example 2 (ah — 2°)

method. We note that, as expected from.these numerical experiments, the AR-
ORTHOMIN(5) method is slightly more efficient than the AR-ORTHOMIN(IO)
method.
[Example 3] Our last example is taken from the example of Reichel et al. [6] and
Gutknecht [7].

1 0.5 Q
0 1 0.5 w

(7 0 1 0.5
a 0

U a 0 1

A:= eR 4096x4096 , (*>0)

Since all the eigenvalues of M = (A + AT)/2 are distributed in the interval
[—2cr,2 + 2a], the condition number of M becomes large so that the element
a is large. Also, the property of positive definite of M is not guaranteed. On
the other hand, the spectral radius of R - (A - AT)/2 is satisfied the following
inequality p(R) < 1 + 2a.

Table 4 shows the numerical results for several a. In this example, since
the behavior of residuals of standard ORTHOMIN(fc) method showed linear
convergence by all cases, there is no restat performed by the AR-ORTHOMIN(A;)
method.

5 Conclusion

Our study involved a new approach to the adaptive restarted procedure for
the ORTHOMIN(fc) algorithm. One interesting feature of this technique is the

515

FEUP ■ Faculdade de Engenharia da Universidade do Porto

Table 4. The numerical results for example 3

a 0.1 0.3 0.5 0.7 0.9
({execution time (sec)))

ORTHOMIN(5)
AR-ORTHOMIN(5)

ORTHOMIN(IO)
AR-ORTHOMIN(IO)

0.45
0.46
0.68
0.68

0.45
0.46
0.68
0.68

0.83
0.84
1.17
1.18

1.69
1.72
2.29
2.31

6.85
6.90

((number of iteration))
ORTHOMIN(5)

AR-ORTHOMIN(5)
ORTHOMIN(IO)

AR-ORTHOMIN(IO)

32
32
32
32

32
32
32
32

57
57
52
52

115
115
98
98

(4e-10)*
(4e-10)*

285
285

{(number of restart))
AR-ORTHOMIN(5)
AR-ORTHOMIN(IO)

0
0

0
0

0
0

0
0

0
0

*The relative residual n orm after the maximum iterations

fact that extra calculation is not explicitly needed, which may be used only
implicitly given as calculations of the standard ORTHOMIN(ifc) algorithm. The
results presented in this paper suggest that the adaptive restarted procedure with
ORTHOMIN(A;) algorithm, which we called the AR-ORTHOMIN(fc), can be one
of the useful tools for computing the approximate solution of large and sparse
nonsymmetric linear systems of equations on parallel machines with modern
high performance architectures. The details of the parallel implementation of
this strategy and the further numerical experiments are given in Tsuno and
Nodera [15].

References

1. P. Vinsome, "ORTHOMIN. an iterative method for solving sparse sets of simul-
taneous linear equations." In Proceedings of the Fourth Symposium on Reservoir
Simulation, Societ\ of Petroleum Engineering of AIME, pp. 149-159 (1976).

2. R. Fletcher, "Conjun*tr urgent methods for indefinite systems, Lecture Notes in
Math., Vol. 506. pp :iw 11976).

3. D. M. Young and K < Ir«. "Generalized conjugate gradient acceleration of non-
symmetrizable iterativ» m^hods," Linear Algebra and its Applications, Vol. 34,
pp. 159-194 (19801

4. S. Eisenstat, H. Elm*»> uui \1. Schultz, "Variational iterative methods for non-
symmetric systems of lirw«r equations," SJAM J. Numer. Anal., Vol. 20, No. 2.
pp. 345-357 (1983).

5. Y. Saad and M. Schultz < AIRES: A generalized minimal residual algorithm for
solving nonsymmetric lin«-*r systems," SIAM J. Sei. Stat. Comput., Vol. 7, No. 3.
pp. 856-869 (1986).

516

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

6. L. Reichel and L. N. Trefethen, "Eigenvalues and pseudo-eigenvalues of Toeplitz
matrices," Lin. Alg. Appl., Vol. 162, pp. 153-185 (1992).

7. M. H. Gutknecht, "Variants of BiCGSTAB for matrices with complex spectrum,"
SIAM J. Sei. Comput., Vol. 14, pp.1020-1033 (1993).

8. H. A. van der Vorst, "BiCGSTAB: A fast and smoothly converging variant of Bi-
CG for the solution of non-symmetric linear systems," SIAM J. Sei. Sat. Comput.,
Vol. 13, pp. 631-644 (1992).

9. R. Weiss, "Properties of generalized conjugate gradient methods," Numer. Lin.
Alg. Appl., Vol. 1, No. 1, pp. 45-63 (1994).

10. R. Weiss, "A theoretical overview of Krylov subspace methods," Appl. Numer.
Math., Vol. 19, No. 3, pp. 207-234 (1995).

11. A- M. Bruaset, "A survey of preconditioned iterative methods," Pitman Research
Notes in Math (1995).

12. T. Nodera and T. Inadu, "The convergence acceleration of pseudo residual method
using a restarted procedure," Transaction on Information Processing Society of
Japan, Vol. 37, No. 6 (in Japanese), pp. 1237-1240 (1996).

13. T. Inadu and T. Nodera, "An adaptive restarting procedure for pseudo-residual
methods," Transaction on Information Processing Society of Japan, Vol. 37, No. 9
(in Japanese), pp. 1637-1645 (1996).

14. N. Tsuno and T. Nodera, "Convergence properties for an adaptive restarted pro-
cedure of non-stationary iterative methods (Part I, and Part II)," SIG HPC, In-
formation Processing Society of Japan, Vol. 96, No. 81 (in Japanese), pp. 105-109
(1996) and Vol. 96, No. 81 (in Japanese), pp. 7-12 (1996).

15. N. Tsuno and T. Nodera, "The adaptive restarted procedure for ORTHOMIN(fc)
method," SIG HPC, Information Processing Society of Japan, Vol. 97, No. 75 (in
Japanese), pp. 7-12 (1997).

16. T. Nodera and T. Inadu, "A note on adaptive restarting procedure for pseudo
residual algorithms," Scientific Computing (eds. G. H. Golub, et al.), Springer-
Verlag, pp. 265-272 (1997).

17. T. Nodera and Y. Noguchi, "Effectiveness of BiCGStab(£) method on AP1000,"
Transaction on Information Processing Society of Japan, Vol. 38, No. 11 (in
Japanese), pp. 2089-2101 (1997).

18. T. Nodera and Y. Noguchi, "A note on BiCGStab(^) method on AP1000," IMACS
Lecture Note on Computer Science (1998), to appear.

This article was processed using the L^TgX macro package with LLNCS style

517

FEUP - Faculdade de Engenharia da Universidade do Porto

518

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Reconfigurable Systems
Past and Next 10 Years

Jean Vuillemin1

Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris cedex 05, Prance.
This research was partly done at Hewlett Packard Laboratories, Bristol U.K.

Abstract. A driving factor in Digital System DS architecture is the
feature size of the silicon implementation process. We present Moore's
laws and focus on the shrink laws, which relate chip performance to
feature size. The theory is backed with experimental measures from [14],
relating performance to feature size, for various memory, processor and
FPGA chips from the past decade. Conceptually shrinking back existing
chips to a common feature size leads to common architectural measures,
which we call normalized: area, clock frequency, memory and operations
per cycle. We measure and compare the normalized compute density of
various chips, architectures and silicon technologies.
A Reconfigurable System RS is a standard processor tightly coupled to a
Programmable Active Memory PAM, through a high bandwidth digital
link. The PAM is a FPGA and SRAM based coprocessor. Through soft-
ware configuration, it may emulate any specific custom hardware, within
size and speed limits. RS combine the flexibility of software programming
to the performance level of application specific integrated circuits ASIC.
We analyze the performance achieved by PI, a first generation RS [13].
It still holds some significant absolute speed records: RSA cryptography,
applications from high-energy physics, and solving the Heat Equation.
We observe how the software versions for these applications have gained
performance, through better microprocessors. We compare with the per-
formance gain which can be achieved, through implementation in P2, a
second-generation RS [16].
Recent experimental systems, such as the Dynamically Programmable
Arithmetic Array in [19] and others in [14], present advantages over cur-
rent FPGA, both in storage and compute density. RS based on such chips
are tailored for video processing, and similar compute, memory and 10
bandwidth intensive. We characterize some of the architectural features
that a RS must posses in order to be fit to shrink: automatically enjoy
the optimal gain in performance through future shrinks. The key to scale,
for any general purpose system, is to embed memory, computation and
communication at a much deaper level than presently done.

1 Moore's Laws

Our modern world relies on an ever increasing number of Digital Systems DS:
from home to office, through car, boat, plane and elsewhere. As a point in case,

519

FEUP - Faculdade de Engenharia da Universidade do Porto

the shear economic magnitude of the Millenium Bug [21], shows how futile it
would be to try and list all the functions which DS serve in our brave new
digital world.

. -»-Gbop/s x2.1/y

t ■*" Gtrans/y xl,8/y

Fig. 1. Estimated number and world wide growth rate: G = 109 transistors fabricated
per year; G bit operations computed each second; Billion $ revenues from silicon sold
world wide; $ cost per G = 230 bits of storage

A J,hr°uShJeCent decades' earth's combined raw compute power has more than
doubled each year. Somehow, the market remains elastic enough to find appli-
cations and people to pay, for having twice as many bits automatically switch
state than twelve months ago. At least, many people did so, each year, for over
thirty years - fig. 1. J '

An ever improving silicon manufacturing technology meets this ever increas-
ing demand for computations: more transistors per unit area, bigger and faster
chips. On the average over 30 years, the cost per bit stored in memory goes down
by 30% each year. Despite this drop in price, selling 80% more transistors each
year increases revenue for the semi-conductor industry by 20% - fig. 1.

The number of transistors per mm2 grows about 40% each year, and chip
size increases by 15%, so:

The number of transistors per chip doubles in about 18 months.

That is how G. Moore, one of the founders of Intel, famously stated the laws
embodied in fig. 1. That was in the late sixties, known since as Moore's Laws

More recently, G. Moore [18] points out that we will soon fabricate more
transistors per year than there are living ants on earth: an estimated 1017

♦i, ^u' P^e°^le bUy comPutations> not transistors. How much computation do
they buy? Operating all of this year's transistors at 60 MHz amounts to an

520

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

aggregate compute power worth 1024 bop/s - bit operation per second. That
would be on the order of 10 million bop/s per ant!

This estimate of the world's compute power could well be off by some order
of magnitude. What matters is that computing power at large has more than
doubled each year for three decades, and it should do so for some years to come.

1.1 Shrink Laws

100

10

0,1

■*■ um ■ mm2/chip
•

• •
•

•
•

• •

•

^

Fig. 2. Shrink of the feature size with time: minimum transistor width, in pm = 10_6m.
Growth of chip area - in mm2.

The economic factors at work in fig. 1 are separated from their technological
consequences in fig 2. The feature size of silicon chips shrinks: over the past
two decades, the average shrink rate was near 85% per year. During the same
time, chip size has increased: at a yearly rate near 10% for DRAM, and 20% for
processors.

The effect on performance of scaling down all dimensions and the voltage of
a silicon structure by 1/2: the area reduces by 1/4, the clock delay reduces to
1/2 and the power dissipated per operation by 1/8.

Equivalently, the clock frequency doubles, the transistor density per unit area
quadruples, and the number of operations per unit energy is multiplied by 8, see
fig. 2. This shrink model was presented by [2] in 1980, and intended to cover
feature sizes down to 0.3 ßm - see fig. 3.

Fig. 4 compares the shrink model from fig. 3 with experimental data gathered
in [14], for various DRAM chips, published between in the last decade. The last
entry - from [15] - accounts for synchronous SDRAM, where access latency is
traded for throughput. Overall, we find a rather nice fit to the model. In fig. 7,
we also find agreement between the theoretical fig. 3 and experimental data for
microprocessors and FPGA, although some architectural trends appear.

A recent update of the shrink model by Mead [9] covers features down to
0.03 urn. The optimists conclusion, from [9]:

521

FEUP - Faculdade de Engenharia da Universidade do Porto

op/nj

^ -*- trans/mnr

^-GHz

Fig. 3. Theoretical chip performance, as the minimum transistor width (feature size)
shrinks from 8 to 0.03 micron ßm: transistors per square millimeter; fastest possible
chip wide synchronous clock frequency, in giga hertz; number of operations computed
per nano joule. y '

We can safely count on at least one more order of magnitude of
scaling.

The pessimist will observe that it takes 2 pages in [2] to state and justify the
linear■shrink rules; it takes 15 pages in [9], and the rules are no longer linear
Indeed, thin oxide is already nearly 20 atoms thick, at current feature size 0 2
/xm. A linear shrink would have it be less than one atom thick, around 0.01 ßm
Other fundamental limits (quantum mechanical effects, thermal noise, light's
wavelength, ...) become dominant as well, near the same limit. Although C
Mead [9] does not explicitly cover finer sizes, the implicit conclusion is:

We cannot count on two more orders of magnitude of scaling.

Moore's law will thus eventually either run out of fuel - demands for bop/s will
some year be under twice that of the previous - or it will be out of an engine
- shrink laws no longer apply below 0.01 ßm. One likely possibility is some
combination of both: feature size will shrink ever more slowly, from some future
time on.

On the other hand, there is no fundamental reason why the size of chips
cannot keep on increasing, even if the shrink stops. Likewise, we can expect new
architecture to improve the currently understood technology path. No matter
what happens, how to best use the available silicon will long remain an im-
portant question. Another good bet: the amount of storage, computation and
communication, available in each system will grow, ever larger.

2 Performance Measures for Digital Systems

Communication, processing and storage are the three building blocks of DS
They are intimately combined at all levels. At micron scale, wires, transistors

522

VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing

107

105
~\'<* >a j a

a

si

103 1

• »•
• %

10

%

•
A A A

• • •
A

A
4

• • ••
A

A a

s» ^
\

*"> rf>

b/su"
J4

%• • b/chip *

i2

MHz

mm-' •
A

Q- A*5

Feature size: um.

Fig. 4. : Actual DRAM performance as feature size shrinks from 0.8 to 0.075 pro: clock
frequency in Mega hertz; square millimeters per chip; bits per chip; power is expressed
in bit per second per square micron.

and capacitors implement the required functions. At human scale, the combi-
nation of a modem, microprocessor and memory in a PC box does the trick.
At planet scale, communication happens through more exotic media - waves in
the electromagnetic ether, or optic fiber - at either end of which one finds more
memory, and more processing units.

2.1 Theoretical performance measures

Shannon's Mathematical Theory of Communication [1] shows that physical mea-
sures of information (bits b) and communication (bits per second b/s) are related
to the abstract mathematical measure ot statistical entropy H, a positive real
number H > 0. Shannon's theory does not account for the cost of any compu-
tation. Indeed, the global function of a communication or storage device is the
identity X = Y.

On the other hand, source coding for MPEG video is among the most de-
manding computational tasks. Similarly, random channel coding (and decod-
ing), which gets near the optimal for the communication purposes of Shannon
as coding blocks become bigger, has a computational complexity which increases
exponentially with block size.

The basic question in Complexity Theory is to determine how many opera-
tions C(/), are necessary and sufficient for computing a digital function /. All
operations in the computation of / are accounted for, down to the bit level, re-
gardless of when, where, or how the operation is performed. The unit of measure
for C(f) is one Boolean operation bop. It is applicable to all forms of compu-

523

FEUP • Faculdade de Engenharia da Universidade do Porto

tations - sequential, parallel, general and special purpose. Some relevant results
(see [5] for proofs):

1. The complexity of n bit binary addition is 5n - 3 bop. The complexity of
computing one bit of sum is 1 add = 5 bop (full adder: 3 in, 2 out).

2. The complexity of n bit binary multiplication can be reduced, from 6n2

bop for the naive method (and 4n2 bop through Booth Encoding), down to
c(e)n1+£, for any real number e > 0. As c(e) h+ oo when e H> 0, the practical
complexity of binary multiplication is only improved for n large.

3. Most Boolean functions /, with n bits of input and one output, have a bop
complexity C{f) such that 2n/n < C(f) < 2n/n(2 + e), for all e > 0 and n
large enough. To build one, just choose at random! No explicitly described
Boolean function has yet been proved to posses more than linear complexity
(including multiplication). An efficient way to compute a random Boolean
function is through a Lookup Table LUT, implemented with a RAM or a
ROM.

Computation is free in Shannon's model, while communication and memory are
free within Complexity Theory. The Theory of VLSI Complexity aims at mea-
suring, for all physical realizations of digital function /, the combined complexity
of communication, memory, and computation. The VLSI complexity of function
/ is defined with respect to all possible chips for computing /. Implementations
are all within the same silicon process, defined by some feature size, speed and
design rules. Each design computes / within some area A, clock frequency F and
T clock periods per 10 sample. The silicon area A is used for storage, commu-
nication and computation, through transistors and wires. Optimal designs are
selected, based on some performance measure. For our purposes: minimize the
area A for computing function /, subject to the real time requirement F/T < Fio.
In theory, one has to optimize among all designs for computing /. In practice,
the search is reduced to structural decompositions into well known standard
components: adders, multipliers, shifters, memories, ...

2.2 Trading size for speed

VLSI design allows trading area for speed. Consider, for example, the family of
adders: their function is to repeatedly compute the binary sum S = A+B of two
n bits numbers A, B. Fig. 5 shows four adders, each with a different structure,
performance, and mapping of the operands through time and 10 ports. Let us
analyze the VLSI performance of these adders, under simplifying assumptions:
afa = 2ar for the area (based on transistor counts), and dfa = dT for the
combinatorial delays of fadd and reg (setup and hold delay).

1. Bit serial (base 2) adder sA2. The bits of the binary sum appear through
the unique output port as a time sequence s0, su ..., sn, ... one bit per clock
cycle, from least to most significant. It takes T = n + 1 cycles per sum S.
The area is A = 3ar: it is the smallest of all adders. The chip operates at
clock frequencies up to F = l/2dr: the highest possible.

524

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

sA4
<

%
WN—

■III-— \Y
jjn

W>

■101: T'
i«

sAI4 2sA2

Fig. 5. Four serial adders: sA2 - base 2, sA4 - base 4, sAI4 - base 4 interleaved, and
2sA2 - two independent sA2. An oval represents the full adder fadd; a square denotes
the register reg (one bit synchronous flip-flop; the clock is implicit in the schematics).

2. Serial two bits wide (base 4) adder sA4. The bits of the binary sum appear
as two time sequences s0, s2, ..., s2„, ... and si, s3, ... two bits per cycle,
through two output ports. Assuming n to be odd, we have T = (n + l)/2
cycles per sum. The area is A = 5ar and the operating frequency F = l/3dr.

3. Serial interleaved base 4 adder sAI4. The bits of the binary sum S appear
as two time sequences s0, *, s2, *, s2„, *, ... and *, su *, s3, ... one bit
per clock cycle, even cycles through one output port, odd through the other.
The alternate cycles (the *) are used to compute an independent sum S',
whose 10 bits (and carries) are interleaved with those for sum S. Although
it still takes n +1 cycles in order to compute each sum S and 5', we get both
sums in so many cycles, at the rate of T = (n + l)/2 cycles per sum. The
area is A = 6ar and the maximum operating frequency F = l/2dr.

4. Two independent bit serial adders 2s42. This circuit achieves the same per-
formance as the previous: T = (n + l)/2 cycles per sum, area A = 6ar and
frequency F = l/2dr.

The transformation that unfolds the base 2 adder sA2 into the base 4 adder sAA
is a special instance of a general procedure. Consider a circuit C which computes
some function / in T cycles, within gate complexity G bop and memory M bits.
The procedure from [11] unfolds C into a circuit C" for computing /: it trades
cycles T = T/2 for gates G' = 2G, at constant storage M' = M.

In the case of serial adders, the area relation is A' = 5A/3 < 2A, so that
AT < AT. On the other hand, since F' = l/3d and F = l/2d, we find that
A'T'/F' > AT IF. An equivalent way to measure this, is to consider the density
of full adders fadd per unit area afa = 2ar, for both designs C and C": as
2/A = 0.66 < 4/A' = 0.8, the unfolded design has a better fadd density than
the original. Yet, since F' = 1.5F, the compute density - in fadd per unit area
and time dfa = dr - is lower for circuit C": F/A - 0.16 > 2/A'F' = 0.13. When
we unfold from base 2 all the way to base 2n, the carry register may be simplified
away: it is always 0. The fadd densities of this n-bit wide carry propagate adder

525

FEUP - Faculdade de Engenharia da Universidade do Porto

is 1 per unit area, which is optimal; yet, as clock frequency is F = 1/n, the
compute density is low: 1/n.

Circuits sAI4 and 2sA2 present two ways of optimally trading time for area,
at constant operator and compute density. Both are instances of general meth-
ods, applicable to any function /, besides binary addition. From any circuit C
for computing / within area A, time T and frequency F, we can derive circuits
C which optimally trades area A' = 2A for time V = T/2, at constant clock
frequency F1 = F. The trivial unfolding constructs C = 2C from two indepen-
dent copies of C, which operate on separate 10. So does the interleaved adder
sAH, in a different manner. Generalizing the interleaved unfolding to arbitrary
functions does not always lead to an optimal circuit: the extra wiring required
may force the area to be more than A' > 2A. Also note that while these optimal
unfolding double the throughput (T = n/2 cycles per add), the latency for each
individual addition is not reduced from the original one (T = n cycles per addi-
tion). We may constrain the unfolded circuit to produce the 10 samples in the
standard order, by adding reformatting circuitry on each side of the 10: a buffer
of size n-bit, and a few gates for each input and output suffice. As we account
for the extra area (for corner turning), we see that the unfolded circuit is no
longer optimal: A' > 2A. For a complex function where a large area is required,
the loss in corner turning area can be marginal. For simpler functions, it is not.'

In the case of addition, area may be optimally traded for time, for all integer
data bit width D = n/T, as long as D < Vn. Fast wide D = n parallel adders
have area A = nlog(n), and are structured as binary trees. The area is dominated
by the wires connecting the tree nodes, their drivers (the longer the wire, the
bigger the driver), and by pipelining registers, whose function is to reduce all
combinatorial delays in the circuit below the clock period 1/F of the system.

Transitive functions permute their inputs in a rich manner (see [4]): any input
bit may be mapped - through an appropriate choice of the external controls -
into any output bit position, among N possible per 10 sample. It is shown in [4]
that computing a transitive function at 10 rate D = NF/T, requires an area A
such that:

A > amN + ai0D + awD2, (i)

where am, aio and aw are proportional to the area per bit respectively required
for memory, 10 and communication wires. Note that the gate complexity of a
transitive function is zero: input bit values are simply permuted on the output.
The above bound merely accounts for the area - 10 ports, wires and registers -
which is required to acquire, transport and buffer the data at the required rate.
Bound (1) applies to shifters, and thus also to multipliers. Consider a multiplier
that computes 2n-bit products on each cycle, at frequency F. The wire area of
any such multiplier is proportional to n2, as T = 1 in (1). For high bandwidth
multipliers, the area required for wires and pipelining registers is bigger than
that for arithmetic operations.

The bit serial multiplier (see [11]) has a minimal area A = n, high operating
frequency F, and it requires T = 2n cycles per product. A parallel nave multiplier
has area A' = n2 and T = 1 cycle per product. In order to maintain high

526

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

frequency F' = F, one has to introduce on the order of n2 pipelining registers,
so (perhaps) A' = 2n2 for the fully pipelined multiplier. These are two extreme
points in a range of optimal multipliers: according to bound (1), and within a
constant factor. Both are based on nave multiplication, and compute n2 mul per
product. High frequency is achieved through deep pipelining, and the latency
per multiplication remains proportional to n. In theory, latency can be reduced
to T, by using reduced complexity n1+€ shallow multipliers (see [3]); yet, shallow
multipliers have so far proved bigger than nave ones, for practical values such
as n < 256.

2.3 Experimental performance measures

Consider a VLSI design with area A and clock frequency F, which computes
function / in T cycles per TV-bit sample. In theory, there is another design for /
which optimally trades area A' = 2A for cycles T = T/2, at constant frequency
F' = F. The frequency F and the AT product remain invariant in such an
optimal tradeoff. Also invariant:

- The gate density (in bop /mm2), given by Dop = c{f)/A = C(f)/AT. Here
c(/) is the bop complexity of / per cycle, while C(f) is the bop complexity
per sample.

- The compute density (in bop/smm2) is c(f)F/A = FDop.

Note that trading area for time at constant gate and compute density is equiv-
alent to keeping F and AT invariant.

Let us examine how various architectures trade size for performance, in prac-
tice. The data from [14] tabulates the area, frequency, and feature size, for
a representative collection of chips from the previous decade: sRAM DRAM
mPROC, FPGA, MUL-

The normalized area A/X2 provides a performance measure that is indepen-
dent of the specific feature size A. It leads [14] to a quantitative assessment of
the gate density for the various chips, fig. 6 and 7.

Unlike [14], we also normalize clock frequency: the product by the operation
density is the normalized compute power. To define the normalized the system
clock frequency </>, we follow [9] and use <j> = l/100r(A), where r(A) is the minimal
inverter delay corresponding to feature size A.

- The non linear formula used for T((1) = cle is taken from [9]: the exponent
e = 1 -e(l) decreases from 1 to 0.9 as I shrinks from 0.3 to 0.03 /urn. The non
linear effect is not yet apparent in the reported data. It will become more
significant with finer feature sizes, and clock frequency will cease to increase
some time before the shrink itself stops.

- The factor 100 leads to normalized clock frequencies whose average value is
0.2 for DRAM, 0.9 for SRAM, 2 for processors and 2 for FPGA.

In the absence of architectural improvement, the normalized gate and compute
density of the same function on two different feature size silicon implementations
should be the same, and this indicates an optimal shrink.

527

FEUP - Faculdade de Engenharia da Universidade do Porto

•> Hz/f • b/Ml2 a b/Mtl2

sRAM dRAM <
-a

10000

1000 '*•• •••
1* »

% • » • • ♦

100 ijj

a ü ^

Feature size: um.

rp #
o- ^

Fig. 6. Performance of various SRAM and DRAM chips, within to a common feature
size technology: normalized clock frequency Hz/<j>; bit density per normalized area
10 A ; binary gate operations per normalized area per normalized clock period l/<j>.

- The normalized performance figures for SRAM chips in fig. 6 are all within
range: from one half to twice the average value.

- The normalized bit density for DRAM chips in the data set is 4.5 times
that of SRAM. Observe in fig. 6 that it has increased over the past decade,
as the result of improvements in the architecture of the memory cell {trench
capacitors). The average normalized speed of DRAM is 4.5 times slower than
SRAM. As a consequence the average normalized compute density of SRAM
equals that of DRAM. The situation is different with SDRAM (last entry in
fig. 6): with the storage density of DRAM and nearly the speed of SRAM, the
normalized compute density of SDRAM is 4 times that of either: a genuine
improvement in memory architecture.

A Field Programmable Gate Array FPGA is a mesh made of programmable
gates and interconnect [17]. The specific function - Boolean or register - of each
gate in the mesh, and the interconnection between the gates, is coded in some
binary bitstream, specific to function f, which must first be downloaded into
the configuration memory of the device. At the end of configuration, the FPGA
switches to user mode: it then computes function /, by operating just as any
regular ASIC would.

The comparative normalized performance figures for various recent micro-
processors and FPGA is found in fig. 7.

- Microprocessors in the survey appear to have maintained their normalized
compute density, by trading lower normalized operation density, for a higher

528

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

• b/Ml2 0 Hz/f * bop /Mtl2

' i «■ mul/Ml2 • bop/Ml2
» mul/Mtl2

100J • •
j • % *

10_: • • • • * • * • • *
* •

• * • * * a

lj
«1

5 .
it i

a a
0

a 1
1 •

s *
9

» • 3 »

! a u a a a

O.q. •
*

* • • * 1

! *
j

* • •

\ t> ** ^ urn 'V <y ^ *t>

microprocesseurs FPGA

Fig. 7. Performance of various microprocessor and FPGA chips from [14], within a
common feature size technology: normalized clock frequency Hz/4>\ normalized bit
density; normalized gate and compute density: for Boolean operations, additions and
multiplication's.

normalized clock frequency, as feature size has shrunk. Only the micropro-
cessors with a built-in multiplier have kept the normalized compute density
constant. If we exclude multipliers, the normalized compute density of mi-
croprocessors has actually decreased through the sample data.

- FPGA have stayed much closer to the model, and normalized performances
do not appear to have changed significantly over the survey (rightmost entry
excluded).

3 Reconfigurable Systems

A Reconfigurable System RS is a standard sequential processor (the host) tightly
coupled to a Programmable Active Memory PAM, through a high bandwidth link.
The PAM is a reconfigurable processor, based on FPGA and SRAM. Through
software configuration, the PAM emulate any specific custom hardware, within
size and speed limits. The host can write into, and read data from the PAM, as
with any memory. Unlike conventional RAM, the PAM processes data between
write and read cycles: it an active memory. The specific processing is determined
by the contents of its configuration memory. The content of configuration mem-
ory can be updated by the host, in a matter of milliseconds: it is programmable.

RS combine the flexibility of software programming to the performance level
of application specific integrated circuits ASIC. As a point in case, consider the
system PI described in [13]. From the abstract ofthat paper:

529

FEUP - Faculdade de Engenharia da Universidade do Porto

We exhibit a dozen applications where PAM technology proves supe-
rior, both in performance and cost, to every other existing technology,
including supercomputers, massively parallel machines, and conventional
custom hardware.

The fields covered include computer arithmetics, cryptography, error
correction, image analysis, stereo vision, video compression, sound syn-
thesis, neural networks, high-energy physics, thermodynamics, biology
and astronomy.

At comparable cost, the computing power virtually available in a
PAM exceeds that of conventional processors by a factor 10 to 1000,
depending on the specific application, in 1992.

RS PI is built from chips available in 92 - SRAM, FPGA and processor. Six long
technology years later, it still holds at least 4 significant absolute speed records
In theory, it is a straightforward matter to port these applications on a state
of the art RS, and enjoy the performance gain from the shrink. In the practical
state of our CAD tools, porting the highly optimized PI designs on oher systems
would require time and skills. On the other hand, it is straightforward to estimate
the performance without doing the actual hardware implementation. We use the
Reconfigurable System P2 [16] - built in 97 - to conceptually implement the
same applications as PI, and compare. The P2 system has 1/4 the physical size
and chip count of PI. Both have roughly the same logical size (4k CLB), so the
applications can be transferred without any redesign. The clock frequency is 66
MHz on P2, and 25MHz on PI (and 33MHz for RSA). So, the applications will
run at least twice faster on P2 than on PI. Of course, if we compare equal size
and cost systems, we have to match PI against 4P2, and the compute power has
been multiplied by at least 8. This is expected by the theory, as the feature size
of chips in PI is twice that of chips in P2.

What has been done [20] is to port and run on recent fast processors, the
software version for some of the original PI applications. That provides us with
a technology update on the respective compute power of RS and processors.

3.1 3D Heat Equation

The fastest reported software for to solving the Heat Equation on a supercom-
puter, is presented in [6]. It is based on the finite differences method. The Heat
Equation can be solved more efficiently on specific hardware structures [7]:

- Start from an initial state - at time tAt - of the discrete temperatures in a
discrete 3D domain, all stored in RAM.

- Move to the next state - at time (t + l)At - by traversing the RAM three
times, along the x, y and z axis.

- On each traversal, the data from the RAM feeds a pipeline of averaging
operators, and the output of the pipeline is stored back in RAM.

Each averaging operator computes the average value (at +af+1)/2 of two consec-
utive samples at and at+1. In order to be able to reduce the precision of internal

530

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Fig. 8. Schematics of a hardware pipeline for solving the Heat equation. It is drawn
with a pipeline depth of 4, and bit width of 4, plus 2 bits for randomized round off.
The actual 1 pipeline is 256 deep, and 16+2 wide. Pipelining registers, which allow the
network to operate at maximum clock frequency, are not indicated here. Neither is the
random bit generator.

531

FEUP ■ Faculdade de Engenharia da Universidade do Porto

temperatures down to 16 bits, it is necessary, when division by two is odd to
distribute that low-order bit randomly between the sample and its neighbor AH
deterministic round-off schemes lead to parasitic effects that can significantly
perturb the result. The pseudo-randomness is generated by a 64-bit linear feed-
back shift-register LFSR. The resulting pipeline is shown in fig. 8. Instead of
being shifted, the least significant sum bit is either delayed or not, based on a
random choice in the LFSR.

PI standing design can accurately simulate the evolution of temperature
over time in a 3D volume, mapped on 5123 discrete points, with arbitrary power
source distributions on the boundaries. In order to reproduce that computation
in real time, it takes a 40,000 MIPS equivalent processing power: 40 G instruc-
tions Per second, on 32Ö data. This is out of the reach of microprocessors, at
least until 2001.

3.2 High Energy Physics

lvrlZfT-iadiati?n Iiw*er ra7,i«partma8uiteofbenchmarfaproposed
by CbRN [12] The goal is to measure the performance of various computer archi-
tectures in order to build the electronics required for the Large Hadron Collider
LHC, soon after the turn of the millennium. Both benchmarks are challenging
and well documented for a wide variety of processing technologies, including
some of the fastest current computers, DSP-based multiprocessors, systolic ar-
rays massively parallel arrays, Reconfigurable Systems, and full custom ASIC
based solutions.

The TRT problem is to find straight lines (particle trajectories) in a noisy
digits black and white image. The rate of images is at 100 kHz; the implied IO
rate close to 200 MB/s, and the low latency requirement (2 images) preclude
any implementation solution other specialized hardware, as shown by [12]

The PI implementation of the TRT is based on the Fast Hough Transform
[10], an algorithm whose hardware implementation trades computation for wiring
complexity. To reproduce the PI performance reported in [12], a 64-bit sequential
processor needs to run at over 1.2 GHz. That is about the amount of compu-
tation one gets, in 1998, with a dual processor, 64-bit machine, at 600 MHz
The required external bandwidth (up to 300 MB/s) is what still keeps such
application out of current microprocessor reach.

3.3 RSA cryptography

The PI design for RSA cryptography combines a number of algorithm tech-

7™£rntld inv!8]- F°r 512-bit k6yS' !t ddiverS a decr^tion rate * excess of 300 kb/s, although it uses only half the logical resources available in Pi
The implementation takes advantage of hardware reconfiguration in many

ways: a rather different design is used for RSA encryption and decryption; a
different hardware modular multiplier is generated for each different prime mod-
ulus: the coefficients of the binary representation of each modulus is hardwired

532

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

into the logical equations of the design. None of these techniques is readily appli-
cable to ASIC implementations, where the same chip must do both encryption
and decryption, for all keys.

As of printing time, this design still holds the acknowledged shortest time
per block of RSA, all digital species included. It is surprising that it has held
five years against other RSA hardware. According to [20], the record will go
to a (soon to be announced) Alpha processor (one 64b multiply per cycle, at
750MHz) running (a modified version of) the original software version in [8]. We
expect the record to be claimed back in the future by a P2 RSA design; yet,
the speedup between PI was lOx reported in 92, and we estimate that it should
be only be 6x on 2P2, in 97. The reason: the fully pipelined multiplier, found
in recent processors, is fully utilized by RSA software. A normalized measure of
the impact of multiplier on theoretical performance can be observed in fig. 7.

For the Heat Equation, the actual performance ratio between PI and the
fastest processor (64b, 250MHz) was lOOx in 92; with 4P2 against the 64b,
750MHz processor, the ratio should be over 200x in 98. Indeed, the computation
in fig. 8 combines 16 b add and shift, with Boolean operations on three low order
bits: software is not efficient, and the multiplier is not used.

4 What will Digital Systems shrink to?

Consider a DS whose function and real time frequency remain fixed, once and
for all. Examples: digital watch, 56kb/s modem and GPS.

How does such DS shrink with feature size?

To answer, start from the first chip (feature size 1) which computes function
/: area A, time T, and clock frequency F. Move in time, and shrink feature
size to 1/2. The design now has area A' = A/A, and the clock frequency doubles
F' = 2F (F' = (2-e)F with non-linear shrink). The number of cycles per sample
remains the same: T" = T. The new design has twice (or 2 - e) the required real
time bandwidth: we can (in theory) further fold space in time: produce a design
C" for computing / within area A" = A'/2 = A/8 and T" = 2T cycles, still
at frequency F" = F' = 2F. The size of any fixed real time DS shrinks very
fast with technology, indeed. At the end of that road, after so many hardware
shrinks, the DS gets implemented in software.

On the other hand, microprocessors, memories and FPGA actually grow in
area, as feature size shrinks. So far, such commodity products have each aimed
at delivering ever more compute power, on one single chip. Indeed, if you look
inside some recent digital device, chances are that you will see mostly three
types of chips: RAM, processor and FPGA. While a specific DS shrinks with
feature size, a general purpose DS gains performance through the shrink, ideally
at constant normalized density.

533

FEUP - Faculdade de Engenharia da Universidade do Porto

4.1 System on a chip

There are compelling reasons for wanting a Digital System to fit on a single chip.
Cost per system is one. Performance is another:

- Off-chip communication is expensive, in area, latency and power. The band-
width available across some on-chip boundary is orders of magnitude that
across the corresponding off-chip boundary.

- If one quadruples the area of a square, the perimeter just doubles. As a
consequence, when feature size shrinks by 1/x, the internal communication
bandwidth grows faster than the external 10 bandwidth: x3"£ against x2~(.
This is true as long as silicon technology remains planar: transistors within
a chip, and chips within a printed circuit board, must all layed out side by
side (not on top of each other).

4.2 Ready to Shrink Architecture

So far, normalized performance density has been maintained, through the suc-
cessive generations of chip architecture.

Can this be sustained in future shrinks?
A dominant consideration is to keep up the system clock frequency F. The

formula for the normalized clock frequency 1/0 = 100r(A) implies that each
combinatorial sub-circuit within the chip must have delay less than lOOx that of
a minimal size inverter. The depth of combinatorial gates that may be traversed
along any path between two registers is limited. The length of combinatorial
paths is limited by wire delays. It follows that only finitely many combinatorial
structures can operate at normalized clock frequency <j>. There is a limit to the
number N of 10 bits to any combinatorial structure which can operate at such a
high frequency. In particular, this applies to combinatorial adders (say N < 256),
multipliers (say TV < 64) and memories.

4.3 Reconfigurable Memory

The use of fast SRAM with small block size is common in microprocessors:
for registers, data and instruction caches. Large and fast current memories are
made of many small monolithic blocks. A recent SDRAM is described in [15]:
1Gb stored as 32 combinatorial blocks of 32Mb each. A 1.6 GB/s bandwidth is
obtained: data is 646 wide at 200MHz.

By the argument from the preceding section, a large N bit memory must
be broken into N/B combinatorial blocks of size B, in order to operate at nor-
malized clock frequency F = <f>. A N bit memory with minimum latency may
be constructed, through recursive decomposition into 4 quad memories, each of
size JV/4 - layed out within one quarter of the chip. The decomposition stops
for N = B, when a block of combinatorial RAM is used. The access latency is
proportional to the depth log(N/B) of the hierarchical decomposition.

A Reconfigurable Memory RM is an array of high speed dense combinatorial
memory blocks. The blocks are connected through a reconfigurable pipelined

534

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

wiring structure. As with FPGA, the RM has a configuration mode, during
which the configuration part of the RM is loaded. In user mode, the RM is some
group of memories, whose specific interconnect and block decomposition is coded
by the configuration. One can trade data width for address depth, from 1 x N
to N/B x B in the extreme cases.

A natural way to design a RM is to imbed blocks of SRAM within a FPGA
structure. In CHESS [19], the atomic SRAM block has size 8 x 256. The SRAM
blocks form a regular pitch matrix within the logic, and it occupies about 30%
of the area. As a consequence, the storage density of CHESS is over 1/3 that
of a monolithic SRAM. This is comparable to the storage density of current
microprocessors; it is much higher than the storage density of FPGA, which rely
(so far) on off-chip memories.

After configuration, the FPGA is a large array of small SRAM: each is used
as LUT - typically LUT4. Yet, most of the configuration memory itself is not ac-
cessible as a computational resource by the application. In most current FPGA,
the process of downloading the configuration is serial, and it writes the entire
configuration memory. In a 0.5x shrink, the download time doubles: 4x bits at
(2-e)x the frequency. As a consequence, the download takes about 20 ms on PI,
and 40 ms on P2.

A more efficient alternative is found in the X6k [17] and CHESS: in config-
uration mode, configuration memory is viewed as a single SRAM by the host
system. This allows for faster complete download. An important feature is the
ability to randomly access the elements of the configuration memory. For the
RSA design, this allows for very fast partial reconfigurations: as we change the
value of the 5126 key which is hardwired into the logical equations, only few of
the configuration bits have to updated. Configuration memory can also be used
as a general-purpose communication channel between the host and the applica-
tion.

4.4 Reconfigurable Arithmetic Array

The normalized gate density of current FPGA is over lOx that of processors,
both for Boolean operations and additions - fig. 7. This is no longer true for
the multiply density, where common FPGA barely meets the multiply density
of processors which recently integrate one (or more) pipelined floating point
multiplier.

The arithmetical density of RS can be raised: MATRIX [DeHon], which is
an array of 8b ALU, with Reconfigurable Interconnect, does better than FPGA.
CHESS is based on 46 ALU, which are packed as the white squares in a chess-
board. It follows that CHESS has an arithmetic density which is near 1/3 that of
custom multipliers. The synchronous registers in CHESS are 46 wide, and they
are found both within ALU and routing network, to as to facilitate high speed
systematic pipelining.

Another feature of CHESS [19], is that each black square in the chessboard
may be used either as a switchbox, or as a memory, based on a local configuration
bit. As a switchbox, it operates on 46 nibbles, which are all routed together. In

535

FEUP - Faculdade de Engenharia da Universidade do Porto

memory mode, it may implement various specialized memories, such as a depth
8 shift register, in place of eight 4b wide synchronous registers. In memory mode,
it can also be used as a 4b in, 4b out 4LUT4. This feature provides CHESS with
a LUT4 density which is as high as for any FPGA.

4.5 Hardware or Software?

In order to implement digital function Y = f(X), start from a specification by a
program in some high level language. Some work is usually required to have the
code match the digital specification, bit per bit - high level languages provide
little support for funny bit formats and operations beneath the word size.

Once done, compile and unwind this code so as to obtain the run-code Cf. It
is the sequence of machine instructions, which a sequential processor executes,
in order to compute output sample Yt from input sample Xt. This computation
is to be repeated indefinitely, for consecutive samples: t=0, 1, For the sake of
simplicity, assume the run-code to be straight-line: each instruction is executed
once in sequence, regardless of individual data values; there is no conditional
branch. In theory, the run-code should be one of minimal length, among all pos-
sible for function /, within some given instruction set. Operations are performed
in sequence through the Arithmetic and Logic Unit ALU of the processor. Inter-
nal memory is used to feed the ALU, and provide (memory-mapped) external
10. For W the data width of the processor, the complexity of so computing f
is W\Cf\ bop per sample. It is greater than the gate complexity G(f). Equality
\cf\ = G{f)/W only happens in ideal cases. In practice, the ratio between the
two can be kept close to one, at least for straight-line code.

The execution of run-code Cf on a processor chip at frequency F computes
function / at the rate of F/C samples per second, with C = \Cf\. The feasibility
of a software implementation of the DS on that processor depends on the real
time requirement Fio - in samples per second.

1. If F/C > Fio> the DS can be implemented on the sequential processor at
hand, through straightforward software.

2. If F/C < Fi0, one needs a more parallel implementation of the digital system.

In case 1, the full computing power - WF in bop/s - of the processor is only used
when F/C = Fio. When that is not the case, say F/C > 2Fio, one can attempt
to trade time for area, by reducing the data width to W/2, while increasing
the code length to 2C: each operation on W bits is replaced by two operations
on W/2 bits, performed in sequence. The invariant is the product CW, which
gives the complexity of / in bop per sample. One can thus find the smallest
processor on which some sequential code for / can be executed within the real
time specification. The end of that road is reached for W = 1: a single bit wide
sequential processor, whose run-code has length proportionnal to G(f).

In case 2, and when one is not far away from meeting the real time require-
ment - say F/C < 8Fio - it is advised to check if code C could be further reduced,
or moved to a wider and faster processor (either existing or soon to come when

536

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

the feature size shrinks again). Failing that software solution, one has to find a
hardware one. A common case mandating a hardware implementation, is when
F ta Fio: the real time external 10 frequency Fio is near the internal clock
frequency F of the chip.

4.6 Dynamic Reconfiguration

We have seen how to fold time in space: from a small design into a larger one,
with more performance. The inverse operation, which folds space in time, is not
always possible: how to fold any bit serial circuit (such as the adder from fig 5)
into a half-size and half-rate structure is not obvious. Known solutions involve
dynamic reconfiguration.

Suppose that function / may be computed on some RS of size 2A, at twice
the real-time frequency F = 2Fio. We need to compute / on a RS of size A at
frequency Fio per sample. One technique, which is commonly used in [13], works
when Y = f(X) = g{h{X)), and both g and h fit within size A.

1. Change the RS configuration to design h.
2. Process N input samples X; store each output sample Z = h(X) in an

external buffer.
3. Change the RS configuration to design g.
4. Process the N samples Z from the buffer, and produce the final output

y = g(z).
5. Go to 1, and process the next batch of N samples.

Reconfiguration takes time R/F, and the time to process N samples is 2(N +
R)/F = (N + R)/Fio. The frequency per sample Fio/(l + R/N) gets close to
real-time Fio, as N gets large. Buffer size and latency are also proportional to N,
and this form of dynamic reconfiguration may only happen at a low frequency.

The opposite situation is found in the ALU of a sequential processor: the op-
eration may change on every cycle. The same holds in dynamically programmable
systems, such as arrays of processors and DPGA [14]. With such a system, one
can reduce by half the number of processors for computing /, by having each
execute twice more code. Note that this is a more efficient way to fold space
in time than previously: no external memory is required, and the latency is not
significantly affected.

The ALU in CHESS is also dynamically programmable. Although no special-
ized memory is provided for storing instructions (unlike DPGA), it is possible
to build specialized dynamically programmed sequential processors, within the
otherwise statically configured CHESS array. Through this feature, one can mod-
ulate the amount of parallelism in the implementation of a function /, in the
range between serial hardware and sequential software, which is not accessible
without dynamic reconfiguration.

5 Conclusion

We expect it to be possible to build Reconfigurable Systems of arbitrary size,
which are fit to shrink: they can exploit all the available silicon, with a high

537

FEW - Faculdade de Engenharia da Universidade do Porto

wh^X™"1 deraands for «-•*»■ k^-»p **.«- -ppi>-

Let us take the conclusion from Carver Mead [9]:

References

11 of SZSi ES; 2£ "■*•»■*■'^ * ^—-, tw.
3.' FCÄL?;7/ttC(,0n ? m/^e™> Addison Wesley, 1980.

(Springer-Verlag), Haifa, Israel, M fsT ^ ^^ °f ICALP

'i^^^^^^^S^ — « VLS! «, IEEE

Stfiben.cr&^u^Sr' ^Lirden' A- SchÜI,er' K- Solchenbach, K.
a survey of iJSS^^w' Ifr^ ^^ °D Parallel «>mputers-
vo.. 3(1), pp. i-75, LaS Press f991 °' ^"^ * **"" "* ***"«**,

VLSI Signal ProcL/ng, V^^^""^ *""» ^ 'ounud of

u^Ä«^ — on

1994 mm- °n CirCUÜS and ™mbers> IEEE Won Computers, 43:8:868-79,

Processing, Vol 12, pp. 21-33 ^mmuMe Act™ M^ry, Journal of VLSI Signal

538

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

16. M. Shand, Pamette, a Reconfigurable System for the PCI Bus, 1998.
http://www.research.digital.com/SRC/pamette/

17. Xilinx, Inc., The Programmable Gate Array Data Book, Xilinx, 2100 Logic Drive,
San Jose, CA 95124 USA, 1998.

18. G. Moore. An Update on Moore's Law, 1998. ,
http://www.intel.com/pressroom/archive/speeches/gem93097.htm

19. Alan Marshall, Tony Stansfield, Jean Vuillemin CHESS: a Dynamically Pro-
grammable Arithmetic Array for Multimedia Processing, Hewlett Packard Labora-
tories, Bristol, 1998.

20. M. Shand. An Update on RSA software performance, private communication, 1998.
21. The millenium bug: how much did it really cost?, your newspaper, 2001.

539

FEUP • Faculdade de Engenharia da Universidade do Porto

540

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

A Method Based on Orthogonal Transformation for
the Design of Optimal Feedforward Network

Architecture

Bachiller P., Perez R.M., Martinez P., Aguilar P.L., Calle J.E.

Department of Computer Sciences. University of Extremadura. Escuela Politecnica. 10071
Cäceres. Spain.

{Pilarb, Rosapere, Pablomar, Paguilar} @unex.es

Abstract. The problem of determining the optimum size of a feedforward
neural network is recognized to be crucial for its practical implications in such
important issues as learning and generalization. Several approaches for
designing optimum size networks have been proposed in the literature, which
consist of training a larger than necessary network and then removing the
unnecessary links and nodes. In this kind of approaches, commonly known as
pruning, before computing the optimum number of links and nodes it is
necessary to train the network and, once they have been identified, the reduce-
size network has to be retrained. In this paper, a direct method to obtain an
optimum size network during its training process is presented. We use
orthogonal transformations for computing the optimum number of nodes on
each iteration of the training process. These transformations lead to a
decorrelation of the information, which is the key of network size reduction.

1 Introduction

The back-propagation algorithm has emerged as one of the most popular for
supervised training neural networks. This algorithm is extremely computation and
storage demanding. An enormous amount of computation has to be spent on training
the network and, in the retrieving phase, high throughputs are required for real-time
processing which hinges on its massively parallel processing capability.

Multiprocessors, array of processors and massively parallel processors provide a
natural solution to the BP algorithm, which can be expressed in basic matrix
operations, such as inner-product, outer-product and matrix multiplications. For
instance, this kind of operations can be mapped to basic processor arrays, systolic or
wavefront arrays. They have the following key advantages:
• The exploitation of pipelining is very natural in regular and locally connected

networks. They yield high throughput and simultaneously save the cost associated
with communication.

• They provide a good balance between computation and communication, which is
critical to the effectiveness of array computing.

541

FEUP - Faculdade de Engenharia da Universidade do Porto

An open question related to neural networks is how to determine the most
appropriate network size for solving an specific task. To be representative, the
network should have an optimum number of links and nodes. Moreover, from an
implementation standpoint, small networks only require limited resources in any
physical computational environment. The network will be overparametrized if the
number of links is very high. In such cases, if the training set of data is not noise-free,
the NN will try to learn the information along with the noise in the data, leading to
poor validation results.

There are several approaches to solve the problem of determining the optimum
size of a neural network. The first approach, called growing algorithm, adds gradually
hidden units to an initial small network until it reaches the convergence [l]-[4]. The
second one, known as pruning, consists of training a larger than necessary network,
then remaining nodes are eliminated and finally the reduced-size network has to be
retrained [5][6].

Pratim Kangilal and Narayan Banerjee [5] have proposed an approach for the
optimization of the size of feedforward neural networks using orthogonal
transformations. They used two orthogonal transformations, the singular value
decomposition (SVD) [7] and the QR with column pivoting factorization (QRcp) [7].
Using SVD, the rank of a matrix can be computed and so the optimum number of
parameters is determined. QRcp coupled with SVD is used for subset selection, which
is the key of the design of optimal networks.

The use of the above orthogonal transformations for the NN size optimization
depends on which nodes (input or hidden nodes) are going to be optimized:
1- Optimum number of input nottes- Let PxN matrix A comprises the input data sets,

where P is the number of sets of data points (training patterns), and N is the
number of inputs. The aim is to determine which of the N features are relatively
redundant and, hence, can be eliminated. Performing SVD on A, the optimum
number of input nodes of the neural network (say L) is determined for the input
data sets. QRcp provides L of the N features, for the P sets of data points, which
are enough for a correct training process.

2- Optimum number of hidden links and nodes- Consider a network, which has been
trained with P input data sets. A PxM matrix B is formed with the M pseudo
outputs of the concerned hidden layer for each of the P input data sets. SVD is
performed on B for determining the enough number of hidden nodes for the given
network. In case of a non-homogeneous network, i.e. when hidden nodes are fed
with different sets of inputs, QRcp transformation is performed on B and the
specific links between the hidden layers to be retained are identified. Once
remaining nodes have been eliminated, the reduced-size network is retrained.
Castellano et al. [6] have developed a pruning algorithm based on the idea of

iteratively removing hidden units of a large trained network and then adjusting the
remaining weights in order to maintain the original input-output behavior.

In the above approaches, it is necessary to train the network before computing the
optimum number of hidden nodes and, once they have been identified, remaining
weights have to be adjusted. In this paper, we propose a method to obtain a network
with optimum number of hidden nodes at the same time as it is trained. It is based on

542

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

computing the optimum number of hidden units on each iteration of the training
process, and then updating only the weights connected to those hidden units.

2 Orthogonal Transformations

In order to compute the optimum size of a feedforward neural network, we apply
orthogonal transformations. An important property of them is that the vector 2-norm,
as well as the matrix 2-norm, and the Frobenius norm, are invariant under the
application of this kind of transformations.

In particular, we use the properties of Householder reflections for computing the
optimum number of hidden nodes on each iteration of the training process of the
network. These transformations are described as follows [7]:

Let v G5H" be nonzero. An nxn matrix P of the form

P = I-2vv7vTv (1)

is called a Householder reflection. The vector v is called a Householder vector.
It can be shown easily that matrix P is symmetric and orthogonal:

• Symmetric:

PT = I - 2(vvT)7vTv = I - 2vv7vTv = P (2)

• Orthogonal:

PTP = I + 4vvTvv7vTvvTv - 4vv7vTv = I (3)

Householder reflections can be used to zero selected components of a vector.
Given a vector 0*x e 9f, if we want Px to be multiple of e, (the first column of the
nxn identity matrix), then, for any x e 9T, v must be defined as follows:

Px = (I - 2vv7vTv)x = x-(2vTx/vTv)v (4)

Setting v=x+ae, gives

vTx = xTx + ax, (5)

vTv = xTx + 2ax, + a2 (6)

If we assume cc=± llxll, (2-norm of the vector x)

v = x ± llxll2e, => Px = (I - 2vv7vTv)x = ± llxll2e, (7)

Given m vectors e 5R" [x,,x, xj, Householder reflections are used to determine
which of them are linearly independent. Firstly, a Householder matrix (//;) to zero the
last n-1 components of x, is calculated. Next, the vector y=Hpc2 is obtained. If
ll)'ll2=lljr,ll2, then x2 is linearly dependent on x,\ otherwise, another Householder matrix
(H2) has to be computed to zero the last n-2 components of v, and matrix H, must be
updated with the product Hßr The vector y' is formed by the / first components of
vector y, where / represents the number of linearly independent vectors obtained on
each step. Now the vector y is obtained by the product of H, and x, and the equality

543

FEUP • Faculdade de Engenharia da Universidade do Porto

lly'll2=ILctll? is proved to determine the correlation degree among xn x2 and xr

Remaining vectors are used of the same way to prove the linear dependencies
between all of them.

For instance, assume that we have three vectors e <R", x,, x2 and x„ and that x, is a
linear combination of x, and x2. In such case, the linear dependency between those
vectors can be observed applying Householder reflections. The first step is to
compute the Householder matrix (//,) that transforms x, into a multiple of er Next,
the vector y=H,x2 is computed. It can be observed that the equality lr/ll2=IUc2ll2' where
y' is the first component of y, doesn't hold due to x, and x2 are linearly independent. A
new Householder reflection is computed in order to zero the last n-2 components of
vector y. To prove the linear dependency of xr x2 and x3, a new vector y2 has to be
obtained by the product Hflpc,. As x, is a linear combination of x, and x2, it can be
expressed as ax,+bx2 (with a and b e SR), so the product Hflpc, can be obtained as
follows:

y, = H,H,x, = H2H,(ax, + bx2) = aH2H,x, + bH2y (8)

y2 = a[c, 0 ... 0]T + b[d, d2 0 ... 0]T= [n, n20 ... 0]T (9)

Equation (9) shows that all the components of y2 are equal to zero, excepting the
two first ones. Since Householder matrices are orthogonal, the equality lly II =lbt,l|
holds. So, if the 2-norm of x, can be computed using only the two first components of
y2, the linear dependency among x,, x2 and x, is verified.

3 The Proposed Optimizing and Training Algorithm

The optimization of the size of a feedforward neural network is a very important issue
of its design, since any network should have an optimum number of links and nodes
to be representative. This aim can be achieved retaining only the most representative
nodes and deleting all the others. The selection process hinges upon the linear
dependency of the nodes. For instance, assume a feedforward neural network with
three nodes on its hidden layer, where the output value for the third hidden node is
linearly dependent on the output values of the rest of the hidden nodes for the set of
training patterns. In such case, the third hidden node could be eliminated due to the
net inputs of the subsequent layer can be obtained using only the first two hidden
nodes.

The method we propose in this paper is based on the idea of determining, on each
iteration of the training process, the number of linearly independent outputs of the
hidden layer, say /, and then updating only the weights of the links connected with the
first / hidden nodes.

In order to compute the optimum number of hidden nodes using Householder
reflections, the N outputs of the concerned hidden layer have to be obtained for each
pattern of the set of training patterns. Thus, P ^-dimensional vectors are formed
containing the outputs at the hidden layer for the input data set, where P represents
the total number of training patterns. After presentation of the first training pattern,

544

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

the first vector x, is obtained and the Householder reflection //, to zero the last N-1
components of this vector is computed. Next, for each pattern i, a new vector r is
composed and it is proved its linear dependency with regards to the i-\ vectors
computed in previous steps.

Assume that L is the number of linearly independent vectors found at the i-th step.
This means that the Householder matrix H computed in previous steps zeroes at least
the last N-L components of each vector of the set [xr ..., *.J. If the new vector xt is
linearly dependent on [xr ..., jr(J, then the product Hxj must be a vector of the form:

Hx, = [n,... nL0...0]T (10)

However, if equation (10) does not hold, matrix H has to be updated using a new
Householder reflection HUI to zero the last N-L-\ components of the vector obtained
in (10). Thus, matrix H must be computed as the product HulH.

3.1 Our Algorithm

Consider a feedforward neural network with TV input nodes, M hidden nodes and O
output nodes and P training patterns. Assume that L is the optimum number of hidden
nodes computed at each iteration of the algorithm, being L equal to M at the
beginning of the first iteration. The proposed optimizing and training algorithm is as
follows:
1) Update the connection weights (vv;.) from the input layer to the hidden layer for
each of the P training patterns, using the back-propagation algorithm:

w, = w, + a I(Spk w,kj)/
,(Netj)x,)i 1 < p < P (11)

where /is the activation function of each neuron;', a is a constant which determines
the learning rate, xin. is the i-th input of the pattern p, Spt is the error of the k-th output
node for the pattern p and w'tJ is the connection weight from the j-th hidden node to
the k-th output node.
Since w'tj is zero for; greater than L, only the weights connected to the first L hidden
nodes will be updated.
2) Compute the number of non-redundant hidden nodes (L) and update the
connection weights from such nodes to the subsequent layer. At the beginning of this
step, L is equal to zero.

2.1) Obtain a vector xf formed by the hidden outputs for the concerned
training pattern (p). Next, a new vector y is computed by the product Hx,,
being MxM matrix H the product of all the Householder reflections
computed at the previous p-\ iterations of this step. At iteration 1, H is the
MxM identity matrix.
2.2) In order to prove if vector xp is linearly dependent on the vectors {x,
*,,.,) formed by the hidden outputs for the previous p-1 training patterns, the
following equation has to be verified:

Hy'll^lbgi, (12)

545

FEUP - Faculdade de Engenharia da Universidade do Porto

where y' is an L-dimensional vector composed by the first L components of
vector)\

If equation (12) holds, then xp is linearly dependent on (x, x,,).
Otherwise, the optimum number of hidden nodes is increased (L=L+J) and
matrix H is updated with the product H'H, where H' is the Householder
matrix that zeroes the last M-L-l components of vector y.
2.3) Update the connection weights (w'jt) from the first L hidden nodes to the
subsequent layer:

w,
Jl = WJk + a(d--yrty(NetJ)ypll (13)

where dfj and yp] are the desired and obtained outputs of the j-th output node
for the pattern p, respectively, and y/it is the output of the k-th hidden node
for such pattern.

2.4) Go to step 2.1 until connection weights of the concerned hidden layer
are updated for all the training patterns.

3) Go to step 1 until the network reaches the convergence.

Remarks of the alsorithm:

1. Network outputs are computed using only the optimum hidden nodes of the
previous algorithm iteration. So, at the beginning of the algorithm, network outputs
are obtained considering M hidden nodes.

2. At step 2.2, it is not necessary to calculate explicitly matrix H' and then compute
the product H'H, since the structure of a Householder reflection can be applied
directly for updating a matrix.

3. The initial number of hidden units depends on the specific problem to solve.
However it will be always less or equal than the number of training patterns.

4. Once the network is trained, the last M-L nodes of the hidden layer can be
eliminated, since its weights to the subsequent layer are zero.

5. In case of a network with more than one hidden layer, once the weights of the first
hidden layer have been updated, step 2 has to be applied again for the subsequent
hidden layers.

3.2 Comparison between the original back-propagation method and our
optimizing and training algorithm

In order to show the performance of our algorithm, we make a comparison in terms of
computational cost between this approach and the original back-propagation
algorithm.

The following table shows the differences on number of operations between both
algorithms assuming an NxMxO neural network, P training patterns and L optimum
hidden nodes.

546

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Table 1. Number of operations at different steps of both, the original back-propagation
algorithm and the optimizing and training algorithm.

Step Back-propagation
Algorithm

Optimizing and Training
Algorithm

Compute Network
Outputs

PxNxM + PxMxO PxNxM + PxLxO

Update Input Layer
Weights

PxNxM PxNxL

Compute Optimum
Number of Hidden Nodes

- PxMxL

Compute Householder
Reflections

- LxMx(M+l)

Update Hidden Layer
Weights

PxMxO PxLxO

Network outputs are obtained applying the following equations:

y/^SwfiXi) l^M (14)
i=i J

M

yk=/dw'jkyV l^k<0 (15)
where y/ are the outputs of the hidden layer, yt are the outputs of the output layer, JC,.

are the network inputs and vv;, and w'Jt are the weights of input and hidden layers,
respectively.

In the original Back-propagation algorithm, M hidden nodes are used to compute
the network outputs for each training pattern, so PxNxM + PxMxO operations are
required. In the optimizing and training algorithm L hidden nodes are only needed to
compute the outputs of the last layer. However the M outputs of the hidden layer have
to be obtained in order to prove equation (12), so this step entails PxNxM + PxLxO
operations for the proposed algorithm.

To compute the optimum number of hidden nodes, it is necessary to verify
equation (12) at each process iteration. Vector y' is obtained by the first L
components of the product Hx, so MxL operations are needed for each iteration at this
step. Since P is the number of iterations, the total number of operations is PxMxL.

If equation (12) does not hold, a new Householder reflection H' is computed and
matrix H has to be updated with the product H'H. Instead of forming explicitly matrix
H' and then computing H'H, which implies a matrix-matrix multiplication, the
structure of//' can be applied directly using the equation:

H'H = (I - 2vvT/vTv)H = H - v(2vTH/vTv) (16)

where v is the Householder vector for the matrix //'.
Thus, a Householder update of a matrix involves a matrix-vector multiplication

followed by an outer product update, which entails Mx(M+l) operations.

547

FEUP - Faculdade de Engenharia da Universidade do Porto

Since L is the optimum number of hidden nodes computed by the algorithm, L
Householder reflections are needed to prove equation (12). Hence, the total number
of operations required on this step is LxMx(M+l).

It should be taken into account that the number of operations of table 1 for the
optimizing and training algorithm is an upper limit of the actual number of
operations. It is due to the optimum number of hidden nodes, at any step of the
process, is always less or equal than L. Moreover, the number of hidden units used on
each process iteration depends on the order of presentation of training patterns, so
establishing a general quantitative comparison between both algorithms is a difficult
task. This evaluation must be done for an specific network application

4 Simulation Results

To test the effectiveness of our algorithm, the chaotic time-series generated by the
Mackey-Glass equation have been studied using three-layer feedforward networks.

A system is said to be chaotic if the evolutionary trajectory of the system is
generated by a deterministic mechanism, but it is very sensitive to the system's initial
condition [8]. Since under certain conditions a chaotic system behaves randomly, the
identification of such system is difficult. Under those conditions, a model capable of
identifying the underlying deterministic mechanism can greatly improve system
performance, predictability and control.

The discrete time representation of the Mackey-Glass equation is given by

x(k+1) - x(k) = ax(k-T)/(1 + xT(k-T)) - ßx(k) (17)

Consider the series generated with a=0.2, ß=0.1, y=10 and T=17. This combination
generates a quasiperiodic time series, where a quasiperiodic process is a linear
combination of several periodic processes.

The objective is to model the Mackey-Glass series to produce ahead predictions.
The Mackey-Glass series {x(k)} can be expressed as

x(k+p) =/(x(k), x(k-T), x(k-2t),..., x(k-(N-])x)) (18)

where p is the prediction time, which is chosen according to the need for long-term or
short-term prediction, and N is generally between four and eight [8] [9]. We have
chosen N=6, so a six-input neural network is considered where x(k), x(k-r), ...,x(k-5t)
are used as the inputs and x(k+p) is used as the output.

Simulation results have been obtained from several neural networks with different
number of hidden units using 300 data sets for training. For each of those neural
networks both, the back-propagation algorithm and the optimizing and training
algorithm, have been applied. When the proposed method is applied, a reduced 6x3x1
network is obtained.

548

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

• Optimizing and
Training Algorithm

■ Back-propagation
Agorithm

20 40 60 80

Initial Number of hidden units

100

Fig. 1. Training length for several networks with different number of hidden nodes

4i
x:

.3
e 2- o

I 1"

♦ Optimizing and
Training Algorithm

—O— Back-propagation
Agorithm

5 10 20 30 40 50 60 70 80 90 100

Initial Number of hidden units

Fig. 2. Iteration length for MG series using networks with different number of hidden units.

Figure 1 and 2 show the training and iteration lengths using different number of
hidden nodes in the proposed and the original back-propagation algorithms. As it can
be seen, although training time increases for large networks in both algorithms, the
optimizing and training method provides better results than the back-propagation
algorithm, even when the optimum number of hidden nodes is near to the initial
number of hidden nodes.

1,5 1

0,5- «www 6x3x1 Network

— • — • Modeled with a
6x20x1 Network

■ v » v

100 200 300 400 500 600

Fig. 3. Mackey-Glass series modeled using 6x20x1 and 6x3x1 networks.

549

FEUP - Faculdade de Engenharia da Universidade do Porto

M 6000

■ Optimizing and
Training Algorithm

-Back-propagation
Agorithm

20 40 60 80

Initial Number of hidden units

Fig. 4. Number of iterations required for the back-propagation algorithm and the proposed
method.

The representation, in figure 3, of the Mackey-Glass series modeled using a
6x20x1 network, trained with the original back-propagation algorithm, and a 6x3x1
network, obtained by means of the proposed method, shows that the performance of
both networks is equally good.

Figure 4 shows the number of iterations required to train the networks. From the
results obtained we can observed that small networks need less number of iterations
than large networks to reach a low mean-squared error (MSE). However the learning
speed depends on many other factors such as weights initialization and learning rate
parameter (a).

5 Conclusions

In this paper a method for training and reducing the size of feedforward neural
networks has been presented. The key idea of this approach consists of iteratively
computing the optimum hidden nodes and then updating only the weights connected
to those nodes. Using this method the retraining process of the reduce-size network is
avoided.

We apply Householder reflections to compute the optimum network size on each
process iteration. These orthogonal transformations lead to a decorrelation of the
network information using few operations, which accelerate the training process.

From experimental results, an improvement on the network training length can be
observed with regards to the original back-propagation algorithm and hence, in
relation to existing pruning approaches.

The proposed algorithm can be expressed in basic matrix operations and so its
implementation can be easily achieved using processor arrays, systolic or wavefront
arrays.

550

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

References

1. S. E. Fahlman and C.Lebiere: The cascade-correlation learning architecture. Advances in
Neural Information Processing, Ed. San Mateo, 1990, pp. 524-432.
2. S. I. Gallant: Optimal linear discriminants. Proc. 8th Int. Conf. Pattern Recognition, Paris,
France, 1986, pp. 849-852.
3. T. Ash: Dynamic node creation in backpropagation networks. Connection Sei., vol. 1, no 4,
1989, pp. 365-375.
4. M. Mezard and J. P. Nadal: Learning in feedforward layered networks: The Tiling
algorithm. J. Phys. A, vol. 22, 1989, pp. 2191-2204.
5. P. Kanjilal and N. Banerjee: On the application of orthogonal transformation for the design
and analysis of feedforward networks. IEEE Transactions on Neural Networks, vol. 5, no. 5,
1995, pp. 1061-1070.
6. G. Castellano, A. M. Fanelli and M. Pelillo: An iterative pruning algorithm for feedforward
neural networks. IEEE Transactions on Neural Networks, vol. 8, no. 3, 1997, pp. 519-531.
7. G. H. Golub and C. F. Van Loan: Matrix computations. Baltimore, MD: John Hopkins Univ.
Press, 1989.
8. M F. Tenorio: Self-organizing network for optimum supervised learning. IEEE Transactions
on Neural Networks, vol. 1, no. 1, 1990, pp. 100-110
9. A. Lapedes and R. Farder: Nonlinear signal processing using neural networks. Los Alamos
National Lab. Tech. Rep. LA-UR-2662, 1987.

551

FEUP - Faculdade de Engenharia da Universidade do Porto

552

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Preprocessor Based Implementation of the
Versatile Advection Code for Workstations,

Vector and Parallel Computers

Gabor Töth

Department of Atomic Physics, Eötvös University,
Puskin u. 5-7, Budapest 1088, Hungary,

gtothQhercules.elte.hu, http://wvw.fys.ruu.nl/"toth

Abstract. The Versatile Advection Code is a single scientific software
package designed and implemented to solve various hydrodynamic and
magnetohydrodynamic problems typical of astrophysical research. It runs
on workstations, and on vector and parallel supercomputers as well. The
versatility for applications is ensured by the Loop Annotation Syntax
preprocessor and the modular design of the software, while portability
to different hardware platforms is achieved by the preprocessors that can
translate the code from Fortran 90 both to High Performance Fortran
and Fortran 77. Performance results are presented for several platforms.

1 Introduction

The Versatile Advection Code (VAC) [1,2] has been developed since 1994 as a
general purpose tool for hydrodynamic and magnetohydrodynamic astrophysical
applications. VAC uses various shock capturing numerical methods [3], explicit,
semi-implicit, or fully implicit time stepping [4,5] on 1, 2, or 3 dimensional
finite volume grids. The software package is complete with 120 pages of manual
written in hypertext, a user interface based on web browsers, and visualization
macros for the most popular visualization softwares. The ever growing number of
users and applications proves that the concept of a single well designed general
purpose scientific software package is a good alternative to the typical specialized
scientific codes.

The most original software solution in VAC is the Loop Annotation Syntax
(LASY) [6], which was developed to provide a compact notation for expressions
occuring in a multidimensional hydrodynamic code independent of the number
of represented spatial dimensions. The other important feature is the modular
design, which allows VAC to solve different equations with different methods, and
lets the user add extra terms in the equations, define special initial and boundary
conditions, or specify non-default input/output data format by writing a few well
specified subroutines.

VAC is designed from the beginning to run on workstations, where most sci-
entists do their simulations, and on vector and parallel supercomputers, required
for big 2D and 3D simulations, as well. The source code, after it is translated

553

FEUP - Faculdade de Engenharia da Universidade do Porto

from the LASY notation, uses Fortran 90 (F90) array syntax and High Per-
formance Fortran (HPF) style FORALL statements for all the expressions that
operate on the whole computational grid. Thus it is easy to add HPF compiler
directives in an automated fashion and run the code on a parallel machine under
HPF. It is also trivial to translate the FORALL statements back to ordinary DO
loops for a Fortran 90 compiler on a non-parallel machine.

Although Fortran 90 is becoming available on most scientific computing fa-
cilities, it is still necessary to be able to translate the source code to Fortran 77
(F77). A simple translator program is implemented to carry out this task for
the limited number of language constructs that are used from the rich Fortran
90 language. Not using all the features of F90 is a restriction for the developer,
but it is beneficial for the users, who are more familiar with the simpler F77 lan-
guage, and for the compilers, which usually do a better job on simpler program
constructs.

2 Preprocessors

The use of the preprocessors can be best demonstrated on a small piece of code.
The purpose of the gradient subroutine is simple: calculate the gradient gradq
of the quantity q in direction idir within a rectangle, defined by ix"L indices.
From the actual, more general, subroutine used in VAC, I extracted the part
which is valid for Cartesian grids and uses central differences. The subroutine is
shown in Figure 1.

subroutine gradient(q,ix"L,idir,gradq)

include 'vacdef.f90' '
double precision:: q(ixG"T),gradq(ixG"T)
integer:: ix"L,idir,jx*L,hx"L

!SHIFT
jx-L=ix-L+kr(idir,"D);
!SHIFT MORE
hx-L=ix"L-kr(idir,-D);
•SHIFT BEGIN

gradq(ix-S)=0.5D0*(q(jx-S)-q(hx-S))/dx(ix-S,idir)
!SHIFT END

return
end

Fig. 1. Example source code with LASY.

The mcluded vacdef .f90 file declares the global parameters and variables
The array dimensions ixG"T, the grid spacing dx(ixG-T,ndim), and the Kro-
necker delta array kr(3,3), which is used to shift indices in a certain direction

554

VECPAR '98 ■ 3rd International Meeting on Vector and Parallel Processing

are all declared and initialized before this subroutine is called. The meaning of
the LASY patterns starting with the special character * is briefly the following:
*D stands for dimensions, *L for limits, "S for array segments, and "T for the to-
tal size of arrays. The VAC Preprocessor (VACPP) substitutes the patterns with
substitute strings, whose number depends on the number of spatial dimensions,
which is a parameter for VACPP. The preprocessor not only replaces the pat-
terns with their substitute strings, but it also repeats the source code attached
to the pattern, and the repetitions are separated appropriately. The detailed
rules of LASY are described in [6], here I simply show the code translated to 2
dimensions in Figure 2.

subroutine gradient(q,izminl,ixmin2,ixmaxl,ixmax2,idir,gradq)

include 'vacdef.f90'
integer:: ixminl,ixmin2,ixmaxl,ixmax2,idir,ft

jxminl,jxmin2,jxmax1,jxmax2,hxminl,hxmin2,hxmax1,hxmax2
double precision:: q(ixGlol:ixGhil,ixGlo2:ixGhi2),k

gradq(ixGlol:ixGhil,ixGlo2:ixGhi2)

!SHIFT
jxminl=ixminl+kr(idir,l);jxmin2=ixmin2+kr(idir,2);
jxmaxl=ixmaxl+kr(idir,l);jxmax2=ixmax2+kr(idir,2);
!SHIFT MORE
hxrninl=ixminl-kr(idir,l);hxmin2=ixmi n2-kr(idir,2);
hxmaxl=ixmaxl-kr(idir,l);hxmax2=ixmax2-kr(idir,2);
!SHIFT BEGIN
gradq(ixminl:ixmaxl,ixmin2:ixmax2)=0.5D0*ft

(qCjxminl:jxmaxl,jxmin2:jxmax2)&
-q(hxminl:hxmaxl,hxmin2:hxmax2))&
/dx(ixminl:ixmaxl,ixmin2:ixmax2,idir)

!SHIFT END

return
end

Fig. 2. Source code translated to Fortran 90 for 2 spatial dimensions.

It is quite easy to imagine what the 1 or 3 dimensional versions would look
like. Clearly, the LASY notation is not only more general, but also more compact
than the translated F90 source code. The VACPP preprocessor is implemented
as the vacpp.pl Perl script.

In case the user has no F90 compiler available, the Fortran 90 source is
further translated to Fortran 77 by the f90tof77 Perl script. The translation
changes the free source format to fixed one, and replaces the array syntax by
do loops. The f90tof77 script can also deal with the differences between F90

555

FEUP ■ Faculdade de Engenharia da Universidade do Porto

subroutine gradient(q,ixminl,ixmin2,ixmaxl,ixmax2,idir,gradq)

include 'vacdef.f
integer ixminl,ixmin2,ixmaxl,ixmax2,idir,

& j^inl,jxnun2 Jxmaxl Jxmau2,hxminl,hxmin2,hxmaxl,hxmax2
double precision q(ixGlol:ixGhil,ixGlo2:ixGhi2),

& gradq(ixGlol:ixGhil,ixGlo2:ixGM2)

»SHIFT
jxminl=ixminl+kr(idir,l)
jxmin2=ixmin2+kr(idir,2)
jxmaxl=ixmaxl+kr(idir,1)
jxmax2=ixmax2+kr(idir,2)

♦SHIFT MORE
hxminl=ixminl-kr(idir,l)
hxmin2=ixmin2-kr(idir,2)
hxmaxl=ixmaxl-kr(idir,1)
hxmax2=ixmax2-kr(idir,2)

»SHIFT BEGIN

do ix_2=ixmin2,ixmax2
do ix_l=ixminl,ixmaxl

gradq(ix_l, ix.2) =0. 5D0*

& (q(ix_l+(jxminl-ixminl),ix.2+(jxmin2-ixmin2))
& -q(ix-l+(hxminl-ixminl),ix.2+(hxmin2-ixmin2)))
& /dx(ix.l,ix.2,idir)
enddo
enddo

»SHIFT END

return
end

Fig. 3. Source code further translated to Fortran 77.

556

VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing

and F77 regarding the variable declaration, and it can translate some functions
like sum, product, maxval, minval, any, all, which operate on arrays and
return scalars. The where, forall, case constructs can also be translated.
Other features of Fortran 90, like dynamic allocation, modules, array valued
functions, pointers, structures, etc. are not used in VAC, and cannot be trans-
lated by f90tof77, which is a short and simple program. The gradient subroutine
in 2 dimensions and in F77 is shown in Figure 3. The loop variables ix.l, ix_2
are declared in the included file.

subroutine gradient(q,ixminl,izmin2,ixmaxl,ixmax2,idir,gradq)

include 'vacdef.hpf'
integer:: ixminl,ixmin2,ixmaxl,ixmax2,idir,ft

jxminl,jxmin2,jxmaxl,jxmax2.hxminl,hxmin2.hxmaxl,hxmax2
double precision:: q(ixGlol:ixGhil,ixGlo2:ixGhi2),ft

gradqdxGlol:ixGhil,ixGlo2:ixGhi2)
!HPF$ DISTRIBUTE q(BL0CK,*) ONTO PP
!HPF$ DISTRIBUTE gradq(BL0CK,*) ONTO PP

(SHIFT

jxminl=ixminl+kr(idir,l);jxmin2=ixmin2+kr(idir,2);
jxmaxl=ixmaxl+kr(idir,l);jxmax2=ixmax2+kr(idir,2);
!SHIFT MORE

hxminl=ixminl-kr(idir,l);hxmin2=ixmin2-kr(idir,2);
hxmaxl=ixmaxl-kr(idir,l);hxmax2=ixmax2-kr(idir,2);
!SHIFT BEGIN

IF (hxminl==ixminl-l.and.hxmin2==ixmin2.and.ft
jxminl==ixminl+l.and.jxmin2==ixmin2) THEN

gradq(ixminl:ixmax1,ixmin2:ixmax2)=0.5D0*ft
(q(ixminl+l:ixmaxl+1,ixmin2:ixmax2)ft
-q(ixminl-l:ixmaxl-1,ixmin2:ixmax2))ft
/dx(ixmin1:ixmax1,ixmin2:ixmax2,idir)

ELSE IF(hxminl==ixminl.and.hxmin2==ixmin2-1.and.ft
jxminl==ixminl.and.jxmin2==ixmin2+l) THEN

gradqCixminl:ixmaxl,ixmin2:ixmax2)=0.5D0*&
(qCixminl:ixmaxl,ixmin2+l:ixmax2+l)ft
-qdxminl: ixmaxl, ixmin2-l: ixmax2-l))ft
/dx(ixminl:ixmax1,ixmin2:ixmax2,idir)

ELSE

stop "SHIFT did not optimize!'
ENDIF
!SHIFT END

return
end

Fig. 4. Source code with HPF directives and optimized index shifts.

557

FEUP - Faculdade de Engenharia da Universidade do Porto

The f90tohpf script inserts the HPF directives into the Fortran 90 source
code automatically. All arrays defined on the full grid are declared with the
ixGlolrixGhil,... index limits, and they can be distributed among the pro-
cessors according to the parameters given to f90tohpf. On different parallel ar-
chitectures and/or for different problem sizes, different distributions may be
optimal. The automatic insertion of the directives makes it extremely simple to,
e.g., change a (BLOCK,BLOCK) distribution to (BLOCK,*) or (*,BLOCK).

Unfortunately, HPF compilers are not as mature as F77 or F90 compilers.
Several HPF compiler bugs were found while VAC was tested on parallel comput-
ers. Due to the simplicity of the source code, there were relatively few problems,
and they could be avoided relatively easily. Even if the code compiles and runs
correctly, the performance can be very poor if the HPF compiler does not rec-
ognize the simple shift operations in the gradient subroutine and elsewhere
in the source. The general global communication is much slower than the fast
specialized shifts, which are supported by the hardware and the communication
libraries of most parallel computers. To help the compiler, the VAC preproces-
sor can replace the general shift statement marked with the ! SHIFT comments,
with shifts in specific directions placed in the appropriate branches of an if,'
else if construct. The resulting code, shown in Figure 4, is longer and more
difficult to read, but it usually compiles to a faster code under HPF. The phys-
ical layout of processors PP is defined in the include file. When only one spa-
tial dimension is distributed, one can use the HPF directive !HPF$ PROCESSORS
PP (NUMBER_0F_PR0CESS0RS ()).

The code can also be translated to Connection Machine Fortran (CMFortran)
with the f 90tocmf script. Unfortunately the CM Fortran compiler recognizes
index shifts for a very limited type of syntax, thus communication is not optimal
without rewriting the critical shifts by hand. In principle, one could automate
this optimization, but, since CM Fortran is disappearing from the scene, there
is little motivation to write the necessary Perl script.

3 Results and Conclusions

VAC is being used by approximately 25 researchers, mostly astrophysicists. Most
applications are hydrodynamic and magnetohydrodynamic simulations, but VAC
is also used as a test suite for different numerical methods. Most users have access
to powerful workstations, thus the code has been tested and used on DEC, SUN,
IBM, SGI, HP workstations, and even on Pentium PC-s under LINUX.

Due to the simplicity of the loops, which is implied by the F90 array syntax,
the code vectorizes very well. On a single node of the traditional vector super-
computer Cray C90, VAC runs about 23 times faster than on a DEC Alpha/400
workstation, while the ratio is 4.2 for the J90. These measurements were done
for a specific problem [7], but the speed ratios are typical for all timings tried so
far.

VAC has also been tested on the IBM SP, Cray T3E, Cray T3D, and Con-
nection Machine 5 (CM5) parallel machines, and on a cluster of workstations,

558

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

under different HPF compilers [8,7]. The scaling is close to linear up to 8 pro-
cessors on the IBM SP and on the Cray T3E for a rather moderate and fixed
problem size, which proves that good scaling is possible under HPF even for a
code as complex as VAC. The single node performance is a factor of 5.2 and
1.7 improvement relative to the DEC Alpha/400 workstation for the SP and the
T3E machines, respectively. On a 16-node CM5, after optimizing the array shift
operations by hand, the code runs about 15 times faster than on the DEC Alpha.
VAC was tested on a cluster of workstations as well. The code compiled and ran
successfully, but the multiuser environment did not allow for meaningful timing.

The Versatile Advection Code proves that it is possible to write one source
code for several different applications and computer platforms with the aid of
simple but powerful preprocessor and translator programs. All the preprocessor
programs, vacpp.pl, f90tof77, f90tohpf, f90tocmf, forall2do, are im-
plemented in Perl, which is a free software, and is installed on almost all scien-
tific computers. Actually, the preprocessing step and the final compilation can
be done on different computers if necessary.

Currently we are working on the HPF compatible implementation of the
implicit time stepping module. As a first step the Poisson solver using Conjugate
Gradient type iterative schemes (CG and BiCGSTAB), originally implemented
in F77, has been rewritten to the LASY notation and now it runs successfully
on parallel machines with HPF. The next step involves rewriting and testing
the preconditioner [9] for the block penta- and heptadiagonal Jacobian matrices
that arise in implicit time stepping schemes.

Acknowledgement. This work was performed as part of the project on 'Paral-
lel Computational Magneto-Fluid Dynamics', funded by the Dutch Scientific Research
Foundation (NWO) Priority Program on Massively Parallel Computing. It was spon-
sored by the Dutch National Computing Facilities Foundation (NCF) for the use of
supercomputer facilities. The author receives a postdoctoral fellowship (D 25519) from
the Hungarian Science Foundation (OTKA), and is supported by the OTKA grant
F 017313. Collaboration on testing the code with R. Keppens, P. Meyer, and E. van
der Zalm is gratefully acknowledged. The author also thanks the Astronomical Institute
at Utrecht for its hospitality.

References

1. Töth, G.: A general code for modeling MHD flows on parallel computers: Versatile
Advection Code, Astrophys. Lett. k. Comm. 34 (1996) 245-250

2. Töth G.: Versatile Advection Code, in Proceedings of High Performance Computing
and Networking Europe 1997, Lecture Notes in Computer Science, 1225, edited by
B. Hertzberger and P. Sloot (Springer-Verlag, 1997), p. 253-262

3. Töth, G., Odstrcil, D.: Comparison of some Flux Corrected Transport and Total
Variation Diminishing Numerical Schemes for Hydrodynamic and Magnetohydro-
dynamic Problems. J. Comput. Phys. 128 (1996) 82-100

4. Keppens, R., Töth, G., Botchev, M. A., van der Ploeg, A.: Implicit and Semi-Implicit
Schemes in the Versatile Advection Code: algorithms, submitted for publication to
the Int. J. Num. Meth. in Fluids (1997)

559

FEUP - Faculdade de Engenharia da Universidade do Porto

5. Töth, G., Keppens, R., Botchev, M. A.: Implicit and semi-implicit schemes in the
Versatile Advection Code: numerical tests, Astron. & Astroph. 332 (1998) 1159-
1170

6. Toth, G.: The LASY Preprocessor and its Application to General Multi-Dimensional
Codes, J. Comput. Phys. 138 (1997) 981-990

7. Töth G., Keppens R.: Comparison of Different Computer Platforms for Running
the Versatile Advection Code, in Proceedings of High Performance Computing and
Networking Europe 1998, Lecture Notes in Computer Science, 1401, edited by P.
Sloot, M. Bubak, and B. Hertzberger (Springer-Verlag, 1998), p. 368-376

8. Keppens, R. and Töth, G.: Simulating Magnetized Plasma with the Versatile Ad-
vection Code, in this volume of proceedings (1998)

9. van der Ploeg, A., Keppens, R, Töth, G.: Block Incomplete LU-preconditioners for
Implicit Solution of Advection Dominated Problems, in Proceedings of High Perfor-
mance Computing and Networking Europe 1997, Lecture Notes in Computer Science,
1225, edited by B. Hertzberger and P. Sloot (Springer-Verlag, 1997), p. 421-430

560

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

A Parallel N-Body Integrator Using MPI

Nuno Sidonio Andrade Pereira *

Politechnical Institute of Beja, School of Technology and Management
Largo de Säo Joäo, n° 16, 1° Esq. C e D, 7800 Beja, Portugal

Abstract. The study of the astrophysical N-body problem requires the
use of numerical integration to solve a system of 6N first-order differen-
tial equations. The particle-particle codes (PP) using direct summation
methods are a good example of algorithms where parallelization can
speed up the computation in an efficient way. For this purpose, a serial
version of the PP code NNEWTON developed by the author was par-
allelized using the MPI library and tested on the CRAY-T3D at the
EPCC. The results of the parallel code here presented show very good
efficiency and scaling, up to 128 processors and for systems up to 16384
particles.

1 Introduction

We begin by an introduction to the Astrophysical N-body problem and the math-
ematical models used in our work. We also present an overview of particle simu-
lation methods, and discuss the implementation of a direct summation method:
the PP algorithm. A parallel version of this algorithm as well as the perform-
ance analysis are presented. Finally, the conclusions regarding the discussion of
results are offered.

2 The Astrophysical N-Body Problem

The gravitational N-body problem refers to a system of interacting bodies
through their mutual gravitational attraction, confined to a delimited region
of space. In the universe we can select systems of bodies according to the ob-
servation scale. For instance, we can consider the Solar System with Ar = 10
(a restricted model: Sun + 9 planets). Increasing the observation scale, we have
systems like open clusters (systems of young stars with typical ages of the order
of 108 years, and N ~ 102 - 103), globular clusters (systems of old stars with
ages of 12-15 billion years, extremely compact and spherically symmetric with
N ~ 104 - 106), and galaxies (TV ~ 1010 - 1012). On the other extreme of our
scale, on a cosmological scale, we have clusters of galaxies and superclusters.
If we want to consider the whole universe, the total number of galaxies in the
observable part is estimated to be of the order of 109 (see [2], [18], and [9]).

* This work was supported by EPCC/TRACS under Grant ERB-FMGE-CT95-0051
and partly supported by PRAXIS XXI under GRANT BM/594/94.

561

FEUP - Faculdade de Engenharia da Universidade do Porto

In our work we are interested in the dynamics of systems with N up to the
order of 104 (open clusters and small globular clusters).

2.1 The Mathematical Model

In our mathematical model of the physical system each body is considered as a
mass point (hereafter refered to as particle) characterized by a mass, a position,
and a velocity. We also define an inertial cartesian coordinate system, suitably
chosen in three-dimensional Euclidean space, and an independent variable t, the
absolute time of Newtonian mechanics.

The state of the system is denned by the set Sjy of 37V parameters: the
masses, positions, and velocities of all particles. Hence:

<SN = {(mi,ri,Ti),i = l,...,N}, (i)

where r* and T{ are the position and velocity vector of particle i, respectively.

Comments. The physical state of the system can be represented as a point in a
6/V-dimensional phase-space with coordinates {TI,...,TN,TU...,TN) (see [3]).
However, we will use this representation of the system which is more suitable for
the discussion of the parallelization of the N-body integrator, on Sect. 3.3.

The force exerted by particle j on particle i is given by Newton's Law of
Gravity:

Fij = -Gmimjw±^li^, (2)

and the total force acting on particle i is
I r« ~ rj

N
F«= E *v (3)

The right-hand side of equation (3) represents the contribution of the other TV-1
particles to the total force.

We can now write the equations of motion of particle i:

1 r, ri = —Ft- (4) rrii v*>

Defining vk = rt we can write the system of 6/V first-order differential equations:

ii=Vi>*i=Z^Fi (5)

with i = 1,...,N. The evolution of the N-body system is determined by the
solution of this system of differential equations with initial conditions (1).

For systems with N = 2, the two-body problem known as the Kepler prob-
lem, (e.g. the Earth-Moon system) the equations of motion (5) can be solved
analytically. However, for the general N(>2)-body problem that is not the case

562

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

(see [3]), and we must use numerical methods to solve the system of differen-
tial equations. In Sect. 3 we will discuss the problem of numerical integration of
N-body systems.

In every mathematical model of a physical system there is always the prob-
lem of the validity of the model, that is, how suitable the model is to describe
the physics of the system. In our case we are representing bodies with finite
and, in general, different sizes by material points: bodies endowed with mass,
but no extension. The physics of the interior of the bodies is not taken into
account. However, for dynamical studies this model has proven to be suitable,
and has been used to study the evolution of clusters of stars, galaxies, and the
development of strutures in single galaxies (see [9]).

2.2 Exponential Instabilities in N-body Systems

The initial motivation of this work was the study of the exponential instability
is self-gravitating N-body systems (see [16]). In this problem we are interested
in the growth of a pertubation in one or more components of the system. For a
given system of TV particles we consider the set

S°N = {(mi,r°,r°),i = l,...,N} (6)

of initial conditions (at time t = t0), and define the set of perturbed initial
conditions:

AS°N = {(mi,Ar°i,Ar0
i),i = l,...,N} (7)

where Ar? and AT° are the position and the velocity perturbation vectors for
the initial conditions. To evaluate the growth of the perturbations we must solve
the system of 37V second-order differential equations (see [6] and nsap):

N

Ari = - £ {(AruAv^TuTi) ™j (8)
;=ij*i "ri Tj

with i = 1,.. .,7V, and

fiAr^Ar^Tj) = An - A^ - 3(An - dr^.fa - r,) *' *'M2- (9)
II Ti ~ Tj II

Defining Avi = Aii we can rewrite (8) in the form:

N

Aii = AvilAvi = - Y, f^^r^.rO.. mj (10)

with i = 1,...,N, Ar{ = (Axi,Ayi,Azi), and A\t = {AxuAyuAii). This
system of 67V first-order differential equations, the variational equations, must
be solved together with equations (5).

We now define several metrics as functions of the components of the perturb-
ation vectors (see [6] and [16]):

Z\i? =. max Hziiil+ 1^1 + 1^1) (11)
2=1, ...,jV

563

FEUP - Faculdade de Engenharia da Universidade do Porto

1 N

<AR>=NY,UAxi\ + \AVi\ + \A*i\) (12)
t=i

for the pertubations in the position vectors, and

AV = maxi=1 N(\A±i\ + \Ayt\ + |Az,-|) (13)

1 N

(14)
i=l

for the pertubations in the velocity vectors. Each metric is evaluated for each
time step of the numerical integration of equations (5) and (10).

The analysis of the quantities given by equations (11), (12), (13), and (14)
is very important to understand some aspects of the dynamical behavior of
N-body systems (see [8], [10], [11], and [13]). In particular, we are interested in
the relation between collisions and the growth of perturbations. The collisions
between bodies are an important mechanism in the evolution of systems like
open clusters and globular clusters (see [2] and [9]).

3 Numerical Simulation of N-Body Systems

In this section, we will briefly discuss the use of particle methods to solve the
N-body problem with special attention to the direct summation method: the PP
method (see [9], for an excellent and detailed presentation of these methods).
We present a serial version of the PP method and discuss a parallel version of
that method.

3.1 Overview of Particle Simulation Methods

Particle methods is the designation of a class of simulation methods in which the
physical phenomena are represented by particles with certain attributes (such
as mass, position, and velocity), interacting according to some physical law that
determines the evolution of the system. In most cases we can establish a direct
relation between the computational particles and the physical particles. In our
work each computational particle is the numerical representation of one phys-
ical particle. However, in simulations of physical systems with large N, such as
galaxies of 1011 to 1012 stars, each computational particle is a superparticle with
the mass of approximately 106 stars.

We will now discuss the three principal types of particle simulation meth-
ods: a direct summation method, a particle-in-cell (PIC) method, and a hybrid
method.

The Particle-Particle Method (PP). This is a direct summation method:
the total force on the ith particle is the sum of the interactions with each other
particles of the system. To determined the evolution of a N-body system we
consider the interaction of every pair of particles, that is, N{N - 1) pairs (i,j),
with i,j = 1,...,N A i ^ j. The numerical effort (number of floating-point
operations) is observed to be proportional to TV2.

564

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

The Particle-Mesh Method (PM). This is a particle-in-cell method: the
physical space is discretized by a regular mesh where a density function is defined
according to the attributes of the particles (e.g. mass density for a self-gravitating
N-body system). Solving a Poisson equation on the mesh, the forces at particle
positions are then determined by interpolation on the array of mesh-defined
values. The numerical effort is observed to be proportional to N. The gain in
speed is obtained at the cost of loss of spatial resolution. This is particularly
important for the simulation of N-body systems if we are interested in exact
orbits.

The Particle-Particle-Particle-Mesh Method (P3M). This is a hybrid
method: the interaction between one particle and the rest of the system is de-
termined considering a short-range contribution (evaluated by the PP method)
and a long-range contribution (evaluated by the PM method). The numerical
effort is observed to be also proportional to N, as in the PM method. The advant-
age of this method over the PM method is that it can represent close encounters
as accurately as the PP method. On the other hand the P3M method calculates
long-range forces as fast as the PM method.

Comments. We base the choice of method according to the physics of the system
under investigation. For our work we use the PP method: we are interested in
simulating clusters of stars where collisions are important and, therefore, spatial
resolution is important. On the other hand, for the values of N used in some of
our simulations (N ~ 16 - 1024) the use of a direct summation method has the
advantage of providing forces that are as accurate as the arithmetic precision of
the computer.

3.2 The PP Serial Algorithm

In our previous work (see [16]) we have implemented the PP method using
FORTRAN 77. Several programs were writen (the NNEWTON codes) but only
two versions are considered here: a PP integrator of the equations of motion,
and a PP integrator of the equations of motion + variational equations. These
two versions use a softened point-mass potential, that is, the force of interaction
between two particles i and j is defined as (see [1], [2], and [9]):

Fij = -Gm^||(rj_^-^2||3/2. (15)

The parameter e is often called the softening parameter and is introduced to
avoid numerical problems during the integration of close encounters between
particles: as the distance between particles becomes smaller the force changes
as 1/ || Ti - Tj ||2 in equation (2) and extremely small time steps must be used
in order to control the local error of truncation of the numerical integrator. The
softening parameter will prevent the force to go to infinity for zero distance
causing overflow errors.

565

FEUP - Faculdade de Engenharia da Universidade do Porto

3.3 The PP Parallel Algorithm (P-PP)

The PP method has been used to implement parallel versions of N-body integ-
rators by several authors (see [14], for instance). Having this in mind, our first
goal was to write a simple algorithm with good load-balance: each processor
should perform the same amount of computations. On the other hand, the al-
gorithm should be able to take advantage of an increased number of processors
(scalability).

In our algorithm the global task is the integration of the system of equations
(5), for N particles, and the sub-tasks are the integration of sub-sets SN of
Nk particles, with k = 0,...,p, where P = p + 1 is the number of available
processors. The parallel algorithm implements a single program multiple data
(SPMD) programming model: each sub-task is executed by the same program
operating on different data (the sub-sets SNk of particles).

The diagram in figure 1 shows the structure of the parallel algorithm and the
main communication operations. The data are initially read from a file by one
processor and a broadcast communication operation is performed to share the
initial configuration of the system between every available processor. To each
processor (k) is then assigned the integration of a sub-set SNk of particles The
global time step is also determined by a global communication operation, and
at the end of each time iteration the new configuration of the particles (in each
sub-set Sffk) is shared between all processors.

The load-balance problem is completely avoided in this algorithm since each
processor is responsible for the same number of particles. The defined sub-sets
of particles are such that

p P

£#(SivJ = ;£>* = # (16)
k=0 fc=o

and

Ni = Njt i,j = 0,...,p.

4 Implementation of the Parallel Algorithm

4.1 The Message Passing Model

The implementation of the P-PP algorithm was done in the framework of the
message passing model (see [5] and [7]). In this model we consider a set of
processes (each identified with a unique name) that have only local memory but
are able to communicate with other processes by sending and receiving messages.

Most of the message passing systems implement a SPMD programming model:
each process executes the same program but operates on different data. However
the message passing model does not preclude the dynamic creation of processes,'
the execution of multiple processes per processor, or the execution of different
programs by different processes.

566

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Initialization
PEr PE, Section PEp

Broadcast System Configuration

Definition of sub-sets SNk of particles

Loop Section

time=t Np

Definition of global time step: hinin
-

SN» SN,
time=t+hmin SNP

< ' —■>

New configuration of the system is shared

Fig. 1. The diagram shows the structure of the parallel algorithm and the main com-
munication operations: broadcasting the initial configuration of the system to all pro-
cessors, determination of the global time step and the global communication between
processors to share the new configuration of the system after one time step. Each pro-
cessor PEk, (k = 0, ...p) is responsible for the integration of its sub-set Snk. of particles.

For our work, this model has one important advantage: it fits well on separate
processors connected by a communication network, thus allowing the use of a
supercomputer as well as a network of workstations.

4.2 The MPI Library

To implemented the parallel algorithm the Message Passing Interface (MPI)
library (see [5]-[12]) was chosen for the following reasons:

- source-code portability and efficient implementations across a range of ar-
chitectures are available,

- functionality and support for heterogeneous parallel architectures.

Using the MPI library was possible to develop a parallel code that runs on a
parallel supercomputer like the Cray-T3D and on a cluster of workstations. On

567

FEUP - Faculdaete de EHgenharia da UtliMersldade do Porto

the other hand, from the programming point of view is Very simple to implemeht
a message passing algorithm Using the library functions.

t

4.3 Analysia at the MPI iniplemfetttatlon

The UP I implementation bf the P-PP algorithm was possible with the use
^«^„i^f °Vibmry ^hctions- Twö ve«iotts of the codes writen in
FORTRAN 77, the ftNSWTOff Codes, (see [16]) wete parallelized using the
following functions (see [7]):

Initialization

1. MPLItilt: Initializes the MPf execution environment.
2. MPLCüM.StZ£i Determines the huhiber of processors.
3. MPLCOMMJtANk: Determines the identifier of a processor.

Data Structures! Special data structures were defined containing the system
configuration.

4. MPl_tYPE.£XtENf! ketürhs the size of a datatype.
5. MPljrYPfc_sTRüCf: Creates a structure datatype.
6. MPt.TYPE.COtfMit: Commits a hew datatype to the system,
7. MPl-TYPEJttfcfe: Frees a nti lohger heeded datatype.

Communication! One bf the processes broadcasts the system configuration
to all bther processores.

8. MPI.BCAST: Broadcasts a message from processor With rank "root" to all
other processors of the group.

Global Operations: Used to compute the global time step, and to share the
system configuration between processors after one iteration.

9. MPI.ALLREDUCE: Combines values from all processors and distribute the res-
ult back to all processors.

10. MPI_ALL.GATHERV: Gathers data from all processors and deliver it to all.

Finalization

11. MPI_FINALIZE: Terminates MPI execution environment.

Sii:;

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

5 Performance Analysis

To analyse the performance of a parallel program several metrics can be con-
sidered depending on what characteristic we want to evaluate. In this work we
are interested in studying the scalability of the P-PP algorithm, that is, how
effectively it can use an increased number of processors. The metrics we used to
evaluate the performance are functions of the program execution time (T), the
problem size (TV, number of particles), and processor count (P). In this section
we will define the metrics (as in [5] and [14]) and discuss their application.

5.1 Metrics of Performance

We will consider three metrics for performance evaluation: execution time, rel-
ative efficiency, and relative speedup.

Definition 1. The execution time of a parallel program is the time that elapses
from when the first processor starts executing on the program to when the last
completes execution.

The execution time is actually the sum over the number of processors of
three distinct times: computation time (during which the processor is performing
calculations), communication time (time spent sending and receiving messages),
and idle time (the processor is idle due to lack of computation or lack of data).

In this study the program is allowed to run for 10 iterations and the execution
time is mesured by the time of one iteration (Tone = Tten/10).

Definition 2. The relative efficiency (Er) is the ratio between time T\ of exe-
cution on one processor and time Tp of execution on P processors,

The relative efficiency represents the fraction of time that processors spend
doing usefull work. The time each processor spends communicating with other
processors or just waiting for data or tasks (idle time) will make efficiency always
less than 100% (this may not be true is some cases where we have a superlinear
regime due to cache effects but we will not discuss it in this work).

Definition3. The relative speedup (5r) is defined as the ratio between time Ti
of execution on one processor and time Tp of execution on P processors,

Sr = Y-p (18)

The relative speedup is the factor by which execution time is reduced on P
processors. Ideally, a parallel program running on P processors would be P times
faster than on one processor and we would get Sr = P. However, communication

569

FEUP - Faculdade de Engenharia da Universidade do Porto

time and idle time on each processor will make Sr always smaler than P (except
on the superlinear regime).

These quantities are very useful to analyse the scalability of a parallel pro-
gram however, efficiency an speedup as defined above do not constitute an ab-
solute figure of merit since the time of execution on a single processor is used as
the baseline.

5.2 Performance Results of the PNNEWTON Code

For the performance analysis of the algorithm we mesured the time of one it-
eration for a range of values of two parameters: problem size, and number of
processors. The relative efficiency and relative speedup were then evaluated us-
ing equations (17) and (18).

The objectives of this analysis are two-fold. First, we want to investigate
how the metrics vary with increasing number of processors for a fixed problem
size Second, we want to investigate the behavior of the algorithm for different
problem sizes within the range of interest for our N-body simulations. For that
purpose the parallel code (PNNEWTON) was tested on the Cray-T3D system
at the Edinburgh Parallel Computer Centre (EPCC). The system consists of 512
7sn »«T Su Processors arranged on a tridimensional torus and running at
150 MHz. The peak performance of the T3D array itself is 76.8 Gflop/s (see [4]).

The next figures show the results of the tests for systems with N = 26 214

The code was integrating equations (5). Similar tests were performed for another
version of the PNNEWTON code which integrates equations (5) and (10) and
identical results were obtained.

6 Conclusions

ll PMu0Sf °f thiS W°rk WaS the devel°Pment of a parallel code suitable to
study N-body systems with N ~ 10 - 104. The required features of the program

7^mS^S\'^^^'^d&daacy- The tests performed on both ver*ions
(PNNEWTON 1.0 and 2.0) showed an almost linear speedup and a relative
efficiency between 60% and 98%. The worst cases (Er * 60% and E « 65%)
correspond to a system with 64 particles running on 64 processors, "and to a
system with 128 particles running on 128 processors. With those configurations
the communication costs are comparable to the computational costs and the
efficiency drops.

f ,ySin|a,meSSuge PaSSlng m°del and the MPI librarv for the parallelization
of the PP algorithm is possible to write a portable code with high efficiency and
good scalability. Our parallel algorithm appears to be appropriate to develop
parallel versions of the PP method.

570

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Time of one Iteration - PNNEWTON(v1.0) / CRAY-T3D (EPCC)

1000

E 10 -

0.1 -

0.01

<L-, ••..;...

r— —

 .A,...

"'"O-..

i . ***

I'll ! ' •—•—■ ■ ' '
N=64 1

N=128 —x—
N=256 ■■•*—
N=512 a

._„. j...- N=1024 - -•— -

I 1

'"""1

~ :-""'"v»

-

"1

i i..r.::

'" ■p*..-

 •;■'--*■.•

"""•©

■ ■•■■-■■■^msi-.-r i-'f"

 '■«..„4

 j_ V";;jo

."'•*••... N=2048 - -» -
N=4096 ■■■♦--
N=8192 •■-•*•••

""''?••■« N=163B4 ■•■■»■■■

i T"" o

10 100
Number of processors

1000

Fig. 2. For each value of N=2*, (A: = 6,..., 14) the system is allowed to evolve during
ten time steps. The computation was performed on a different number of processors.
The variation of the time of one iteration with the number of processors for the tested
systems shows a good scalling.

140

120

100 -

Relative Speedup - PNNEWTON(v1.0) / CRAY-T3D (EPCC)

z
g
P 60

60 80
Number of processors

Fig. 3. The program is showing a good scalability for the tested configurations. The
speed up is almost linear.

571

FEUP - Faculdade de Engenharia da Universidade do Porto

z

Relative Efficiency - PNNEWTON(v1.0) / CRAY-T3D (EPCC)

0.55
60 80

Number of processors
100 120 140

Fig. 4. The program shows high efficiency for most of the configurations tested. The
lowest efficiencies correspond to cases where the cost of communications is relevant
(the number of particles is the same as the number of processors).

References

1. Aarseth, S. J.: Galactic Dynamics and N-Body Simulations, Lecture Notes in Phys-
ics, Springer-Verlag, 1993.

2. Binney, J., Tremaine, S.: Galactic Dynamics, Princeton Series in Astrophysics, 1987.
3. Boccaletti, D., Pucacco, G.: Theory of Orbits, 1: Integrable Systems and Non-

perturbative Methods. A&A Library, Springer-Verlag, 1996.
4. Booth, S., Fisher, J., MacDonald, N., Maccallum, P., Malard, J., Ewing, A., Minty,

E., Simpson, A., Paton, S., Breuer, S.: Introduction to the Cray T3D, Edinburgh
Parallel Computer Centre, The University of Edinburgh, 1997.

5. Foster, Ian.: Designing and Building Parallel Programs, Addison-Wesley, 1995.
6. Goodman, J., Heggie D. C, & Hut P.: The Astrophysical Journal, 515:715-733,

1993.
7. Gropp, W., Lusk E., Skjellum, A.: USING MPI Portable Parallel Programming with

the Message-Passing Interface, The MIT Press London, England, 1996.
8. Heggie, D. C: Chaos in the N-Body Problem of Stellar Dynamics. Predictability,

Stability, and Chaos in N-Body Dynamical Systems, Plenum Press, 1991.
9. Hockney, R. W., & Eastwood, J. W.:Computer Simulation Using Particles, Institute

of Physics Publishing, Bristol and Philadelphia, 1992.
10. Kaudrup, E. H., Smith, H. JR.: The Astrophysical Journal, 347:255-265, 1991

June 10.
11. Kandrup, E. H., Smith, H. JR.: The Astrophysical Journal, 386:635-645, 1992

February 20.

572

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

12. MacDonald, N., Minty, E., Malard, J., Harding, T., Brown, S., Antonioletti, M.:
MPI Programming on the Cray T3D, Edinburgh Parallel Computer Centre, The
University of Edinburgh, 1997.

13. Miller, R. H.: The Astrophysical Journal, 140,250, 1964.
14. Velde, Eric F. Van de.: Concurrent Scientific Computing, Springer-Verlag, 1994.
15. MPI: A Message-Passing Interface Standard, Message Passing Interface Forum,

June 12, 1995.
16. Pereira, N. S. A.: Master Thesis, University of Lisbon, 1998.
17. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-

plete Reference, The MIT Press London, England, 1996.
18. Zeilik, M., Gregory, S. A., Smith, E. v. P.: Introductory Astronomy and Astro-

physics, Saunders, 1992.

573

FEUP - Faculdade de Engenharia da Universidade do Porto

574

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Efficient Molecular Dynamics
on a Network of Personal Computers

G. Ciaccio1, V. Di Martino2

1 DISI, Universitä di Genova
via Dodecanese» 35, 16146 Genova, Italy

E-mail: ciaccioCdisi.unige.it

2 CASPUR, c/o Universitä di Roma "La Sapienza"
Rle A.Moro 5, 00185 Roma, Italy

E-mail: vincenzoCcaspur.it

Abstract. The Genoa Active Message Machine (GAMMA) is a high-
performance Active Messages-like communication layer implemented at
kernel level as an extension of the Linux Operating System, and made
available to user applications through a programming library. On low-
cost clusters of Personal Computers (PCs) connected by Fast Ethernet,
GAMMA achieves much better communication performance compared
to public domain implementations of MPI and PVM.
We have considered an existing PVM Molecular Dynamics (MD) parallel
application, designed to be portable across various MPP as well as NOW
platforms. The goal of our work is to show how much migrating such a
complex application from PVM to GAMMA is convenient in terms of
absolute performance improvement as well as price/performance ratio in
the perspective of running MD on a low-cost cluster of PCs. The "mi-
gration" approach is then compared to other two alternatives, namely:
running the PVM version of MD "as is" on a cluster of PCs and trying
tuning the PVM version of MD to match the underlying cluster architec-
ture. It is shown that neither of such two alternatives lead to satisfactory
performance.

Keywords: Fast Ethernet; Molecular Dynamics; Network of workstations; Parallel
processing; Personal computers.

1 Introduction

Molecular Dynamics (MD) is one of the most frequent parallel applications in
the scientific community. MD typically exhibits fairly good speed-up figures on a
wide range of parallel computers with good intrinsic load balancing. This offers
the opportunity to investigate the behaviour of large size samples of material by
numerical simulation.

Network Of Workstations (NOWs) have emerged as the first cost-effective
parallel architecture. Cluster of high-end Personal Computers (PCs) are emerging

575

FEUP - Faculdade de Engenharia da Universidade do Porto

as an even better solution, with unbeated price/performance ratio and potentially
good absolute performance levels.

A serious obstacle to running MD on a cluster of PCs is the high commu-
nication latency exhibited by standard parallel programming environments like
PVM [6] and MPI [7] running atop industry-standard communication protocols
like TCP and UDP. Recently several teams have been engaged in producing
efficient solutions using faster networks and optimized communication software
to keep latency as low as possible. Many of such attempts gave rise to non-
standard programming interfaces for high-performance communication. Porting
a non-trivial parallel application on a non-standard communication layer may be
an expensive task. However a better price/performance ratio and a satisfactory
absolute performance level on a cluster of PCs may justify the porting effort.

In this paper we discuss three experiences of porting an existing MD parallel
application on a low-cost cluster of PCs. The original MD code is a FORTRAN
program with calls to PVM communication routines. The low-cost cluster is a
pool of sixteen Pentium 133 MHz PCs, each equipped with 32 MByte of RAM and
256 KByte of second-level cache, networked by a shared 100base-TX Ethernet
LAN. Each PC runs Linux, a POSIX-compliant Unix operating system.

The first experience [3] consists of migrating MD from PVM to the the Genoa
Active Message MAchine (GAMMA) [1, 2], an efficient communication system
based on Active Messages [8] and designed for best efficiency on 100base-T
clusters of PCs. Porting MD to GAMMA required replacing PVM calls with
calls to communication routines from the GAMMA library, as well as changing
some communication patterns in order to achieve better exploitation of the capab-
ilities of the underlying network hardware fully exposed by GAMMA. Therefore
the corresponding porting effort was not negligible. The obtained MD application
shall be called MD-GAMMA hereafter.

The second porting experience (also described in [3]) consists of running the
original PVM version of MD "as is" on our cluster. This corresponds to a zero
porting effort.

The third porting experience consists of trying tuning the communication
patterns of the original PVM version of MD in order to increase the match with
the network architecture of our cluster. This implies a very limited porting effort
The obtained application shall be called MD-TOKEN hereafter, as a circulating
token has been added to reduce network contention.

2 The Genoa Active Message MAchine (GAMMA)

The Genoa Active Message MAchine (GAMMA) [1, 2] is an efficient messaging
system based on Active Messages [8]. GAMMA is mainly implemented as a cus-
tom network device driver plus a small number of additional system calls extend-
ing the Linux kernel. Currently only the 3COM 3c595 and 3c905 Fast Ethernet
adapters are supported. The GAMMA programming interface is a small yet
complete set of communication functions supporting SPMD as well as MIMD

576

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

programming styles, and made available to user applications through a program-
ming library.

The efficiency of GAMMA is mainly due to three features, namely:

- A "zero copy" communication protocol, that is no temporary buffers for
messages along the whole communication path, thanks to the adoption of the
Active Messages communication paradigm. This enables low-latency commu-
nication.

- A pipelined communication path, that is the various stages of the commu-
nication path work in parallel for best communication throughput. Every
messaging system works in a pipelined way when delivering large messages
fragmented into smaller units, but GAMMA allows a pipelined path yet with
small, unfragmented messages. This allows best throughput for small as well
as large messages.

- Broadcast primitives which directly expose the Ethernet hardware broadcast
features to the applications. This allows efficient broadcast communication.

With GAMMA, any process of a given parallel application owns, and may
activate and use thereof, 255 communication ports through which it can send and
receive messages. Useful communication ports are numbered in the range from
zero to 254. Port number 255 is currently reserved to the implementation of the
barrier synchronization. Prior to using any of its own ports, the process may
bind it to:

- A port of a destination process, for messages that will be sent throughout
the port.

- A destination buffer in user space for storing incoming messages.
- A program-defined function acting as receiver handler for the port.

A GAMMA receiver handler is an application-defined function which will be
run at each message arrival. Such function will "consume" the message itself
and possibly prepare a fresh final destination for the next incoming message.
For instance, in order to avoid that a subsequent incoming message over-
laps the previous one in the same user-space destination buffer, the receiver
handler may re-bind the port to a fresh destination for the next incoming
message.

- A program-defined function acting as error handler {or the port. A GAMMA
error handler is like a receiver handler, but it is issued in case of communic-
ation errors rather than upon successful message receptions. The purpose of
error handlers is to help building application-level error recovery policies.

After a port is bound, its number fully defines the destination of messages
sent through the port, as well as the user-space final destination of messages
incoming through the port and the actions performed by the process in order to
consume them.

With GAMMA the programmer is forced to bind a port for input before
receiving messages from that port. This implies that the kernel is notified the
address of the destination user-space buffer in advance w.r.t. the message arrival.

577

FEUP - Faculdade de Engenharia da Universidade do Porto

Therefore the activity of storing incoming messages into their final destinations
can be performed directly by the GAMMA device driver rather than by the user-
defined receiver handlers, and does not require any temporary kernel buffer.

2.1 Synchronous receive in GAMMA

With Active Messages there is a "send" but no "receive" operation. Instead
the receiver handlers act as independent • threads of the application triggered
by message arrivals to perform the receive activities. Additional programming
effort must be spent to ensure that receiver threads correctly cooperate with the
main process thread. A very frequent problem is when the main thread needs to
synchronize with a message arrival before continuing computation (e.g. when the
process needs to receive data before processing them). A general solution is to
use application-defined synchronization flags as follows:

1. A flag F of the application is initially reset.
2. In order to wait for one incoming message from a port P, the receiver process

starts busy-waiting in a loop until F is set. ,

3. The receiver handler bound to port P sets F upon message arrival.

GAMMA offers a more flexible and reliable solution in the form of two
semaphore-oriented library functions, namely gamma_wait() and
ganuna_signal(). Such functions give safe access to per-port semaphores embed-
ded into the GAMMA library. The example above becomes as follows:

1. In order to wait for one incoming message from port P, the receiver process
issues gamma_wait(P,l)

2. The receiver handler bound to port P issues gamma_signal(P) upon message
arrival.

2.2 Communication performance

On our low-cost cluster of PCs, GAMMA achieves one-way "ping-pong" user-
to-user message latency as low as 13 ps, with asymptotic bandwidth as high
as 12.2 MByte/s (98% of the maximum 100base-T Ethernet, throughput). Half
the asymptotic bandwidth is achieved with messages as short as 200 byte. Such
performance numbers are measured at application level, that is they represent
the communication performance effectively delivered to user applications.

In terms of latency GAMMA rivals many much more expensive massively-
parallel platforms. Obviously GAMMA cannot compete with such platforms in
terms of bandwidth as well as scalability. On the other hand no massively parallel
computer can compete with GAMMA in terms of price/performance ratio.

3 The Molecular Dynamics application

Our MD application [4, 5] is a typical Molecular Dynamics code used for simu-
lating the behaviour of polarizable fluids. The current, release of MD is written in
FORTRAN with calls to PVM routines, and is structured as a MIMD application.

578

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

The simulation of material samples with larger number of molecules turns the
behaviour of MD from communication intensive to computation intensive. In our
investigations the number of molecules has been kept as low as 4000 to stress the
communication side.

MD performs a standard Lennard-Jones calculation plus the solution of the
induced polarizability on each molecule taking in account first dipole momentum.
Each step of MD consists of evaluating the induced dipoles pi consistent with

the values of E\ due to a given distributions of the point charges. This part of
the calculation requires an iterative procedure with small computation time and
many communications to exchange the values of the induced polarizability at each
iteration among all processors. For a small number of molecules the cutoff radius
is of the same size as the replicated box and the number of force vectors between
molecule pairs grows almost quadratically with the total number of molecules.
In such a situation any domain decomposition technique based on the spatial
position of each molecule in the box is not feasible.

In the parallel implementation each processor maintains a copy of the posi-
tion of each molecule. However each processor will compute force pairs only on a
predefined subset of molecules which has been previously assigned to it. In this
way the list of interacting particles, which is by far the larger data structure of
MD, could be partitioned among the computation nodes and the total memory
occupancy per processor is expected to decrease with increasing number of com-
putation nodes.

When using high-latency communication systems like PVM, an important op-
timization is to keep the number of distincts messages as low as possible in order
not to pay too much for the communication start-up costs. This is achieved by
packing all the variables to be communicated (i.e. forces,virial,energy) in a single
outgoing message whenever possible. Keeping the number of distinct messages as
small as possible reduces the possibility of using multicast/broadcast communic-
ation primitives, since in PVM such collective communications are implemented
as bare repetitions of point-to-point communications. Almost all communica-
tions were point-to-point ones, but a few of them, i.e. the exchange of the new
coordinates of the molecules.

4 Migrating the application from PVM to GAMMA

In order to migrate MD from PVM to GAMMA to obtain the MD-GAMMA ap-
plication, the GAMMA programming library has been extended with FORTRAN
stubs to the original GAMMA communication C functions in a straighforward
way.

Our PC cluster is equipped with low-cost shared 100base-T Ethernet hard-
ware. This implies that the communication patterns of MD may cause lots of
Ethernet collisions, with heavy communication delays. This could be partially
avoided if the Fast Ethernet hub be replaced by a switch, but at a higher price.
The alternative is to explicitly program a proper serialization of network accesses
at the application level and to take best advantage of the Ethernet's hardware

579

FEUP - Faculdade de Engenharia da Universidade do Porto

broadcast facility that the GAMMA programming interface directly exposes
The serialization of communications during collective all-to-all data exchange«
has been obtained in MD-GAMMA by considering all processes as circularly
ordered by instance number and implicitly granting broadcast transmission right
to a process after it has received broadcast messages from all its predecessors.

Another source of performance degradation with MD is the need of application-
level temporary storage for incoming messages. Even with a "zero-copy" mes-
saging system like GAMMA, MD-GAMMA must implement a temporary storage
for received messages, because some broadcast messages carry information to be
scattered among many processors and summed component-wise to existing local
information arranged as arrays.

A potential problem with GAMMA is that the receiver is forced to accept
messages in their final destination at any time the sender starts a communication.
This may cause race conditions in the memory of the receiver process during the
all-to-all exchange phase of MD. Such all-to-all exchange is a two-steps oper-
ation structured as two communication phases interleaved by one computation
phase. In the computation phase the fresh data from the first communication
phase are manipulated i.e. summed to previous data. If data from the second
communication were delivered in the same data structure as data from the first
communication, an inconsistency would arise if the second communication occurs
before the intermediate computation step is complete. To avoid such race condi-
tions in MD-GAMMA we had to implemented FIFO queues of application receive
buffers for storing incoming GAMMA messages. Computations are carried out
directly on the FIFOs' head arrays, whereas fresh incoming data are stored in
the FIFOs' tail arrays. This way data from the second communication phase do
not overwrite data from the first phase which have not yet been processed.

Migrating MD from PVM to GAMMA required one week of work from the
first author of this paper to replace PVM calls with GAMMA calls, change some
communication patterns and implement Active Messages-like receive policies
plus an additional week of work from the second author to debug and run the
obtained MD-GAMMA application.

5 Tuning the existing PVM application

Another possibility for porting an existing PVM application on a given tar-
get platform is to retain the original message passing interface and to tune the
communication patterns of the application in order to increase performance bv
matching the target architecture.

In the case of MD, an obvious drawback of the original version when running
on a bus-interconnected pool of processing nodes like a PC cluster with shared
Fast Ethernet is bus contention, which may cause unacceptably large communic-
ation delays due to collision storms. The easiest way to overcome such problem is
to serialize processes when accessing the network by adding a circulating token
implemented by ordered exchanges of null PVM messages.

580

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

In our preliminary study we added a circulating token only in one subroutine
of MD, which turns out to be heavily used in the program run. The obtained MD-
TOKEN application required a very limited working effort. The token overhead
is negligibe compared to the overall communication overhead as well as the MD
computation time.

6 Performance results

Let us consider the speed-up curves depicted in Figures 1. The slow-down ex-
hibited by MD as the number of processors increases beyond eight is clearly
apparent. Given the low computational power of Pentium 133 MHz CPUs, such
behaviour accounts for the poor efficiency of the PVM messaging systems in-
volving many temporary copies of messages during the traversal of many layers
of communication protocols, as well as the collision storms arising from pro-
cesses simultaneously accessing the shared LAN during the exchange phases of
the program execution.

However the excellent speed-up curve of MD-GAMMA up to 16 nodes, with
the promise of a good scaling over even more processors, is mainly due to the
following reasons:

- the relatively poor floating-point computational power of Pentium 133 MHz
CPUs

- the high efficiency of GAMMA inter-process communications
- the fine tuning of the communication patterns in the GAMMA version of the

application, based on the knowledge of features (broadcast) and limitations
(shared LAN) of the underlying communication hardware.

In spite of its lower collision rate, MD-TOKEN shows a speed-up curve which
is even worse than MD. The reason is that serializing network accesses by a
circulating token implies serializing the software overhead of communications as
well. When communication overhead is high, as with ordinary PVM, the potential
advantage of eliminating collisions is by far recovered by the loss of parallelism in
the execution of low-level communication software. Thus, coordinating processes
at application level in the hope of making better use of the network may result
into a counter effect with high-latency messaging systems. It is worth noting that
the overhead of the circulating token itself is negligible (less than 5% with 16
nodes).

Figure 2 reports the average completion time per time-step for MD as well as
MD-GAMMA and MD-TOKEN on our PC cluster. The curve of average com-
pletion time per time-step of MD on an eight-"thin-nodes" IBM SP2 is reported
too. MD-GAMMA appears to outperform the IBM SP2 if more than twelve pro-
cessors are engaged in the computation, besides performing better than the other
two MD versions. When reading such curves it is important to pay attention to
both the absolute performance and the cost of the hardware platform. It is worth
pointing out that the current cost on the marketplace of a 16-nodes GAMMA
leveraging shared 100base-T Ethernet and Pentium 133 MHz CPUs is compar-
able to the cost of one single high-end workstation.

581

FEUP - Faculdade de Engenharia da Universidade do Porto

Q.
3
i

T3
<D
0
Q.

CO

Optimal speed-up —
MD-GAMMA -e-

MD -f-
MD-TOKEN -B-

r

Number of nodes

Fig. 1. Molecular Dynamics, GAMMA vs. PVM: speed-up comparison with same hard-
ware platform (shared 100base-T Ethernet network of Pentium 133 PCs).

7 Conclusions

By using a low-latency messaging system like GAMMA, a significant number of
networked PCs may be successfully exploited to run parallel code even with a low-
cost interconnect like shared 100base-T Ethernet. Indeed low-latency as well as
native broadcast communications offer more flexibility at the programming level
to implement collision-free collective communication patterns. Similar collision-
free patterns are not feasible with high-latency messaging systems like PVM
providing a poor implementation of broadcast and too high a communication

582

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

O
0
•£■

E

MD-TOKEN -e-
MD -4-

MD-GAMMA -B-
MD, IBM SP2 (thin nodes) -x-

T

6 8 10 12

Number of nodes

14 16

Fig. 2. Molecular Dynamics: average completion time per time-step on various parallel
platforms including GAMMA.

overhead, which are not expected to decrease at the same rate at which the
peak communication bandwidth offered by the Ethernet technology is increasing
(not to mention the additional loss of efficiency when moving to SMP processing
nodes).

In the case of MD it is apparent that exploiting a low-latency messaging
system like GAMMA is the only way to turn a low-cost cluster of PCs into a
cost-effective solution for parallel processing. The same holds for the large class
of ''non-embarassingly parallel" well-balanced parallel applications. The gain in
price/performance as well as the good absolute performance level obtained on
such kind of inexpensive platforms makes the porting effort worthwhile, at least
in the case of well documented applications.

583

FEUP ■ Faculdade de Engenharia da Universidade do Porto

References

1. G. Chiola and G. Ciaccio. Implementing a Low Cost, Low Latency Parallel Plat-
form. Parallel Computing, (22):1703-1717, 1997.

2. G. Ciaccio. Optimal Communication Performance on Fast Ethernet with GAMMA
In Proc. Workshop PC-NOW, IPPS/SPDP'98, pages 534-548, Orlando, Florida
April 1998. LNCS 1388, Springer-Verlag.

3. G. Ciaccio and V. Di Martino. Porting a Molecular Dynamics Application on a
Low-cost Cluster of Personal Computers running GAMMA. In Proc. Workshop PC-
NOW, IPPS/SPDP'98, pages 524-533, Orlando, Florida, April 1998. LNCS 1388,
Springer-Verlag.

4. V. Di Martino. Computer Simulation of Polarizable Fluids. In First European PVM
Meeting, Rome, October 1994.

5. V. Di Martino, G. Ruocco, and M. Sampoli. Molecular dynamics of polarizable
fluids on parallel systems. In HPC-ASIA '95, Taipei, Taiwan, September 1995

6. V. Sunderam. PVM: A Framework for Parallel Distributed Computing. Concur-
rency: Practice and Experience, pages 315-339, December 1990.

7. The Message Passing Interface Forum. MPI: A Message Passing Interface Standard.
Technical report, University of Tennessee, Knoxville, Tennessee, 1995.

8. T. von Ecken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active Messages: A
Mechanism for Integrated Communication and Computation. In Proc. of the 19th
Annual Int'l Symp. on Computer Architecture (ISCA'92), Gold Coast. Australia
May 1992. ACM Press.

This article was processed using the ttTfiX macro package with LLNCS style

584

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Limits of Instruction Level Parallelism with
Data Value Speculation

Jose Gonzalez and Antonio Gonzalez
Departament d'Arquitectura de Computadors

Universität Politecnica de Catalunya
{joseg,antonio}Sac.upc.es

Abstract. Increasing the instruction level parallelism (ILP) is one of the key issues
to boost the performance of future generation processors. Current processor organi-
zations include different mechanisms to overcome the limitations imposed by name
and control dependences but no mechanisms targeting to data dependences. Thus,
these dependences will become one of the main bottlenecks in the future. Data value
speculation is gaining popularity as a mechanism to overcome the limitations
imposed by data dependences by predicting the values that flow through them. In
this work, we present a study of the potential of data value speculation to boost the
limits of instruction level parallelism using both perfect and realistic predictors.
Speedups obtained by data value speculation are very huge for an infinite window
and still significant for a limited window. Different prediction schemes oriented to
single thread and multiple threads (from a single program) architectures have been
studied. The latter shows a significant improvement respect to the former for FP
benchmarks although the difference is much smaller for integer programs.

1 Introduction

The performance of superscalar processors is limited by the necessity to obey the
dependences existing among the program instructions. These dependences can be clas-
sified into three types[5]: name dependences, control dependences and data depend-
ences.

Name dependences appear when the values generated by two instructions are to be
written in the same storage location, either a register or memory. They can be eliminated
by renaming the storage location that causes the dependence (i.e. changing the name of
the locations where the values are to be written). Register renaming is a well known
technique that deals with this kind of dependences. It is implemented dynamically by
many current microprocessors such as DEC Alpha 21264 [4] or MIPS R10000 [23].

Control dependences are caused by branch instructions. They slow down the proces-
sor since it has to stall the fetch of instructions until the branch is solved, i.e. the destina-
tion address is computed and the condition is evaluated. Branch prediction is the
mechanism that current microprocessors implement in order to overcome control
dependences. It is based on the prediction of the outcome of branches which allows
instructions that depend on a branch to be executed before the result of such branch is
known.

585

FEUP - Faculdade de Engenharia da Universidade do Porto

Data dependences or true dependences appear when an instruction consumes the
value produced by another previous instruction. These dependences are enforced in cur-
rent microprocessors by executing the consumer after the producer. Thus, data depend-
ences limit the amount of instruction level parallelism (ILP) by imposing a serialization
on the execution of some instructions.

In the same way as control dependences are managed predicting the behavior of
branches, it may be feasible to predict the result of some instructions in order to avoid
the ordering imposed by data dependences, allowing the consumer instruction to be
issued before the execution of the producer. The term data value speculation is used to
refer to those mechanisms that predict the operands of an instruction, either source or
destination, and execute speculatively the instructions dependent on it before the actual
value is computed, allowing the processor to avoid the ordering imposed by data
dependences.

In this work, we present a study of the ILP improvement that data value speculation
techniques can provide. We present an evaluation of the limits of ILP that can be
exploited by dynamically scheduled processors with infinite resources and data value
speculation, and compare it with that of the same processor without data value specula-
te. We evaluate the benefits of predicting individual types of instructions (loads
stores, simple arithmetic, and multiplications) and the improvement achieved by pre-
dicting all of them. We consider both ideal prediction schemes and realistic ones
Finally, the impact of data value speculation for a limited instruction window is also
evaluated The results shows that data value speculation can significantly increase the
ILP that dynamically scheduled processors can exploit, and therefore, it is a promising
technique to be considered for future generation microprocessors.

The rest of this paper is organized as follows. Section 2 reviews the related work The
methodology to evaluate the ILP that can be exploited by an ideal processor, either with
or without data value speculation, is described in section 3. The value predictors consid-
ered in this work are presented in section 4. The results of this study are detailed in sec-
tion 5. Finally, section 6 summarizes the main conclusions of this work.

2 Related work

There have been a plethora of works dealing with the limits of the ILP
[1][2][6][10][16][20][21]. Each work studies the ILP that could be exploited under
some constraints such as fetch width, instruction window size, branch prediction ren-
ter renaming, memory aliasing, etc. A conclusion that can be extracted from all these
works is that one of the main features that limit the parallelism are data dependences
For instance, in [5] it is shown that the maximum ILP that a processor could achieve
with infinite resources and perfect branch prediction is not much higher than a few hun-
dred instructions per cycle (IPC) and for some applications it is about a few tens of IPC
n^T ™]T SpecuIation has been the foc"s of several recent works. It is performed in
[4] by predicting the address of load instructions whereas in [9] the address of stores is
also predicted. In both cases the prediction is carried out using a history table of mem-
ory instructions and a stride based predictor. In [12], data value speculation is based on
predicting the value that load instructions read from memory. The proposed mechanism
exploits the feature that the authors call value locality, which refers to the fact that many

586

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

load instructions repeatedly bring the same value from memory. Value locality is
extended for all type of instructions in [11]. In [8] data value speculation is performed
by predicting the value read by load instructions. Unlike the mechanism proposed in
[12], the load values are predicted by predicting their effective address and prefetching
the data from memory into the history table. In [15] Sazeides and Smith show that the
results that an instruction generates may follow a repetitive pattern that stride predictors
cannot predict and propose a context-based predictor. In [22] Wang and Franklin present
a hybrid predictor. The implementation of this predictor is similar to that of a 2-level
branch predictor. In [7] the impact of different value predictors on the performance of a
processor is studied using a limited instruction window.

The main contributions of this work are the following: This is the first work to our
knowledge that evaluates the limits of ILP in an ideal dynamically scheduled supersca-
lar processor that exploits data value speculation and compares it with that of the same
processor without data value speculation. In [11], value prediction is evaluated for a per-
fect machine, as it is called by the authors. However, that machine is limited by a finite
instruction window (4096 entries), branch prediction and fetch bandwidth. Besides, in
this paper we study the benefits of predicting individual types of instructions for both
ideal and realistic predictors.

3 Methodology

This section describes the methodology that we have used to obtain the ILP under dif-
ferent scenarios regarding prediction schemes and hardware resources.

3.1 Experimental framework

The evaluation methodology is trace-driven. The trace of each program has been gener-
ated using the ATOM tool [19]. For each instruction, the instrumentation routine
obtains: its operation code, the source and target registers, the effective address (if the
instruction is either a load or a store), and the value generated in the case of arithmetic
and load instructions. These data are fed into the analysis program, which computes the
performance achieved by the particular architectural model. Performance is reported as
Instructions per Cycle (IPC).

The whole SPEC95 benchmark suite has been used for the different experiments. All
the benchmarks have been compiled for a DEC AlphaStation600 5/266 with '-04' opti-
mization flag, and executed with their largest input set. Each program has been run for 5
billion of instructions, except gcc and ijpeg, which have been run until completion
(1,569,885,184 and 684,497,921 instructions respectively). Figure 1 details the percent-
age of different types of instructions executed for the whole SPEC95 benchmark suite.

3.2 Architectural model

The first study of the limits of ILP is achieved assuming an ideal microprocessor with
infinite resources, perfect branch prediction, infinite instruction fetch bandwidth, an infi-
nite cache memory with infinite number of ports, perfect memory disambiguation,
dynamic renaming with an infinite number of registers and memory renaming with infi-

587

FEUP - Faculdade de Engenharia da Universidade do Porto

Branch
Store
Load
Division
Multiplication
Arithmetic

Speclnt SpecFp

Figure 1. Dynamic percentage of each type of instructions

nite storage locations for renaming. Both an infinite and a limited instruction window
are considered. In all the cases, precise exceptions [17] and an infinite retirement (com-
mit) bandwidth are assumed.

3.3 IPC computation for an ideal architecture without data value speculation

The IPC of a given program for a particular architectural model is obtained by determin-
ing the time (measured in number of cycles) when the latest result of any instruction of
the program is computed, and then, dividing the number of executed instructions by
such number of cycles.

We will refer to the cycle when the result of an instruction i is available as the com-
pletion time of i, or CT, for short. CT, is computed as the maximum CTj for any j such
that; produces a result that is a source operand of i plus the latency of the operation i.
This approach is similar to the one used in [1].

Each instruction of the trace produced by the execution of the instrumented program
is analyzed in order to know the time when its operands are available. For each storage
location the analysis program keeps track of the C7of the last instruction that wrote to
it. This is implemented by means of two tables that are called the register write table
(RWT) and the memory write table (MWT). RWTT stores the CT of the last instruction so
far that its destination operand was the logical register r. MWTa stores the CT of the last
store that wrote into address a.

Therefore, when an arithmetic instruction is processed, the RWT is accessed in order
to obtain the cycle that the source operands are available. Then, its C7is computed and
the RWT entry associated to its destination register is updated with the new computed
CT. That is:

RWTde„ = max (RWTsrcIl RWTsrc2) + Latency, operation (1)

In a similar way, when a load from address a is processed, the MWT is accessed to
obtain the cycle that a previous store wrote into that memory position. Then, the RWTis
updated as follows:

588

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

RWTdes, = max (RWTsrc], RWTsrc2, MWTJ + Latency lmd (2)

Finally, when a store to address a is processed, the MWT is updated to reflect the new
write to this memory location:

MWT(l = max (RWTsrc], RWTsrc2) + Latencyswre (3)

Notice that the new RWTdes(or MWTa can be lower that the previous one because
register and memory renaming is assumed. Dynamic register renaming is very common
in current architectures. Memory renaming is much more complex and it is imple-
mented to some extent by some mechanisms like the ARB of the Multiscalar [3]. In this
paper, we assume unlimited renaming capabilities for both registers and memory.

When a new value for RWT or MWT is computed, the previous value is overwritten
because any further instruction in the trace will always refer to the last value stored into
a register or a memory location. However, in order to compute the IPC, we have to
determine the maximum CT for any instruction of the program. To obtain such value,
the analysis program keeps a variable that stores the maximum CTup to the current exe-
cution point (Max_CT).

3.4 IPC computation for a limited instruction window

A limited instruction window with W entries and in-order retirement implies that an
instruction cannot start execution until the instruction W locations above in the trace and
all previous instructions have completed and retired. Thus, the restriction of having a
limited instruction window can be modeled by keeping track of the CT of the last W
instructions. This is accomplished by means of a table, which is called window retire-
ment time (WRT), that has W entries and stores the retirement time of the last W instruc-
tions processed so far.

Thus, when computing the C^of an instruction, in addition to consider the CT of its
source operands, the WRT of the instruction W locations above has also to be consid-
ered. For instance, for each arithmetic instruction processed by the analysis program,
the corresponding entry in the RWT is updated as follows:

RWTdest = max (RWTml. RWTm:2, WRTnJnst%w) + Latencyoperatim (4)

where njnst refers to the ordinal number of the current instruction in the trace. Expres-
sions (2) and (3) are modified in a similar way to account for the effect of the limited
instruction window.

For each new instruction, the WRT is updated to reflect the retirement (commit) time
of the current instruction. This time is the maximum CT of any previous instruction,
including the current one, and it is stored in the same entry of the WRT that was occu-
pied by the instruction W locations above since it is not useful any more:

WRTninMW=Max_CT (5)

589

FEUP - Faculdade de Engenharia da Universidade do Porto

Instruction PC Last Value i Stride Confid.

v '
+
L_

-»• Valid Prediction

> Predicted Value
Figure 2. A stride-based predictor.

3.5 IPC computation for data value speculation

Data value speculation is based on predicting the source and/or the destination operands
or some instructions. In this section, we present a methodology to compute the IPC
when data value speculation is incorporated into a superscalar processor, independently
of the particular predictor being used. In this way, we consider a predictor as a system
that given an instruction (usually its program counter), provides its source and/or desti-
nation operands. In addition, each individual prediction is characterized by the time
when the prediction is available (PT) and the correctness of the prediction.

In this paper, we consider data value speculation for the following type of instruc-
tions: Loads, Stores, Integer Arithmetic, Integer Multiplication, Float Arithmetic and
Float Multiplication.

In all the cases, if a prediction is not correct, the RWT and MUT are updated as if pre-
diction were not used. If the prediction is correct, the RWT and MWT are updated with
the minimum between the completion time, given by expressions (1), (2) and (3) and
the prediction time, which is a characteristic of the particular predictor being used Sec-
tion 4 discusses the predictors considered in this work and in particular, the time when
predictions are available.

4 Data predictors

In this work we consider stride-based predictors, although the presented methodology
could be applied for any other data predictor. A stride predictor has the structure shown
in Figure 2. It is implemented by means of a table of 4096 entries that is direct-mapped
non-tagged and it is indexed with the least significant bits of the instruction address (PC)
whose source or destination operands are to be predicted. Each entry stores the follow-
ing information:

• Last value: This is the last value seen by that instruction. This value corresponds
to the destination operand for all predictors except for the load and store address
predictors. In these cases, it corresponds to the last effective address.

• Stride: This field contains the stride observed for the values of the
corresponding instruction.

590

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

• Confidence: This field is used to assign confidence to the prediction. It is
implemented by means of a 2-bit up/down saturated counter. A prediction is
considered correct only if the most significant bit is set.

Predictor for arithmetic instructions stores the last result in the last value field. Load
address predictors store the last effective address. Load value predictors store the last
value read from memory. Finally, store predictors uses two tables: one for predicting the
effective address and the other for predicting the value to be written.

When an instruction is to be predicted (either its result or its effective address,
depending on the particular predictor), the prediction table is accessed and the predicted
value is computed adding the stride to the previous last value. If the most significant bit
of the confidence field is set (i.e., the prediction is considered to be correct) and the pre-
diction is correct, the predicted value can be used instead of the actual value if the
former is available earlier. The stride field is only updated if the confidence counter is
below 102 after being updated.

In addition, we consider a perfect predictor that is assumed to produce always correct
predictions. This is used to determined the upper bound of the performance that data
value speculation can achieve.

4.1 Prediction time

An important feature of a predictor is the time when the predicted value is available.
This time is used to update the RWTand MWT as explained in section 3.5.

Regarding the prediction time, two different types of predictors have been consid-
ered:

• Serialized: Every time the prediction table is accessed, only one prediction per
static instruction can be performed at most. That is, an instruction is not
predicted until the last execution of the same static instruction has been
predicted.

• Non-serialized: Every time the prediction table is accessed, multiple predictions
for each static instruction can be performed. In particular, all the subsequent
executions of the same static instruction are predicted until the first one that is
incorrect. That is, once the corresponding entry of the table has the correct
stride, successive executions of the same static instructions can be predicted all
at once.

The serialized predictors may be suitable for superscalar processors. In fact, most of
the studies on value prediction assume this type of predictors [8][9][11][12][14]. A non-
serialized predictor could be useful for architectures supporting multiple threads of con-
trol obtained from a single program, such as multiscalar processors [18] and the specu-
lative multithreaded processors [13].

To determine the time when a prediction is available we consider a parameter that
reflects the time required to perform a prediction operation (either of a single value for
the serialized approach or multiple values for the non-serialized one). This parameter is
called the prediction latency (PL). This is the time required for a table look-up plus its
update.

591

FEVP ■ Faculdade de Engenharia da Universidade do Porto

The prediction time of each instruction is determined by means of an additional field
that is added to each entry of the prediction table for evaluation purposes This field
stores the cycle in which the entry has been used/updated for the last time. This field
will be called last update time (LUT).

The prediction time for an instruction is just the sum of the last update time plus the
prediction latency. That is:

PT=LUT+PL (6)

The LUT is updated in a different way for serialized and non-serialized predictors
For the former, for each new instruction of the trace, the corresponding LUT is updated
with the time when its operand is available (either computed or predicted, whichever
occurs first):

LUT = RWTde!.,for load and arithmetic instructions with destination register dest

LUT= MWTa for stores to address a (j)

For non-serialized predictors, the LUT field is updated in the same way as the serial-
ized case but only for those instructions that are mispredicted or are considered not pre-
dictable as stated by the confidence field.

5 Results

The results of this section assume a one-cycle latency for all instructions and one-cycle
prediction latency.

Table 1 shows the IPC achieved by the ideal processor described in sections 2 with
an infinite instruction window and without data value speculation

This results will be used as a baseline to compare the performance of data value spec-
ulation techniques. They represent the maximum parallelism that is possible to achieve
in an ideal processor that is only constrained by data dependences whereas data value
speculation removes this constraint. Notice that even for this ideal machine, the average

Jf on|y 3739 for integer programs and 790.29 for floating point applications. When
we add the constraint of a limited instruction window of 128 instructions, the IPC goes
down to 9.64 and 17.51 respectively. This may suggest that relieving the restrictions
imposed by data dependences through data value speculation can be and interesting
mechamsm to boost performance. In the following results, only the average result for
integer and FP programs will be shown.

Figure 3 shows the speedup (in logarithmic scale) achieved by data value speculation
with perfect prediction in relation to the infinite machine without data value speculation
In this figure and the following ones the speedup is computed as follows:

Speedup = IPC w'th data value speculation
IPC without data value speculation

In each bar, only a single type of instructions is predicted individually. With perfect
prediction, when an instruction is predicted its result is considered to be available at
cycle 0. Looking at the graphs, one can see that the potential performance of predicting

592

VECPAR '98 ■ 3rd International Meeting on Vector and Parallel Processing

Table 1. IPC achieved with infinite resources and no data value
speculation

Speclnt IPC SpecFP IPC

go 89.45 tomcatv 397.79

m88ksim 17.14 swim 1403.82

gcc 47.02 su2cor 56.64

compress 35.71 hydro2d 181.09

li 27.62 applu 578.31

ijpeg 34.12 mgrid 4735.11

perl 18.72 turb3d 140.19

vortex 29.34 apsi 231.21

fpppp 105.71

wave5 73.02

Average 37.39 Average 790.29

memory instructions, both loads and stores, is less than the speedup achieved by predict-
ing arithmetic instructions. This suggests that for the analyzed programs, there are much
more arithmetic than memory instructions on critical paths. The speedup achieved by
predicting multiplications is almost negligible. In addition to not being on critical paths,
this may be due to the small percentage of multiplication operations, as shown in Figure

Figure 4 shows the speedup obtained for a realistic prediction scheme based on a
stride predictor, as it was described in previous sections. The instruction window is con-
sidered to be infinite and the prediction is non-serialized. The speedup achieved by pre-
dicting arithmetic instruction is very huge and it suggests that arithmetic prediction may
be the most effective approach to remove the serialization imposed by data depend-
ences. The IPC of data value speculation just for arithmetic instructions is 531 times
higher than the IPC achieved without data value speculation, for an infinite machine and
the FP benchmarks. When data value speculation is implemented for all the instructions,
the speedup goes up to 2368. The speedup for integer programs is not so high (42 when
predicting all the instructions). On the other hand, the speedup achieved by predicting
memory instructions is much more limited (1.4 and 4.8 for integer and FP benchmarks
respectively when predicting stores and load values). Predicting multiplications is not
considered any more due to the poor results observed for the perfect predictor.

The speedup obtained with a serialized predictor is depicted in Figure 5. Notice that,
as pointed out before, this scheme would correspond to the implementation of data
value speculation on a superscalar processor since in such processors there is only one

593

FEÜP - Faculdade de Engenharia da Universidade do Porto

CD Load predictor
K3 Store predictor
■i Multiplication predictor
■ Arithmetic predictor

Speclnt SpecFp

Figure 3. Speedup achieved by data speculation with perfect prediction, for
different types of predictors.

flow of control and a given execution of a static instruction can be predicted only if its
previous execution has updated the prediction table. On the other hand, a non-serialized
predictor can be exploited by an architecture supporting multiple threads of control.

The speedup achieved by serialized prediction is still quite significant. The IPC
achieved by these schemes is 30 and 35 times higher than the IPC achieved without data
value speculation for integer and FP programs respectively. These results also show that
the potential gain that load prediction may achieve is slightly higher for value prediction
than for address prediction, but this gain is insignificant when compared to arithmetic
prediction.

If we compare the speedup achieved by non-serialized prediction (Figure 4) against
the speedup achieved by serialized prediction (Figure 5) we can observe that for integer
benchmarks there is not much difference (e.g. it goes from 42 to 30 when predicting all
the instructions) whereas for FP benchmarks the difference is huge (e.g. it goes from
2368 to 35 when predicting all the instructions). The main reason for this different
behavior in the two types of benchmarks can be explained through the figures in Table.
2. This table shows the percentage of correctly predicted arithmetic instructions for
which the completion time (CT) is lower than prediction time (PT). For these instruc-
tions, the prediction does not provide any improvement in spite of being correct. As
expected, this percentage is greater when the predictions are serialized than when they
are not since the prediction time of the serialized scheme is in general higher. Besides,
the difference between serialized and non-serialized schemes for FP benchmarks is
much higher than for integer benchmarks, which explains the higher impact of serial-
ized prediction for FP benchmarks, as observed in Figure 4 and Figure 5.

The speedup achieved by predicting instructions relies on the amount of strided val-
ues existing among the applications. Figure 6 shows the percentage of strided values for
the different instruction types for the whole Spec95 benchmark suite. It can be seen that
load addresses have the greatest percentage of strided references and therefore one may
expect a speedup for load address speculation higher than it actually is (see Figure 4 and
Figure 5). However, even when the address of a load is predicted, it has to wait for pre-
vious stores to the same address to finish. On the other hand, predicting the value of a

594

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

10000

1000

- 100

C3 Load Address prediction
O Load Value prediction
O Store prediction
ra Stores + Load address prediction
ra Stores + Load value prediction
■ Arithmetic prediction
■I All inst. predicted (Load address)
■i All inst. predicted (Load Value)

Speclnt SpecFp
Figure 4. Speedup achieved by data value speculation with non-
serialized prediction

Speclnt SpecFp
Figure 5. Speedup achieved by data value speculation with serialized
predictions

Table 2. Percentage of correctly predicted
instructions whose C^is lower than its PT.

Non-serialized Serialized

Speclnt 59.65 70.85

SpecFp 48.31 90.64

load or the result of any other instruction avoids completely the order imposed by data
dependences. Simple arithmetic instructions (mainly integer arithmetic) has a high per-
centage of strided values. This fact, along with the significant weight of arithmetic
instructions on the critical path (as confirmed in the evaluation of the prefect prediction
scheme), makes arithmetic prediction to be the most effective type of speculation among
the ones evaluated in this work.

Finally, we consider the impact of data value speculation with a limited instruction
window. Figure 7 shows the speedup of data value speculation (IPC achieved by data
value speculation divided by IPC achieved without data value speculation) when all
types of instructions are predicted using separate history tables for each class, and pre-
dicting the value of loads. A non-serialized predictor is considered since it outperforms
a serialized predictor for an infinite window (notice that the speedup is not depicted in
logarithmic scale but in linear scale). It can be seen in this figure that the impact of the
size of the instruction window its very significant since, for instance, the speedup is
decreased from 2368 to only 1.75 for a window of 512 instructions in the SpecFp pro-

595

FEUP - Faculdade de Engenharia da Universidade do Porto

Spcelnl
Spi-L'Fp

Figure 6. Percentage of strided values for each type of instruction

• Spcclnl
■ SpccFp

64 128 512
Instruction Window size

Figure 7. Speedup achieved with a finite instruction

grams. Furthermore, the gain due to data value speculation for the Speclnt outperforms
the gain for SpecFp, which is the opposite to what happened with an infinite instruction
window.

A main conclusion of the study of the effect of data value speculation on a limited
instruction window is that it is an effective technique that could be considered for future
generation microprocessors. A speedup around 2 can be achieved with simple stride-
based predictors. However, the potential benefits of data value speculation are much
higher for very large instructions windows. In this scenario, conventional superscalar
microprocessors have been shown to be rather limited in the amount ILP that they can
exploit due mainly to data dependences. This limitation can be significantly relieved by
data value speculation techniques. Thus, novel organizations to support large instruc-
tions windows, like the multiscalar architecture [18] and speculative multithreaded pro-
cessor 13] can be benefitted from data value speculation to a larger extent than
superscalar processors.

6 Conclusions

In this work we have presented a study of the limits of instruction level parallelism
(ILP) that can be exploited by a machine with infinite resources, infinite instruction win-
dow, perfect branch prediction and ideal memory. We have shown that avoiding the

596

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

ordering imposed by data dependences is a promising approach to improve the perfor-
mance of superscalar processors for future generations. This can be accomplished by
data value speculation techniques. These techniques are based on predicting the source
or destination operands of instructions and execute speculatively the instructions depen-
dent on them.

Data value speculation has been approached by means of both perfect and stride-
based predictors. Two different types of prediction schemes have been studied: serial-
ized and non-serialized. The former is oriented to superscalar processors whereas the
latter is more suitable for multithreaded architectures (i.e., machines that support multi-
ple threads of control from a single program). We have measured the benefits of data
value speculation techniques by comparing the limits of ILP that can be exploited with
such technique with that of a superscalar processor with the same features but without
data value speculation. Results show an important speedup for arithmetic instructions
both for serialized and non-serialized prediction schemes. We have also observed that
the difference between these two schemes is very high for FP programs (non-serialized
outperforms always serialized schemes) but it is relatively low for integer programs.

Finally, we have evaluated the impact of data value speculation with a limited
instruction window. We have observed that the speedup suffers an important reduction
but it is still significant. However, the benefits of data value speculation increases with
the instruction size. We believe that data value speculation may play an important role
when it is combined with mechanisms to support large instruction windows.

7 Acknowledgements

This work has been supported by the Spanish Ministry of Education under grant CYCIT
TIC 429/95, the ESPRIT project MHAOTEU (24942) and the Direcciö General de
Recerca of the Generalität de Catalunya under grant 1996FI-03039-APDT.

The research described in this paper has been developed using the resources of the
Center of Parallelism of Barcelona (CEPBA).

References

1. T.M. Austin and G. S. Sohi. "Dynamic Dependency Analysis of Ordinary Programs". In
Proc. of Int. Symp. on Computer Architecture, pp 342-351, 1992.

2. M. Butle T.Y. Yeh, Y. Patt, M. Alsup, H. Scales and M. Shebanowr. "Single Instruction
Stream Parallelism is Greater than Two". In Proc. of Int. Symp. on Computer Architecture,
pp. 276-286,1991.

3. M. Franklin and G. S. Sohi. "ARB: A Hardware Mechanism for Dynamic Reordering of
Memory References". IEEE Transactions on Computer,45(6), pp. 552-571, May 1996.

4. L. Gweunnap. "Digital 21264 Sets New Standard". Microprocessor Report, 9(3), March
1995.

5. J.L Hennessy and D.A. Patterson. Computer Architecture. A Quantitative Approach. Second
Edition. Morgan Kaufmann Publishers, San Francisco 1996.

6. N.P. Jouppi and D.W. Wall. "Available Instruction-Level Parallelism for Superscalar and
Superpipelined Machines". In Proc. of the ACM Conf. on Architectural Support for
Programming Languages and Operating Systems, 1989.

597

FEUP - Faculdade de Engenharia da Universidade do Porto

10

F. Gabbay and A. Mendelson. "Speculative Execution Based on Value Prediction" Technical
Report, Technion, 1997

J. Gonzalez and A.Gonzalez. "Speculative Execution via Address Prediction and Data
Prefetching". In Proc. of the International Symposium on Supercomputing (ICS), pp 196,203,

J. Gonzalez and A. Gonzalez. "Memory Address Prediction for Data Speculation" In
proceedings of the Europar Conference, 1997.

M.S. Lam and R.P. Wilson. "Limits on Control Flow on Parallelism". In Proc. oflnt Symp
on Computer Architecture, pp 46-57,1992

11. M.H.LipastiandJ.P.Shen. "Exceeding the Dataflow Limit via Value Prediction" In Proc
oflnt. Symp. on Microarchitecture, 1996.

12. M.H. Lipasti, C.B. Wilkerson and J.P. Shen. "Value Locality and Load Value Prediction" In
Proc. of the ACM Conf. on Architectural Support for Programming Languages and
Operating Systems, 1996.

13 P. Marcuello, A. Gonzalez and J. Tubella. "Speculative Multithreaded Processors". In Proc
of the International Symposium on Supercomputing (ICS), 1998.

14. Y Sazeides, S Vassiliadis and J.E. Smith. "The Performance Potential of Data Dependence
Speculation & Collapsing". In Proc. oflnt. Symp. on Microarchitecture 1996

15. Y. Sazeides and J.E. Smith. 'The Predictability of Data Values". In Proc. oflnt. Svmp on
Microarchitecture, pp 248-258. 1997.

16. M.D. Smith, M. Johnson and M.A. Horowitz. "Limits on Multiple Instruction Issue" In
Proc. of the ACM Conf. on Architectural Support for Programming Languages and
Operating Systems, 1989.

JJ3. Smith and A.R. Pleszkun. "Implementing Precise Interrupts in Pipelined Processors"
IEEE Transaction on Computers, 37(5), pp. 562-573, May 1988

18. G.Sohi, S.Breach and T. Vijaykumar."Multiscalar Processors". In Proc. oflnt. Symp on
Computer Architecture, pp 414-425, 1995

19. A. Srivastava and A. Eustace. "ATOM: A system for building customized program analysis
tools . In Proc of,he 1994 Conf. on Programming Languages Design and Implementation
1994.

20. K.B. Theobaid, G.R. Gao and L.J. Hendren. "On the Limits of Program Parallelism and its
imoothability In Proc. oflnt. Symp. on Microarchitecture, pp 10-19, 1992

21. D.W. Wall. "Limits of Instruction-Level Parallelism". Technical Report WRL 93/6 Digital
Western Research Laboratory, 1993.

22 K. Wang and M. Franklin. "Highly Accurate Data Value Prediction using Hybrid Predictors".
In Proc. oflnt. Symp. on Microarchitecture, pp 281-290, 1997.

23. K.C.Yeager. "The MIPS R10000 Superscalar Microprocessor" IEEE Micro 16(2) DD 28-
40, April 1996. '

17

598

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Simulating Magnetized Plasma with the
Versatile Advection Code

Rony Keppens1 and Gabor Töth2

1
 FOM-Institute for Plasma-Physics Rijnhuizen,

P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands,
keppensfirijnh.nl

2 Department of Atomic Physics, Eötvös University,
Puskin u. 5-7, Budapest 1088, Hungary,

gtothfflhercules.elte.hu

Abstract. Matter in the universe mainly consists of plasma. The dy-
namics of plasmas is controlled by magnetic fields. To simulate the evo-
lution of magnetized plasma, we solve the equations of magnetohydro-
dynamics using the Versatile Advection Code (VAC).
To demonstrate the versatility of VAC, we present calculations of the
Rayleigh-Taylor instability, causing a heavy compressible gas to mix into
a lighter one underneath, in an external gravitational field. Using a single
source code, we can study and compare the development of this insta-
bility in two and three spatial dimensions, without and with magnetic
fields. The results are visualised and analysed using IDL (Interactive
Data Language) and AVS (Advanced Visual Systems).
The example calculations are performed on a Cray J90. VAC also runs
on distributed memory architectures, after automatic translation to High
Performance Fortran. We present performance and scaling results on a
variety of architectures, including Cray T3D, Cray T3E, and IBM SP
platforms.

1 MagnetoHydroDynamics

The MHD equations describe the behaviour of a perfectly conducting fluid in the
presence of a magnetic field. The eight primitive variables are the density p(r, t),
the three components of the velocity field v(r, t), the thermal pressure p(r, t), and
the three components of the magnetic field B(r, t). When written in conservation
form, the conservative variables are density p, momentum pv, energy density £,
and the magnetic field B. The thermal pressure p is related to the energy density
as p = (7 - 1)(£ - \pv2 - ±J32), with 7 the ratio of specific heats. The eight
non-linear partial differential equations express: (1) mass conservation; (2) the
momentum evolution (including the Lorentz force); (3) energy conservation; and
(4) the evolution of the magnetic field in an induction equation. The equations
are given by

% + V • (Pv) = 0. (1)

599

FEUP - Faculdade de Engenharia da Universidade do Porto

d(Pv) „ , —7£- + V • [pvv + ptotI - BB] = pg, (2)

-^ + V • (5v) + V • (p,otv) - V • (v • BB) = pg • v + V • [B x 77(V x B)], (3)

dB
-^ + V • (vB - Bv) = -V x [»7(V x B)]. (4)

We introduced ptot = p + \B2 as the total pressure, / as the identity tensor,
g as the external gravitational field, and defined magnetic units such that the
magnetic permeability is unity.

Ideal MHD corresponds to a zero resistivity 77 and ensures that magnetic flux
is conserved. In resistive MHD, field lines can reconnect. An extra constraint
arises from the non-existence of magnetic monopoles, expressed by V • B = 0.
The ideal MHD equations allow for Alfven and magnetoacoustic wave modes,
while the induction equation prescribes that flow across the magnetic field en-
trails the field lines, so that field lines are 'frozen-in'. The field may, in turn,
confine the plasma. The MHD description can be used to study both laboratory
and astrophysical plasma phenomena. We refer the interested reader to [2] for
a derivation of the MHD equations starting from a kinetic description of the
plasma, while excellent treatments of MHD theory can be found in, e.g. [4,1].

2 The Versatile Advection Code

The Versatile Advection Code (VAC) is a general purpose software package for
solving a conservative system of hyperbolic partial differential equations with
additional non-hyperbolic source terms [10,11], in particular the hydrodynamic
(B = 0) and magnetohydrodynamic equations (l)-(4), with optional terms for
gravity, viscosity, thermal conduction, and resistivity.

VAC is implemented in a modular way, which ensures its capacity to model
several systems of conservation laws, and makes it possible to share solution
algorithms among all systems. A variety of spatial and temporal discretizations
are implemented for solving such systems on a finite volume structured grid.
The spatial discretizations include two Flux Corrected Transport variants and
four Total Variation Diminishing (TVD) algorithms (see [15]). These numerical
schemes are shock-capturing and second order accurate in space and time.

Explicit time integration may exploit predictor-corrector and Runge-Kutta
time stepping, while for multi-timescale problems, mixed implicit/explicit time
integration is available to treat only some variables, or some terms in the gov-
erning equations implicitly [7]. Fully implicit time integration can be of interest
when modeling steady-state problems. Typical astrophysical applications where
semi-implicit and implicit methods are efficiently used can be found in [8,14].

VAC runs on personal computers (Pentium PC under Linux), on a variety of
workstations (DEC, Sun, HP, IBM) and has been used on SGI Power Challenge
Cray J90 and Cray C90 platforms. To run VAC on distributed memory archi-
tectures, an automatic translation to High Performance Fortran (HPF) is done

600

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

at the preprocessing phase (see [9]). We have tested the generated HPF code
on several platforms, including a cluster of Sun workstations, a Cray T3D, a
16-node Connection Machine 5 (using an automatic translation to CM-Fortran)
an IBM SP and a Cray T3E. Scaling and performance is discussed in section 3.'

On-line manual pages, general visualization macros (for IDL, MatLab and
SM), and file format transformation programs (for AVS, DX, and Gnuplot) fa-
cilitate the use of the code and aid in the subsequent data analysis.

In this manuscript, we present calculations done in two and three spatial
dimensions, for both hydrodynamic and magnetohydrodynamic problems This
serves to show how VAC allows a single problem setup to be studied under
various physical conditions. We have used IDL and AVS to analyse the appli-
cation presented here. Our data analysis and visualization encompasses X-term
animation, generating MPEG-movies, and video production.

3 Scaling results

As detailed in [9], the source code uses a limited subset of the Fortran 90 lan-
guage, extended with the HPF forall statement and the Loop Annotation SYntax
(LASY) which provides a dimension independent notation. The LASY nota-
tion [12] is translated by the VAC preprocessor according to the dimensionality
of the problem. Further translation to HPF involves distributing all global non-
static arrays across the processors, which is accomplished in the preprocessing
stage by another Perl script.

Figure 1 summarizes timing results obtained on two vector (Cray J90 and
C90) and three massively parallel platforms (Cray T3D, T3E and IBM SP)
We solve the shallow water equations (l)-(2) with B = 0 and p = (g/2)p2 on
a 104 x 104 grid on 1, 2, 4, 8, and 13 processors. This simple model problem
is described in [13], and our solution method contains the full complexity of a
real physics application. We used an explicit TVD scheme exploiting a Roe-type
approximate Riemann solver. We plot the number of physical grid cell updates
per second against the number of processors (solid lines). The dashed lines show
the improved scaling for a larger problem of size 208 x 208, up to 16 processors.
On all parallel platforms, we exploited the Portland Group pghpf compiler We
find an almost linear speedup on the Cray T3D and T3E architectures, which
is rather encouraging for such small problem sizes. Note how the single node
execution on the IBM SP platform is a factor of 2 to 3 faster than the Cray
T3E, but the scaling results are poor. The figure indicates clearlv that for this
hydrodynamic application, on the order of 10 processors of the Cray T3E and
IBM SP are needed to outperform a vectorized Fortran 90 run on one processor
of the Cray C90. Detailed optimization strategies for all architectures shown in
Figure 1 (note the Pentium PC result and the DEC Alpha workstation timing
in the bottom left corner) are discussed in [13].

601

FEUP - Faculdade de Engenharia da Universidade do Porto

i i—i—i—r i i 1—i—i .'i i

♦ C90 f90

XI
c
o
o
0)
to
\

en
_£ 105

o
"O
Q_
3

U
I

o

10"

Alpha f90

 1—i—'''I

. -*SP pghpf

>T3E pghpf

^P pghpf

T3E pghpf

pghpf

-i i 'ill

10
Number of Processors

Fig. 1. Combined performance and scaling results for running the Versatile Advection
Code on vector and parallel platforms. See text for details.

602

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

4 Simulating Rayleigh-Taylor instabilities

To demonstrate the advantages of having a versatile source code for simulating
fluid flow, we consider what happens when a heavy compressible plasma is sit-
ting on top of a lighter plasma in an external gravitational field. Such a situation
is unstable as soon as the interface between the two is perturbed from perfect
flatness. The instability is known as the Rayleigh-Taylor instability. Early ana-
lytic investigations date back to a comprehensive and detailed analysis given by
Chandrasekhar [3].

The initial configuration is one where two layers of prescribed density ra-
tio (dense to light ratio of pd/pt = 10) are left to evolve between two planes
(y = 0 and y = 1), with gravity pointing downwards (g = -iy unit vector).
The heavy plasma on the top is separated from the light plasma below it by
the surface y = yQ + tsin(kxx)sin{kzz). Initially, both are at rest with v = 0,
and the thermal pressure is set according to the hydrostatic balance equation
(centered differenced formula dp/dy = -p). Boundary conditions make top and
bottom perfectly conducting solid walls, while the horizontal directions are pe-
riodic. We then exploit the options available in VAC to see how the evolution
changes when going from two to three spatial dimensions, and what happens
when magnetic fields are taken along. All calculations are done on a Cray J90,
where we preprocess the code to Fortran 90 for single-node execution.

4.1 Two-dimensional simulations

Figure 2 shows the evolution of the density in two two-dimensional simulations
without and with an initial horizontal magnetic field B = 0.1ex. Both simulations
are done on a uniform 100 x 100 square grid, and the parameters for the initial
separating surface are y0 = 0.8, e = 0.05, and kx = 2TT (there is no z dependence
in 2D). The data is readily analysed using IDL.

In both cases, the heavy plasma is redistributed in falling spikes or pillars, also
termed Rayleigh-Taylor 'fingers', pushing the lighter plasma aside with pressure
building up underneath the pillars. However, in the ideal MHD case, the frozen-in
field lines are forced to move with the sinking material, so it gets wrapped around
the pillars. The extra magnetic pressure and tension forces thereby confine the
falling dense plasma and slow down the sinking and mixing process. In fact, since
we took the initial displacement perpendicular to the horizontal magnetic field,
we effectively maximized its stabilizing influence.

In [3], the linear phase of the Rayleigh-Taylor instability in both hydrody-
namic and magnetohydrodynamic incompressible fluids is treated analytically.
The stabilizing effect of the uniform horizontal magnetic field is evident from
the expression of the growthrate n as a function of the wavenumber kx

y Pd+Pi 2n(pd + Pl)-
[b)

Hence, while the shortest wavelength perturbations are the most unstable ones
in hydrodynamics (B = 0), all wavelengths below a critical XCTit = B2/g(pd-Pl)

603

FEUP - Faculdade de Engenharia da Universidade do Porto

0.8

0.6

0.4

0.2 \

time=

0.2 0.4 0.6 0.1
x

time= 1.0040

0.2 0.4 0.6 O.I
x

0.8

0.6
-

0.4
,

0.2

.

time= 0.0000

0.2 0.4 0.6 O.I
x

0.2 0.4 0.6 0.!

time= 1.0032

0.8 W^J

0.6 ■

>,
0.4

}
0.2

0 0.2 0.4 0.6

time= 2.0 074
X

0.2 0.4 0.6

time= 2.0005

Fig. 2 Rayleigh-Taylor instability simulated in two spatial dimensions, in a hydrody-

n the ™* hTT^^"* (right) case. The logarithm of the density and,
in the magnetohydrodynaimc case, also the magnetic field lines, are plotted

604

0.8

0.6 h

0.4

0.2

' • I L.-1-

0.2 0.4 0.6 0.1
x

0.8

0.6

0.4

0.2

time= 0.0000 time= 0.0000

0.2 0.4 0.6 o.a
X

0.8|

0.6

0.4

0.2

time= 1.0040

0.2 0.4 0.6 0.8
x

time= 1.0032

0.2 0,4 0.6 0.!
x

times 2.0074

0.2 0.4 0.6 0.8
x

0.2 0.4 0.6 0.8
x

time= 2.0005

Fig. 2. Rayleigh-Taylor instability simulated in two spatial dimensions, in a hydrody-
namic (left) and magnetohydrodynamic (right) case. The logarithm of the density and,
in the magnetohydrodynamic case, also the magnetic field lines, are plotted.

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

are effectively suppressed by a horizontal magnetic field of strength B. Similarly,
our initial perturbation with A = 2w/kx = 1 will be stabilized as soon as the
magnetic field surpasses a critical field strength Bcrit = ^/g\{pd - pi) ~ 0.95.

The simulations confirm and extend these analytic findings: the predicted
growthrate can be checked (noting that our simulations are compressible), while
the further non-linear evolution can be investigated. The discrete representation
of the initial separating surface causes intricate small-scale structure to develop
in the simulation at left of Figure 2. This is consistent with the fact that in a
pure hydrodynamic case, the shortest wavelengths are the most unstable ones.
Naturally, the simulation is influenced by numerical diffusion, while the periodic
boundary conditions and the initial state select preferred wavenumbers. The
suppression of short wavelength disturbances in the MHD case is immediately
apparent, since no small-scale structure develops. The simulation at right has
an initial plasma beta (ratio of gas to magnetic pressure forces) of about 400.
For higher plasma beta yet, the MHD case will resemble the hydrodynamic
simulation more closely, while a stronger magnetic field (B = ex) suppresses the
development of the instability entirely, as theory predicts.

Note also how the falling pillars develop a mushroom shape (left frames) as a
result of another type of instability caused by the velocity shear across their edge:
the Kelvin-Helmholtz instability. The lighter material is swept up in swirling
patterns around the sinking spikes. In the MHD simulation (right frames) the
Kelvin-Helmholtz instability does not develop due to the stabilizing effect of the
magnetic field. Typically however, both instabilities play a crucial role in various
astrophysical situations. Two dimensional MHD simulations of Rayleigh-Taylor
instabilities in young supernova remnants [5] demonstrate this, and confirm the
basic effects evident from Figure 2: magnetic fields get warped and amplified
around the 'fingers'. General discussions of these and other hydrodynamic and
magnetohydrodynamic instabilities are found in [3].

4.2 Three-dimensional simulations

In Figure 3, we present a snapshot of a hydrodynamical calculation in a 3D
50x50x50 unit box, where the initial configuration has both kx = 2n and k: =
2TT. With gravity downwards, we look into the box from below. On two vertical
cuts, we show at time t = 2 (i) the logarithm of the density in a color scale
and (ii) the streamlines of the velocity field, colored according to the (logarithm
of the) density. The cuts are chosen to intersect the initial separating surface
between the heavy and the light plasma at its extremal positions where the
motion is practically two-dimensional. 3D effects are readily identified by direct
comparison with the two-dimensional hydrodynamic calculation. The time series
of the 3D data set has been analysed using AVS (a video is made with AVS to
demonstrate how density, pressure and velocity fields evolve during the mixing
process).

Figure 4 shows the evolution of a three-dimensional MHD calculation at times
t = 1 and t = 2. We show an isosurface of the density (at 1% above the initial
value for prf), colored according to the thermal pressure. A cutting plane also

605

FEUP - Faculdade de Engenharia da Universidade do Porto

Log(Rho) &Streamli

neI')3:ndt5t"Taylr inSt;bf f in 3D> Pur^ hydrodynamic. We show streamlines
(left) and density contours (nght) in two vertical cutting planes.

606

Log(Rho) & Streamli

t= 2.00

Fig. 3. Rayleigh-Taylor instability in 3D, purely hydrodynamic. We show streamlines
(left) and density contours (right) in two vertical cutting planes.

shows the vertical stratification of the thermal pressure. Note the change in the
initial configuration (kx = 6ir and kz = 4n, with y0 = 0.7): more and narrower
spikes are seen to grow and to split up. The AVS analysis of the full time series
shows how droplets form at the tips of the falling pillars, which seem to expand
horizontally to a critical size before continuing their fall. At the same time, the
magnetic field gets wrapped around the falling pillars. Figure 4 nicely confirms
that places where spikes branch into narrower ones correspond to places with ex-
cess pressure underneath. Similar studies of incompressible 3D ideal MHD cases
are found in [6]. They confirm that strong tangential fields suppress the growth
as expected from theoretical considerations, while the Rayleigh-Taylor instabil-
ity acts to amplify magnetic fields locally. In such magnetic fluids, parameter
regimes exist where secondary Kelvin-Helmholtz instabilities develop, just as in
the hydrodynamic situation of Figure 3 (note the regions of strong vorticity in
the streamlines).

p&Rho p&Rho

t= 1.00 p: 1.01 t= 2.00 p: 1.01

Fig. 4. 3D MHD Rayleigh-Taylor instability. At two consecutive times, an isosurface
of the density is colored according to the thermal pressure. The thermal pressure is
also shown in a vertical cut.

5 Conclusions

We have developed a powerful tool to simulate magnetized fluid dynamics. The
Versatile Advection Code runs on many platforms, from PC's to supercomputers
including distributed memory architectures. The rapidly maturing HPF compil-
ers can yield scalable parallel performance for general fluid dynamical simula-
tions. Clearly, the scaling and performance of VAC make high resolution 3D

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

607

FEUP - Faculdade de Engenharia da Universidade do Porto

simulations possible, and detailed investigations may broaden our insight in the
intricate dynamics of magneto-fluids and plasmas.

We presented simulations of the Rayleigh-Taylor instability in two and three
spatial dimensions, with and without magnetic fields. VAC allows one to do
all these simulations with a single problem setup, since the equations to solve
and the dimensionality of the problem is simply specified in a preprocessing
phase Data analysis can be done using a variety of data visualization packages
including IDL and AVS as demonstrated here. In the future, we plan to use VAC
to investigate challenging astrophysical problems, like winds and jets emanating
from stellar objects, magnetic loop dynamics, accretion onto black holes, etc

Website info on the code is available at http: //www. f ys.ruu.nl/'toth/ and
at http: //www. f ys. ruu. nl/~mpr/. MPEG-animations of various test problems
can also be found there.

Acknowledgements. The Versatile Advection Code was developed as part
of the project on 'Parallel Computational Magneto-Fluid Dynamics', funded by
the Dutch Science Foundation (NWO) Priority Program on Massively Parallel
nT^^ coordinated by Prof. Dr. J.P. Goedbloed. Computer time on the
CM-5, the Cray T3E and IBM SP machines was sponsored by the Dutch 'Stick-
ing Nationale Computerfaciliteiten' (NCF). R.K. performed the simulations on
the Cray T3D, J90, and Sun workstation cluster at the Edinburgh Parallel Com-
PUt^?e^e With SUPP°rt fr0m the TRACS Programme as part of his research
at FOM^G.T. receives a postdoctoral fellowship (D 25519) from the Hungarian
Science Foundation (OTKA), and is supported by the OTKA grant F 017313.

References

1. Bjskamp D.: Nonlinear Magnetohydrodynamics. Cambridge Monographs on
Plasma Physics 1, Cambridge University Press, Cambridge (1993)

Bittencourt, J.A.: Fundamentals of Plasma Physics. Pergamon Press, Oxford (1986)
Chandrasekhar S, Hydrodynamic and Hydromagnetic stability. Oxford University
Press, New York (1961)

Freidberg, J.P.: Ideal Magnetohydrodynamics. Plenum Press, New York (1987)

Jun, B.-I., Norman, M.L.: MHD simulations of Rayleigh-Taylor instability in young
supernova remnants. Astrophys. and Space Science 233 (1995) 267-272

• Jun, B.-I., Norman, M.L., Stone, J.M.: A numerical study of Rayleigh-Taylor insta-
bility in magnetic fluids. Astrophys. J. 453 (1995) 332-349

Keppens, R Töth, G., Botchev, M.A., van der Ploeg, A.: Implicit and semi-implicit
schemes in the Versatile Advection Code: algorithms. Submitted for publication

van der Ploeg, A., Keppens, R, Töth, G.: Block Incomplete LU-preconditioners for
Implicit Solution of Advection Dominated Problems. In: Hertzberger, B., Sloot P
eds.): Proceedings of High Performance Computing and Networking Europe 1997

Lecture Notes in Computer Science, Vol. 1225. Springer-Verlag, Berlin Heidelberg
New York (1997) 421-430 5

Töth, G.: Preprocessor based implementation of the Versatile Advection Code for
workstations, vector and parallel computers. These proceedings.

608

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

10. T6th, G.: Versatile Advection Code. In: Hertzberger, B., Sloot, P. (eds.): Proceed-
ings of High Performance Computing and Networking Europe 1997. Lecture Notes
in Computer Science, Vol. 1225. Springer-Verlag, Berlin Heidelberg New York (1997)
253-262

11. T6th, G.: A general code for modeling MHD flows on parallel computers: Versatile
advection code. Astrophys. Lett. & Comm. 34 (1996) 245

12. T6th, G.: The LASY Preprocessor and Its Application to general Multidimensional
Codes. J. Comput. Phys. 138 (1997) 981-990

13. Toth, G., Keppens, R.: Comparison of Different Computer Platforms for Run-
ning the Versatile Advection Code. Accepted for High Performance Computing and
Networking (1998)

14. Toth, G., Keppens, R., Botchev, M.A.: Implicit and semi-implicit schemes in the
Versatile Advection Code: numerical tests. Accepted for publication in Astron. &
Astrophys. (1997)

15. Töth, G., Odstrcil, D.: Comparison of some Flux Corrected Transport and Total
Variation Diminishing Numerical Schemes for Hydrodynamic and Magnetohydro-
dynamic Problems. J. Comput. Phys. 128 (1996) 82

609

FEUP - Faculdade de Engenharia da Universidade do Porto

610

VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing

Parallel Grid Manipulations in Earth Science
Calculations

William Sawyer1'2, Lawrence Taka.cs1, Arlindo da Silva1, and Peter Lyster1'2

1 NASA Goddard Space Flight. Center, Data Assimilation Office
Code 910.3. Greenbelt MD, 20771, USA

{sawyer, takacs, dasilva, lys}0dao.gsfc.nasa.gov
ht tp://dao.gsfc.nasa.gov

Department of Meteorology. University of Maryland at College Park
College Park MD, 20742-2425, USA

{sawyer, lys}eatmos.umd.edu

Abstract. We introduce the parallel grid manipulations needed in the
Earth Science applications currently being implemented at the Data As-
similation Office (DAO) of the National Aeronautics and Space Admin-
istration (NASA). Due to real-time constraints the DAO software must
run efficiently on parallel computers. Numerous grids, structured and
unstructured are employed in the software.
The DAO has implemented the PILGRIM library to support multiple
grids and the various grid transformations between them, e.g., interpo-
lations, rotations, prolongations and restrictions. It allows grids to be
distributed over an array of processing elements (PEs) and manipulated
with high parallel efficiency. The design of PILGRIM closely follows the
DAO's requirements, but it can support other applications which em-
ploy certain types of grids. New grid definitions can be written to support
still others. Results illustrate that PILGRIM can solve grid manipulation
problems efficiently on parallel platforms such as the Cray T3E.

1 Introduction

The need to discretize continuous models in order to solve scientific problems
gives rise to finite grids — sets of points at which prognostic variables are sought.
So prevalent is the use of grids in science that it is possible to forget that a.
computer-calculated solution is not the solution to the original problem but
rather of a discretized representation of the original problem, and moreover is
only an approximate solution, due to finite precision arithmetic. Grids are ubiq-
uitous where analytical solutions to continuous problems are not obtainable, e.g.,
the solution of many differential equations.

Classically a structured grid is chosen a priori for a given problem. If the
quality of the solution is not acceptable, then the grid is made finer, in order to
better approximate the continuous problem.

For some time the practicality of unstructured grids has also been recognized.
In such grids it is possible to cluster points in regions of the domain which require

611

FEUP - Faculdade de Engenharia da Universidade do Porto

higher resolution, while retaining coarse resolution in other parts of the domain.
Unstructured grids are often employed in device simulation [1], computational
fluid dynamics [2], and even in oceanographic models [3]. Although these grids
are more difficult to lay out than structured grids, much research has been
done in generating them automatically [4]. In addition, once the grid has been
generated, there numerous methods and libraries are available to adaptivelv
refine the mesh [5] to provide a more precise solution.

Furthermore, the advantages of multiple grids of varying resolutions for a
given domain have been recognized. This is best known in the Multigrid tech-
nique [6] in which low frequency error components of the discrete solution are
eliminated if values on a given grid are restricted to a coarser grid on which a
smoother is applied. But multiple grids also find application other fields such as
speeding up graph partitioning algorithms [7].

An additional level of complexity has arisen in the last few years: many con-
temporary scientific problems must be decomposed over an array of processing
elements (or PEs) in order to obtain a solution in an expedient manner. Depend-
ing on the parallelization technique, not only the work load but also the grid
itself may be distributed over the PEs, meaning that different parts of the data
reside in completely different memory areas of the parallel machine. This makes
the programming of such an application much more difficult for the developer.

The Goddard Earth Observing System (GEOS) Data Assimilation Svstem
(DAS) software currently being developed at the Data Assimilation Office (DAO)
is no exception to the list of modem grid applications. GEOS DAS uses observa-
tional data with systematic and random errors and incomplete global coverage
to estimate the complete, dynamic and constituent state of the global earth
system. The GEOS DAS consists of two main components, an atmospheric Gen-
eral Circulation Model (GCM) [8] to predict the time evolution of the global
earth system and a Physical-space Statistical Analysis Scheme (PSAS) [9] to
periodically incorporate observational data.

At least three distinct grids are being employed in GEOS DAS: an observa-
tion grid — an unstructured grid of points where physical quantities measured
by instruments or satellites are associated — a structured geophysical grid of
points spanning the earth at uniform latitude and longitude locations where
prognostic quantities are determined, and a. block-structured computational grid
which may be stretched in latitude and longitude. Each of these grids has a
different structure and number of constituent points, but. there are numerous
interactions between them. Finally the GEOS DAS application is targeted for
distributed memory architectures and employs a message-passing paradigm for
the communication between PEs.

In this document we describe the design of PILGRIM (Fig. 1), a parallel li-
brary for grid manipulations, which fulfills the requirements of GEOS DAS The
design of PILGRIM isjbject-oriented [10] in the sense that it is modular, data is
encapsulated in each design layer, operations can be overloaded, and different in-
stantiations of grids can coexist, simultaneously. The library is realized in Fortran
90, which allows the necessary software engineering techniques such as modules

612

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Grid Definitions and Transformations L:illlUli'-li)llj!tIlKlC{!t,iÜ

OhüCTViiiinii jjrkl

Ciikl nitalinn

Grid inicrpoliuiuns

Sparse Linear Algebra Marix-wcnms» multiplications
lll.St'll IDWl-llllit'S

Communication Bejiin/Eml Tiansk-r

Giiiher/Scatter/Trausposi?

Decomposition ovwc/Dcstrov
Permute

Buffers Pack/Unpack

Ghost Regions

Communication MPl
SHMEM
Sliaird memory pruuii

BLAS SDOT
SAXPY
SCiEMV

Fig. 1. PILGRIM assumes the existence of fundamental communication primitives such
as the Message-Passing Interface (MPI) and optimized Basic Linear Algebra Subrou-
tines (BLAS). PILGRIM'S first layer contains routines for communication as well as for
decomposing the domain and packing and unpacking sub-regions of the local domain.
Above this is a sparse linear algebra layer which performs basic sparse matrix opera-
tions for grid transformations. Above PILGRIM, modules define and support, different
grids. Currently only the grids needed in GEOS DAS are implemented, but the further
modules could be designed to support yet other grids.

and derived data types, while keeping in line with other Fortran developments
at the DAO. The communication layer is implemented using MPI [11]: however
the communication interfaces defined in PILGRIM'S primary layer could con-
ceivably be implemented with other message-passing libraries such as PVM [12]
or with other paradigms, e.g., Cray SHMEM [13] or with shared-memory prim-
itives which are available on shared-memory machines like the SGI Origin or
SUN Enterprise.

This document is structured in a bottom-up fashion. Reasonable design as-
sumptions are made in Sect. 2 in order to ease the implementation. The layer
for communication, decompositions, and buffer packaging is discussed in Sect" 3
The sparse linear algebra layer is specified in Sect. 4. The plug-in grid modules
are defined in Sect. 5 to the degree necessary to meet the requirements of GEOS
DAS. In Sect. 6 some examples and prototype benchmarks are presented for the
interaction of all the components. Finally we summarize our work in Sect. 7.

2 Design Assumptions

A literature search was the first step taken in the PILGRIM design process in
order to find public domain libraries which might be sufficient for the DAO's
requirements [14]. Surprisingly, none of the common parallel libraries for the
solution of sparse matrix problems, e.g.. PETSc [15]. Aztec [16]. PLUMP [17],
et al., was sufficient for our purposes. These libraries all trv to make the parallel
implementation transparent to the application. In particular, the application is
not supposed to know how the data are actually distributed over the PEs

613

FEUP - Faculdade de Engenharia da Universidade do Porto

This trend in libraries is not universally applicable for the simple reason
that if an application is to be parallelized, the developers generally have a good
idea of how the underlying data should be distributed and manipulated Experi-
ence has shown us that hiding complexity often leads to poor performance, and
the developer often resorts to workarounds to make the system perform in the
manner she or he envisions. If the developer of a parallel program is capable of
deciding on the proper data distribution and manipulation of local data then
those decisions need to be supported.

In order to minimize the scope of PILGRIM, other simplifying assumptions
were made about the way the library will be used.

1. The local portion of the distributed grid array is assumed to be a contiguous
section of memory. The local array can have any rank, but if the rank is
greater than one the developer must assure that no gaps are introduced
into the actual data representation, for example, by packing it into a 1-D
array if necessary.

2. Grid transformations are assumed to be sparse, i.e., each of the values on one
grid is determined from a linear combination of only a few values from the
other grid The linear transformation corresponds to a sparse matrix with a
predictable number of non-zero entries per row. This assumption is realistic
lor the localized interpolations used in GEOS DAS.

3. At a high level, the application can access data through global indices i e
the indices of the original undistributed problem. However, at the level where
most computation is performed, the application needs to work with local in-
dices (ranging from one to the total number of entries in the local contiguous
array). The information to perform global-to-local and local-to-global map-
pings must be contained in the data structure denning the grid However it
is assumed that these mappings are seldom performed, e.g., at the beginning

A TnT execution, and these mappings need not be efficient
4. All decomposition-related information is replicated on all PEs.

These assumptions are significant. The first avoids the introduction of an
opaque type for data and allows the application to manipulate the local data as it
sees fit The fact that the data are contained in a simple data structure generally
allows higher performance than an implementation which buries the data inside a
derived type The second assumption ensures that the matrix transformation are
not memory limited. The third implies that most of the calculation is performed
on he data ,n a local fashion. In GEOS DAS it is fairly straightforward to run
in this mode; however, it might not be the case in other applications. The last
assumption assures that every PE knows about the entire data decomposition.

3 Communication and Decomposition Utilities

hi this layer communication routines are isolated, and basic functionality is pro-
vided for defining and using data decompositions as well as for moving sect on«
of data arrays to and from buffers. " un"

614

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

The operations on data decompositions are embedded in a Fortran 90 module
which also supplies a generic DecompType to describe a decomposition. Any
instance of DecompType is replicated on all PEs such that every PE has access to
information about the entire decomposition. The decomposition utilities consist
of the following:

DecompRegularld
DecompR.eguIar2d
DecompR.egular3d

Create a 1-D blockwise data decomposition

Decomplrregular
DecompCopy
DecompPermute
DecompFree
DecompGlobalToLocal Id
DecompGlobalToLocal2d
DecompLocalToG lobal 1 d
DecompLocalToGloballd

Create a 2-D block-block data decomposition
Create a 3-D block-block-block data decomposition
Create an irregular data decomposition
Create new decomposition with contents of another
Permute PE assignment in a given decomposition
Free a decomposition and the related memory
Map global 1-D index to local (pe.index)
Map global 2-D index to local (pe.index)
Map local (pe.index) to global 1-D index
Map local (pe,index) to global 2-D index

Using the Fortran 90 overloading feature, the routines which create new
decompositions are denoted by DecompCreate. Similarly, the 1-D and 2-D global-
to-local and local-to-global mappings are denoted by DecompGlobalToLocal and
DecompLocalToGlobal. resulting in a total of five fundamental operations.

Communication primitives are confined to this layer because it mav be nec-
essary at some point to implement them with a message-passing library other
than MPI such as PVM or SHMEM, or even with shared-memory primitives
such as those on the SGI Origin (the principle platform at the DAO). Thus it is
wise to encapsulate all message-passing into one Fortran 90 module. For brevity,
only the overloaded functionality is presented:

Parlnit
ParExit
ParSplit
ParMerge

Initialize the parallel code segment
Exit from the parallel code segment

ParScatter
ParGather
ParBegiuTransfer
ParEndTransfer
ParExchange Vector
Par Redistribute

Split parallel code segment into two groups
Merge two code segments
Scatter global array to given data, decomposition
Gather from data decomposition to global array
Begin asynchronous data transfer
End asynchronous data transfer
Transpose block-distributed vector over all PEs
Redistribute one data decomposition to another

In order to perform calculations locally on a given PE it is often necessary
to "ghost adjacent regions, that is. send boundary regions of the local domain
to adjacent PEs. To this end a module has been constructed to move »host
regions to and from buffers. The butlers can be transferred to other PEs with
the communication primitives such as ParBeginTransf er and ParEndTransfer
Currently the buffer module contains the following non-overloaded functionality

615

FEUP - Faculdade de Engenharia da Universidade do Porto

BufferPackGhost2dReal
BufferUnpackGhost2dR.ea.l
BufferPackGhost3dReal
BufferUnpackGhost3dR.ea;
'BufferPackSparseReal
B»fferUnpa.ckSparseR.eal

Pack a 2-D array sub-region into buffer
Unpack buffer into 2-D array sub-region
Pack a 3-D array sub-region into buffer
Unpack buffer into 3-D array sub-region
Pack specified entries of vector into buffer
I1 n pack buffer into specified entries of vector

In this module, as in most others, the local coordinate indices are used instead
of global indices. Clearly this puts responsibility on the developer to keep track
oi the indices which correspond to the ghost regions. In GEOS DAS this turns
out to be fairly straightforward.

4 Sparse Linear Algebra

The concept of transforming one grid to another involves interpolating the val-
ues defined on one grid at grid-points on another. These values are stored as
contiguous vectors with a given length. 1. ..Ntocal, and distribution defined by
the grid decomposition (although the vector might actually represent a multi-
dimensional array at a higher level). Thus the sparse linear algebra laver funda-
mentally consists of a facility to perform linear transformations on distributed
vectors.

A .AS ri1
1c1

0tl!er Parallel Sparse linear algebra PackaSes- e.g., PETSc [15] and
Aztec [16J, the linear transformation is stored in a distributed sparse matrix
format. Unlike those libraries, however, local indices are used when referring to
individual matrix entries, although the mapping DecompGlobalToLocal can be
used to translate from global to local indices. In addition, the application of the
linear transformation is a matrix-vector multiplication where the matrix is not
necessarily square, and the resulting vector may be distributed differently than
the original.

There are many approaches to storing distributed sparse matrices and per-
forming a the matrix-vector product. PILGRIM uses a format similar to that
described in [17], which is optimal if the number of non-zero entries per row is
constant.

Assumption 3 in Sect. 2 implies that the matrix definition is not time-
consuming In GEOS DAS the template of any given interpolation is initialized
once, but the interpolation itself is performed repeatedly. Thus relatively little
attention has been paid to the optimization of the matrix creation and definition
Hie basic operations for creating and storing matrix entries are-

SparseMatCreate
SparseM at Destroy

Create a sparse matrix

■SparselnsertEntries
SparselnsertLocalEntries

Destroy a sparse matrix
Insert entries replicated on all PEs
nsert entries of local PE

Two scenarios for inserting entries are supported. In the first scenario everv
PE inserts all matrix entries. Thus every argument of the corresponding routine,

616

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

SparselnsertEntries, is replicated. The local PE picks up only the data which
it needs, leaving other data to the appropriate PEs. This scenario is the easiest
to program if the sequential code version is used as the code base.

In the second scenario the domain is partitioned over the PEs, meaning that
each PE is responsible for a disjoint subset of the matrix entries, and the matrix
generation is performed in parallel. ('learly this is the more efficient scenario. The
corresponding routine. SparselnsertLocalEntries assumes that no two PEs
try to add the same matrix entry. However, it does not assume that the all matrix
entries reside on the local PE. and it will perform the necessary communication
to put the matrix entries in their correct locations.

The efficient application of the matrix to a vector or group of vectors is
crucial to the overall performance of GEOS DAS, since the linear transformations
are performed continually on assimilation runs for days or weeks at a time.
The most common transformation is between three-dimensional arrays of two
different grids which describe global atmospheric quantities such as wind velocity
or temperature. One 3-D array might be correspond to the geophysical grid which
covers the globe, while another might be the computational grid which is more
appropriate for the dynamical calculation. The explicit description of such a 3-D
transformation might be prohibitive in terms of memory. But fortunately, this
transformation only has dependencies in two of the three dimensions as it acts
on 2-D horizontal cross-sections independently.

To fulfill the assumptions in Sect. 2, a 2-D array is considered a vector x. Us-
ing this representation the transformations become parallel matrix-vector mul-
tiplications, which can be performed with one of the following two operations:

SparseMatVecMult Perform y <- a Ax + ßy \
SparseMatTransVecMult Perform y <- a A1 x + ßy\

In order to transform several arrays simultaneously, the arrays are grouped
into multiple vectors, that is. into a n x m matrix where 7? is the length of the
vector (number of values in the 2-D array), and in is the number of vectors. The
following matrix-matrix and matrix-transpose-matrix multiplications can group
messages in such a way as to drastically minimize latencies and utilize BLAS-2
operations instead of BLAS-1:

SparseMatMatMult
SparseMatT'ransMatMult

Perform Y <- a AX + ßY
Perform V" f^ aAJ A" + ßY

The distributed representation of the matrix contains, in addition to the ma-
trix information itself, space for the communication pattern. Upon entering any
one of the four matrix operations, t he the matrix is checked for new entries which
may have been added since its lasi application. If the matrix has been modified,
the operation first generates I lie communication pattern — an optimal map of
the information which has to be exchanged between PEs — before performing
the matrix multiplication. This is a fairly expensive operation, but in GEOS DAS
it only needs to be clone once when the matrix is first defined. Subsequently, the

617

FEUP - Faculdade de Engenharia da Universidade do Porto

matrix multiplication can be performed repetitively in the most efficient manner
jJUool Die.

5 Supported Grids

The grid data structure describe, „ set of gnd-pomts and their decomposition
over a group of PEs a, well as other information, such a. the size of the domain

1 au
rpF T TCtme itSdf ?°eS I10t COntain aCtUal data a»d can b* «plicated"

on all PEs due to its minimal memory requirements. The data reside in arravs

strtcw TlV6r P,ES and giVen meanhlg b)"the inf0rmatl0n in the «rid data tructure. There is no bm.tat.on on how the application accesses and manipulates
the local da a arrays. Two types of grids employed in GEOS DAS are described
here but others are conceivable and could be supported bv PILGRIM without
modifications to the library. " wruiu wit.nout

The latitude-longitude grid defines a lat-lon coordinate svstem - a regular

StüTinl cd earth Whh f P°in? iD °ne r°W havin* »"Pven latitude^
all po.nts in a column a given longuude. The grid encompasses the entire earth
Horn -7T to 7T longitudinally and from -TT/2 to ff/2 in latitude.

Liiiipiutlc

Fig 2 GEOS DAS uses a column decomposition of data (left), also termed a "checker

S) ^^"V^ 'V^ diStribUti0n °f ^ ^horizontal c^S^
(nght). The width and breadth of a column can be variable, although generally an
approximately equal number of points are assigned to every PE.

The decomposition of this grid is a "checkerboard" (Fig. 2) because the

Sed'b? ! ^71Si0nal da,n '^ C°nW ail '"* °f *' "e - ignated by the 2-D decompos.hoi, of the horizontal cross-section. This decom-

foTea" PEto°btaln 3 VThle~*]7rf reCtanglp °f P°intS ~ h » n°t —sari
ba a^ cL e j t ''VT'!'ned a? et,Ual aumbCT - »nd th- *>™ freedom for load

618

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

TYPE LatLonGridType
TYPE (DecompType) :: Decomp
INTEGER :: ImGlobal
INTEGER :: JmGlobal
REAL :: Tilt
REAL :: Rotation
REAL :: Precession
REAL,POINTER :: dLat(:)
REAL.POINTER :: dLon(:)

END TYPE LatLonGridType

! Decomposition
! Global Size in X
! Global Size in Y
! Tilt of remapped NP
! Rotation of remapped NP
! Precession of remapped NP
! Latitudes
! Longitudes

This grid suffices to describe both the GEOS DAS computational grid used
for dynamical calculations and the geophysical grid in which the prognostic
variables are sought. The former makes use of the parameters Tilt, Rotation
and Precession to describe its view of the earth (Fig. 3). and the dLat and
dLon grid box sizes to describe the grid stretching. The latter is defined by the
normal geophysical values for Tilt. Rotation and Precession = (f ,0,0) and
uniform dLat and dLon.

The observation grid data structure describes observation points over the
globe, as described by their lat-lon coordinates. In contrast, to the lat-lon grid, the
point grid decomposition is inherently one-dimensional since there no structure
to the grid.

TYPE ObsGridType
TYPE (DecompType)
INTEGER

END TYPE ObsGridType

Decomp ! Decomposition
Nobservations ! Total points

The data corresponding to this grid data structure is a set of vectors, one
for the observation values and several for attributes of those values, such as the
latitude, longitude and level at which an observation was taken.

6 Results

An example of a non-trivial transformation employed in atmospheric science ap-
plications is grid rotation [18]. Computational instabilities from finite difference
schemes can arise in the polar regions of the geophysical grid when a strong
cross-polar flow occurs. By placing the pole of the computational grid to the
geographic equator, however, the instability near the geographic pole is removed
due to the vanishing Coriolis term.

It is generally accepted that the physical processes such as those related to
long- and short-wave radiation can be calculated directly on the geophysical grid.
Dynamics, where the numerical instability occurs, needs to be calculated on the
computational grid. An additional refinement, involves calculating the dynamics
on a rotated stretched grid, in which the grid-points are not uniform in latitude
and longitude. The LatLonGridType allows for both variable lat-lon coordinates
as well as the description of any lat-lon view of the world where the poles are

619

FEUP - Faculdade de Engenharia da Universidade do Porto

assigned to a new geographical location. The grid rotation (without stretching)
is depicted in Fig. 3.

Fig. 3. The use of the latitude-longitude grid (a) and (c) as the computational grid
results in instabilities at the poles due to the Coriolis term. The instabilities vanish
with on a grid (b) where the pole has been rotated to the equator. The computational
grid is therefore a lat-lon grid (d) where the "poles" on the top and bottom are in the
Pacific and Atlantic Oceans, respectively.

It would be natural to use the same decomposition for both the geophysical
and computational grids. It turns out. however, that this approach disturbs data
locality inherent to this transformation (Fig. 4). If the application could have
unlimited freedom to choose the decomposition of the computational grid, the
forward and reverse grid rotations could exhibit excellent data locality, and the
matrix application would be much more efficient.1 Unfortunately, practicality
limits the decomposition of both the geophysical and computational grids to be
a checkerboard decomposition.

However, there are still several degrees of freedom in the decomposition,
namely the number of points on each PE and the assignment, of local regions to
PEs. While an approximately uniform number of points per PE is generally best
for the dynamics calculation, the assignment of PEs is arbitrary. The following
optimization is therefore applied: the potential communication pattern of a naive

A simply connected region in one domain will map to at most two simply connected
regions in the other.

620

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Unpermuted Communication Matrix Permuted Communication Matrix

r 0 219 5905 172 0 97 507 12"| [-5967 166 2 341 371 4 0 61
53 5731 690 2 1 303 132 0 53 5731 690 2 1 303 132 0
3 477 136 0 53 5727 516 0 0 219 5905 172 0 97 507 12
0 97 335 4 3 366 5942 165 516 0 53 5727 136 0 3 477

516 0 53 5727 136 0 3 -177 543 12 0 61 5941 172 0 183
5967 166 2 341 371 4 0 61 3 477 136 0 53 5727 516 0
543 12 0 61 5941 172 0 183 0 97 335 4 3 366 5942 165

L 133 0 1 302 760 1 54 5661J .133 0 1 302 760 1 54 5661

Fig. 4. The above matrices represent the number of vector entries requested by a
PE (column index) from another PE (row index) to perform a grid rotation for one
72 x 48 horizontal plane (i.e., one matrix-vector multiplication) on a total of eight
PEs. The unpermuted communication matrix reflects the naive use of the geophysical
grid decomposition and PE assignment for the computational grid. The permuted
communication matrix uses the same decomposition, except the assignment of local
regions to PEs is permuted. The diagonal entries denote data local to the PE and
represent work which can be overlapped with the asynchronous communication involved
in fetching the non-local data. The diagonal dominance of the communication matrix
on the right translates into a considerable performance improvement.

computational grid decomposition is analyzed by adopting the decomposition of
the geophysical grid. With a heuristic method, this analysis leads to a permuta-

tion of PEs for the computational grid which reduces communication (Fig. 4).
The decomposition of the computational grid is then defined as a permuted ver-
sion of the geophysical grid. Only then is the grid rotation matrix defined. An
outline of the code is as given in Algorithm 1.

Algorithm 1 (Optimized Grid Rotation) Given the geophysical grid decom-
position, find a permutation of the PEs which will maximize the data locality
of the geophysical-to-computational grid transformation, create and permute the
computation grid decomposition, and define the transformation in both direc-
tions.

SparseMatrixCreate(..., GeoToCorap)
SparseMatrixCreate(..., CompToGeo)
DecompCreate(..., GeoPhysDecomp)
LatLonCreate(GeoPhysDecomp, , GeoPhysGrid)
AnalyzeGridTransform(GeoPhysDecomp, Permutation)
DecompCopyC GeoPhysDecomp. CompDecomp)
DecompPermute(Permutation, CompDecomp)
LatLonCreate(CompDecomp CompGrid)
GridTransform(GeoPhysGrid, CompGrid, GeoToComp)
GridTransformC CompGrid, GeoPhysGrid, CompToGeo)

In GridTransf orm the coordinates of one lat-lon grid are mapped to another.
Interpolation coefficients are determined by the proximity of rotated grid-points
to grid-points on the other grid (Fig. 3). Various interpolation schemes can be
employed including bi-linear or bi-<ubic: the latter is employed in GEOS DAS.

621

FEUP - Faculdade de Engenharia da Universidade do Porto

The transformation matrix can be completely defined by the two grids — the
values on those grids are not necessary.

Once the transformation matrix is defined, sets of grid values, such as in-

dividual levels or planes of atmospheric data, can be transformed ad infinitum
using a matrix-vector multiplication.

DO L = 1, GLOBAL.Z

CALL SparseMatVecMult(GeoToComp, 1.0, In(l,l,L), 0.0. OutKl 1 L))
END DO ' '

Alternatively, it the transformation of the entire 3-D data set can be per-
formed with one matrix-matrix product:

CALL SparseMatMatMult(GeoToComp, GLOBAL.Z, 1.0, In, 0.0, 0ut2)

Note that the pole rotation is trivial (embarrassingly parallel) if anv given
plane resides entirely on one PE, i.e., if the 3-D array is decomposed in the z-
dimension. Unfortunately, there are compelling reasons to distribute the data in
vertical columns with the checkerboard decomposition.

Fig. 5 compares the performance of the unpermuted rotation with that of
the permuted rotation on the Cray T3E. A further optimization is performed by-
replacing the non-blocking MPI primitives used in ParBeginTransf ormby faster
Cray SHMEM primitives. The result of these optimizations is the improvement
in scalability from tens of PEs to hundreds of PEs. The absolute performance in
GFlop/s is presented in Fig. 6.

MPI Poto Rotation: Performance on Cray T3E
OptirmiKj MPI-SHMEM Pol« Rotation: Performance on Cray T3E

Cray T3E Processor* (300 MHi.)
Cray T3E Processors (300 MHz.)

Fig. 5. With a naive decomposition of both the geophysical and computational grids
and a straightforward MPI implementation, the performances at the left for the 7"> x
46 x 70 (*). 144 x 91 x 70 (x). and 28* x 181 x 70 (o) resolutions vield good scalability
only to 10-50 processors. The optimized MPI-SHMEM hybrid version on the right
scales to nearly the entire extent of Mit' machine (012 processors).

622

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

MPI-SHMEM Hybrid: Performance of the rotation of one field on T3E

100 200 300 400 500
Number of T3E (300MHz) Processing Elements

600

Fig. 6. The GFlop/s performances of the grid rotation on grids with 144 x 91 x 70 (o).
and 288 x 181 x 70 (x) resolutions is depicted. These results are an indication that the
grid rotation will not represent a bott leneck for the overall GEOS DAS system.

7 Summary

We have introduced the parallel grid manipulations needed by GEOS DAS and
the PILGRIM library to support them. PILGRIM is modular and extensible,
allowing us to support, various types of grid manipulations. Results from the
grid rotation problem were presented, indicating scalable performance on state-
of-the-art. parallel computers with a large number (> 100) of processors.

We are hoping to extend the usage of PILGRIM in GEOS DAS to the inter-
face between the forecast model and the statistical analysis, to perform further
optimizations on the library, and to offer the library to the public domain.

Acknowledgments

We would like to thank Jay Larson. Rob Lucchesi. Max Suarez. and Dan Schaffer
for their valuable suggestions. The work of Will Sawyer and Peter Lyster at the
Data Assimilation Office was funded by the High Performance Computing and
Communications Initiative (HPCCi Earth and Space Science (ESS) program.

623

FEUP - Faculdade de Engenharia da Universidade do Porto

References

[1] G. Heiser, C. Pommerell. J. Weis., and W. Fichtner. Three dimensional numerical
semiconductor device simulation: Algorithms, architectures, results. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits. 10(10):1218-1230, 1991.

[2] A. Ecer. J. Häuser. P. Leca. and .]. Periaux. Parallel Computational Fluid Dy-
namics. Elsevier Science Publishers B.V. (North-Holland). Amsterdam, 1995.

[3] H.-P. Kersken. B. Fritzsch. O. Schenk. W. Hiller. J. Behrens, and E. Kraube.
Parallelization of large scale ocean models by data decomposition. Lecture Notes
in Computer Science. "96:323-330. 1994.

[4] P. Knupp and S. Steinberg. Fundamentals of Grid Generation. CRC Press Boca
Raton, FL, 1994.

[5] M. T. Jones and P. E. Plassmann. Parallel algorithms for the adaptive refinement
and partitioning of unstructured meshes. In IEEE, editor. Proceedings of the
Scalable High-Performance Computing Conference. May 23-25. 1994, Knoxville,
Tennessee, pages 478-485. IEEE Computer Society Press, 1994.

[6] VV. L. Briggs. A Multigrid Tutorial. SIAM. 1987.

[7] S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recur-
sive Spectral Bisection for Partitioning Unstructured Problems. Technical Report
RNR-092-033. NASA Ames Research Center. 1992.

[8] L. L. Takacs, A. Molod, and T. Wang. Documentation of the Goddard Earth Ob-
serving System (GEOS) General Circulation Model — Version 1. NASA Technical
Memorandum 104606. NASA. 19!)4.

[9] A. da Silva and J. Guo. Documentation of the Physical-space Statistical Analysis
System (PSAS). Part 1: The Conjugate Gradient Solver. Version PSAS 1.00. DAO
Office Note 96-02. Data Assimilation Office. NASA. 1996.

[10] T. Budd. Object-Oriented Programming. Addison-Weslev. New York. N.Y.. 1991.
[11] MPIF (Message Passing Interface Forum). MPI: A Message-Passing Interface

Standard. International Journal of Supercomputer Applications. S(3&4Vl57-416
1994.

[12] A. Geist, A. Beguelin. J. Dongarra. VV. Jiang. R. Manchek. and V. Sunderam.
PVM: A Users' Guide and Tutorial for Networked Parallel Computing MIT
Press. 1994.

[13] Cray Research. CRAY T3E Applications Programming. 1997. 1997.
[14] DAO Staff. GEOS-3 Primary System Requirements Document. Internal docu-

ment, available on request... 1996.

[15] L. C. Mclnnes and B. F. Smith. I'etsc 2.0: A case study of using mpi to develop
numerical software libraries. In 11)95 MPI Developers' Conference. 1995.

[16] S. A. Hutchinson. J. A. Shadid. and R.S. Tuminaro. Tin Aztec User's Guide -
Version 1.0. 1995.

[17] O. Broker. V. Deshpande. P. Messmer, and VV. Sawver. Parallel library for unstruc-
tured mesh problems. Tech. Report CSCS-TR-96-15. Centro Svizzero di Calcolo
Scientifico, 1996.

[18] M. J. Suarez and L. L. Takacs. Documentation of the ARIES/GEOS Dynamical
Core: Version 2. NASA Technical Memorandum 104606. NASA. 1995.

624

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Molecular Dynamics as a Natural Solver

W. Dzwinel', J.Kitowski1,2, J.Mosciriski12, and D. Yuen3

'Institute of Computer Science AGH, Al. Mickiewicza 30, 30-059 Krakow, Poland
2 ACK CYFRONET, ul. Nawojki 11, 30-950 Krakow, Poland

'Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, USA

Abstract. A universal character of molecular dynamics (MD) method is discussed.
Contrary to the classical area of MD applications in microscopic world
investigations, MD simulation of mesoscopic phenomena is considered. Sample
results of MD simulations of the Rayleigh-Taylor instability are shown and
discussed briefly. To cover the larger time-and-space scale either simplified MD
model or more sophisticated particle based algorithms can be used. In the first case
MD method can be directly applied as a predictive display in computer animation.
In the second, MD code can be a "backbone" of efficient computer realization of
such particle based methods as dissipative particle dynamics and smoothed particle
hydrodynamics. Applications of MD approach in global optimization problems are
discussed also. It is emphasized that inherent parallelism of MD method resulting in
efficient realization on MPP systems together with its universal properties makes
the method a powerful natural solver.

1 Introduction

According to physics, particles interact one with another through exchange of virtual
objects, e.g., photons in electromagnetics. Changes in physical states of particles, i.e.,
their positions, momenta, spins etc. result from their interactions. This atomistic
approach reflects an important principle of nature and human logic, i.e., construction
of complex models from simple elements and rules via their mutual "interactions", or
in other terms, information exchange.

Virtual particle (VIP) [1,2] is a base element of the particle based computational
model. VIP can be defined on different levels of abstraction [2] e.g. as: atom, particle,
cluster of particles, vehicle-target-obstacle, genotype, multidimensional point, UNIX
process, single processor, etc. For example, taking into account that UNIX processes
can "interact" via sending and receiving messages we can think about direct
transformation of the VIP model into the message-passing model of parallel
computations. This involves the change of the the VIP level of abstraction from the
particles to the processes exchanging messages. It is relatively easy, due to flexibility
of VIP model and its self-consistency.

The main suggestion put forward in [1,2] consists in the elaboration of a new
strategy of parallel realization of an application using two stages of mapping (see
Fig. 1). At first, a problem is transformed into one of the natural solvers (or their
hybrid) and virtual particles are defined. Then the method is realized on a
multicomputer system through the transformation of virtual particles onto a virtual
parallel machine model [1]. Several widely used natural solvers such as: Boltzmann
lattice gas, lattice gas, simulated annealing, direct Monte-Carlo, cellular automata,

625

FEVP - Faculdade de Engenharia da Universidade do Porto

genetic algorithms, neural networks and others, having more limited scope of use such
as: diffusion limited aggregation (DLA), percolation etc., can be treated as particles
based techniques in accordance with the definition presented in [2]. All these
techniques, have been used in physics, chemistry and biology for many years.
Therefore, the second stage of mapping (i.e., its implementation on a multiprocessor
architecture) often allows us to exploit ready to use parallel algorithms or at least
existing knowledge about the ways of parallelization of the particle based methods. In
the authors opinion, successful mapping of a problem into a solver is crucial. This sort
of mapping needs a creative and abstract way of thinking impossible to mimic by
current and future generations of computer systems.

Problem MPP System

VIP- Virtual particle
model Multicomputer

model

Fig.l. Problem mapping onto multiprocessor model through its transformation into a natural
solver [1].

Molecular dynamics method (MD) (a well known technique of computational physics
and one of the Grand Challenges of Science [3] problems) can be taken as a pure
particle paradigm. The goal of this paper is to show that MD can be treated as a
natural solver, i.e., a universal paradigm, which principles come from nature and
which can be used as a solver in various fields of science and engineering. MD and
other natural solvers like: simulated annealing, genetic algorithms, neural networks,
cellular automata, etc., due to their inherent parallelism, constitute the class of
powerful computational tools when empowered by a parallel system. Increasing
interest in implementation of these techniques on multiprocessor systems constitutes
the natural consequence of this property.

At the beginning of the paper the mathematical background and computer
realization of MD method are discussed briefly. Then sample results of MD
applications in large-scale computational experiments concerning investigations of
Rayleigh-Taylor instability are presented. In the following section it is shown that
simplified computer realization of the MD method can be used as an efficient

626

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

animation technique based on the principal physical laws. Since the visual impression
of movement plays the principal role in animation, physical details can be hidden from
the observer and then substantially simplified. Other advantages of MD applications
for computer animation are also discussed. The role of simulation using particles as a
new technique of global minimum search is introduced. The visual clustering problem
is considered as an example. Based on the results, conclusions are formulated at the
end of paper.

2 MD principles

Molecular dynamics is a computational technique, widely used in physics, chemistry
and biology for almost 35 years (e.g. [4]). Its basic principles are shown in Fig.2.

Each particle (' interacts with all others located in sphere with R^, radius according
to potential energy of interactions. In the simplest case two body pair radial potential
function <t>(r„.) depends on the distance ry- between the particles. For more complex
molecules, the potential function can be more sophisticated. Let the pair force fy = -
V(j> (r,;), while the total force F,, which acts on a single particle i, is the sum of pair
forces fy- of its neighbour particles within Rcut sphere.

TTTwrrT1

ri=ri+vii£t

vi=Vi+FiTAt/m
i)

o
.T=FI^TFI,4

o ©- ?
Fig.2. Basic principles of MD paradigm.

Time evolution of particles, i=l,...,M-, is defined by the Newtonian equations of
motion:.

dyi V«- dT> m-— = ZA. -r=v.
jeS(i,Rcut) dt dt

(1)

where: v, and r, - represent velocity and coordinates of particle /, respectively. The
computer implementation of MD techniques consists of subsequent calculation of
forces and particle movements for each time step.

A set of simulated particles is confined (in the most cases) in a rectangular box
with periodic boundary conditions (PBC) implied. This assumption is important to
obtain valuable simulation results. The number of particles, M, is limited by the
computational power of computers (Atf=109 on the fastest parallel system [5]). In the

627

FEUP - Faculdade de Engenharia da Universidade do Porto

real world, one mole of liquid contains 1026 molecules. PBC enables to mimic infinity
of a medium using limited number of molecules. However, this assumption works well
only for time scale limited by the size of computational box divided by sound speed in
a medium simulated. Because the former one depends on M, to get more accurate
results of phenomena under investigation, larger samples of molecules should be taken
into account. Assuming that a molecule may consist of hundred and thousands of
atoms (particles) and its simulation is much more slower than for a simple molecule in
liquid Argon for example, the evolution of large number of particles simulated in
longer and longer time scales becomes the great challenge for the fastest computer
systems ever constructed. Therefore, the serious research has been going on for years
now to implement MD codes on the top performance computer systems [6]. For
parallel implementation of MD method, geometric decomposition is usually used. In
Fig.3 we can see typical decomposition of the computational box for distributed
computations on the ring of workstations (Fig.3a) and for parallel processing on
MPP tightly coupled architectures (Fig. 3b).

.':• • *,*.• ■ ■ • v"' a'-:.\ .*:. h^-': . ; *-. !%*• ' ;;'. ;.**. ** ■* • ' t " *."*. **
'•!'

■ * ■ • •

•]•;•; :';;:l*V
• • ',, ;.'•. • ' "•*• ;/•. •' •*. "••.;•

:t m *■:•'::

;.*V
• ~

,* ;.*,,*v,
* • ■■ * ' * • * • •• •• • • , ■,•,

• .* . * • * *' * • • • .,«<\ • , .
. :• ; :.v :■

.'•**•*■
.*.• :•'• ';,' • •/.• ••*•

tf .":£■: * • • • *tf.:. ':-:l:':3£

* • * *. * W.:l ..*:,vv.

& • *•.•,* >M • " . '

':•'•." :."* , * • * * '■ »

» * • • • .
»l„i* t* *l I

\<* *. 1 '.Vc.'i

Fig 3. Two approaches for MD domain parallelism. The arrows show directions of information
exchange between a domain (shaded) and its neighborhood. For (a) the load balancing is
reahzed changing the strips width while for (b) it is more fine grained though complicated. °

As is shown in [6], the progress in hardware and software development lets to increase
the number of atoms simulated using MD codes from hundreds in late seventies to
billions in the middle of nineties. The parallel MD codes reach 95% efficiency on
hundreds of processors. A vast amount of literature and MD software for the full
spectrum of vector and multiprocessor architectures are available. From this point of
view, the MD method fulfills the important condition which the natural solver should
posses. However, the most relevant feature of natural solvers consists in their
universality.

3 Large-scale MD simulations of physical phenomena

The classical field of interest of MD simulations covers the microscopic, short-time
phenomena in liquids and solids. Due to time and space averaging of stochastic
functions and variables one can obtain integral and/or differential parameters of a
medium investigated. Fitting simulation results to the experimental and theoretical
values, one can find the proper model of molecules and/or potential energy of the

628

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

interacting particles. Moreover, it is possible to observe reactions of separate
molecules and the whole system on the external stimulus. Nevertheless, all these
phenomena occur in abstract microscopic world, which (as seems to be) limits the
field of MD approach application.

The first MD experiments [7,8] in which not statistical fluctuations but rather
collective movement of simple Lennard-Jones particle ensembles were investigated,
show that even for relatively small number of particles in short-time simulations it is
possible to observe the striking resemblance of patterns created in microscopic and
macroscopic worlds. Increasing the number of particles to millions it is possible to
simulate the phenomena in mesoscale (i.e., where the size of samples is lum of order
and simulation time is tens of nanoseconds), e.g., fluid flows [8,9], crack formations
[10], hydrodynamical instabilities creation [11,12]. Such investigations are important
while classical models based on continuous matter and momenta equations (e.g.
Navier-Stokes formulae in hydrodynamics) are insufficient and the assumptions of
continuity are not valid any longer. The same concerns description of phenomena
having their origins in microscale and resolving in macroscale. To simulate them using
classical continuous models, artificial fluctuations are introduced. This results in the
lack of any information about the beginning stage of mixing process, its causality and
start up time.

The first results of simulations of the Rayleigh-Taylor instability using pure MD
parallel code are presented in [12]. The computer experiment consists in simulation of
mixing of two particle layers. The first layer consists of heavy particles and the second
one - placed below - is made of light particles. The gravitational field directed from
the heavy layer to the lighter one makes the system unstable. Due to statistical
fluctuations two fluids begin to mix. This sort of instability belongs to the hardest case
for simulation using classical hydrocodes. Especially its initialization is not
investigated yet in details because of the lack of causality factor in the classical
equations of fluid dynamics. As one can see in Fig.4, the evolution of mixing process
using MD code is similar to this observed in experiment and those obtained from
simulations which use classical hydrocodes. Unlike in simulations which use
hydrocodes, however, the process is spontaneous, i.e., not initialized artificially. The
fluctuations represent the real causality factor lacking in the former models. Due to
this advantage it is possible to investigate more thoroughly time evolution of mixing
layer not only for infinitely thick liquid layers but also for the layers with free surface
(see Fig.4). For example, as one can see in Fig.5, two mixing regimes can be
distinguished. The first one is observed at the beginning of process when only thin
boundary layers of two liquids take part in mixing. While the sound wave - caused by
turn on of the acceleration field - reflects from the bottom of computational box, the
process changes in character and mixing gets faster.

The resemblance of the simulation results of similar processes in micro and
macroscales inclines to the conclusion that by rescaling, changing the definition of a
particle and interparticle potential we can use the MD model for simulation of
physical phenomena in macroscale [13].

629

FEUP - Faculdade de Engenharia da Universidade do Porto

Fig.4. The snapshots of the Rayleigh-Taylor instability simulation using a million of particles
for 300.000 timesteps in MD experiment The colors show the particles density. Simulation was
performed using MD parallel code in PVM environment on 48 processors of Cray T3E system.

The advantages of particle approach over the computational methods, which use finite
elements or finite differences, are evident. The most important factors are as follows:
• the lack of any grid,
• simple and flexible computational model,
• simple definition of discontinuities,
• efficient parallel codes,
• minor problems with complicated boundaries and inhomogenities.

1K44

TIME (in number oTtimesteps)

Fig.5. The growth of mixing layer for two different simulations (different thickness of the
heavy layer assumed).

The problems with interparticle potential definition can be overcome usine models
for, so called, dissipative particle dynamics method [14] or deriving it directly from

630

VECPAR '98 ■ 3rd International Meeting on Vector and Parallel Processing

the particle formulation of the Navier-Stokes equations using smoothed particle
hydrodynamics method [15]. Another approach is used for granular media
investigations (e.g. [16]) where the particles have different shapes and interaction
potential is very sophisticated. Nevertheless, the "backbone" of all these models is
based on the pure MD formulation and their parallel realization on MD parallel
algorithms and methods.

Fig.6. Two balls made of particles hitting one another. MD 3-D simulation.

We can expect, of course, that making the model more exact (e.g. due to more
realistic potentials applied) thus more complicated, one can obtain eventually the
results of MD simulations, which are in good quantitative agreement with an
experiment. However, the fact that even for the simplest implementation of the MD
method the quality of results obtained is astonished emphasizes the universal character
of MD approach. For example, some effects in granular dynamics, similar to these
observed in the reality can also be simulated using the simplest "soft balls" MD
algorithms (see Fig.6). This fact can be exploited for animation purposes.

4 Method of particles as a predictive display

In some situations detailed physics, which stays behind phenomena under
consideration, is not crucial. In animation methods, which assume some level of
agreement with physical laws (so called, predictive display) more important is visual
impression, than accurate quantitative agreement with the reality.

a) b)

, 1 \ f 1 i . I 1 M ' \.

y4" 1 *\

Fig.7. Two types of particle meshes in animation [17].

631

FEUP - Faculdade de Engenharia da Universidade do Porto

Assume that we are going to animate a thin flexible surface. This is a very
complicated task in fact. As was shown in [18], such animation in real time is
impossible due to complicated mathematics models laying behind a fabric dynamics.
Moreover, the simulation needs supercomputer power when a typical FEM algorithm
is involved.

Imagine that the fabric is made of particles. At the beginning of simulation the
particles are placed in the nodes of hexagonal or rectangular grid (see Fig.7)

Each particle interacts with its neighbors via a semi-harmonic potential (for more
details see[19]). Let us introduce gravitation and friction forces in Eqs.(l). Using
leap-frog numerical scheme to the Newton equations (1) we obtain:

■V) „,„ oAt
•v

(! + <*>) (1 + p) J=|
{ 10-f -I K +■*•!,} • C' = r" + *r"2 • A/ (2)

assuming that the friction force is:

F,. =-A-v,. and a = L , <p = JL.At
m 2m

nj - current distance between particles / and;',
ay - initial distance between / and its neighbours on the mesh at the beginning of
simulation, 6

m - particle mass,
k - a parameter of the semi-harmonic interparticle potential assumed,
At - time step.

Using MD code modified in such a way, realistic pictures of the fabric dynamics
can be obtained during on-line animation on a standard Pentium II based PC (see
Fig.8 for example, see also [17,19]).

Next, assume that several moving objects are animated. For very simple objects
(see Fig.9) it can be done easily using the MD code on a PC computer. However
when the objects are more complicated and each consists of about 10.000 particles

machine^ ^ '" ^'^ ^ ^^ °n"Hne an'mation is Possible using a Para»el

As shown in [20], objects-to-processor mapping can be used. More than one object
on a single processor is recommended. Additionally, two processors are used for
graphical service and animation supervision (master processor) respectively Load
balancing is organized in such a way, that two colliding objects are moved to a single
processor. If the number of objects taking part in collision is larger than 2 the number
of processors used for simulation of this event is increased. The processors which are
used in simulation of dynamics of the remaining objects communicate only with
master processor to check collision conditions. As shown in Fig. 10, for four colliding
objects the optimal number of slaves is 2 (plus master and visualization processors)

632

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

^&z&z,'s:

■' i.

Fig.8. Snapshots of animation of the flexible surface using MD code.

Fig.9. Fragments of trajectories of the simple objects animated using MD approach. The scene
consists of: 2 sticks (A), 2 circles of various radiuses (B), a square (C) and a triangle (D).
One can see the collisions between the objects and the square rotating after collision
against the wall.

633

FEUP - Faculdade de Engenharia da Universidade do Porto

45

40

as

— 10

*
!"■

15 -

10 ■

S

■ "'
"1

|M+V!

^Hs^

■^.

|M+Vf 1 |M»V*ll ■M+VT^^H IM+V+4B

■ toad balancing Q without

Fig.10. Timings for animation of a scene (with and without of load balancing), which consists
of four moving cubes (2000 particles each). SEQ - sequential version, M - master processor, V
- processor for visualization, K - slaves.

5 MD in global optimization problems

The change of particle abstraction level and interpretation of interparticle forces
makes possible MD code application solving problems of a vehicle navigation
between obstacles and search of global minimum of multidimensional functions.

In the first case the shortest or the most feasible path of a moving vehicle from a
starting point to a target is looked for in presence both of static and dynamic obstacles.
The application of the MD model for solving this problem is straightforward. Let us
assume that the vehicle represented by a particle is attracted by the target. The
obstacles are made of static particles, which repel the moving object. Then the object
moves in accordance with Newton laws.

An MD approach to the navigation problem [21] differs from the classical
navigation algorithms. This difference concerns a dynamic layer of the problem
considered, i.e. the movement scenario, which is directly connected by physical laws
with the vehicle-environment (obstacles and terrain) interactions. This makes the
algorithm more flexible and open for verifications and improvements. Unlike graph
theory algorithms both static and moving obstacles can be considered. An example of
the vehicle paths are shown in Fig. 11, assuming the presence of static obstacles only.
Even for more complicated scenario the parallel realization of MD algorithm is not
necessary because only local interaction between the object and obstacle are
considered. While moving obstacles are taken into account, the parallel algorithm can
be similar to that described earlier for animation purposes.

The problem of global optimization in a multidimensional space of a multimodal
function is one of the most important and complex goals in many branches of science
and engineering. Because, in general, the problem is unresolved using deterministic
approaches many stochastic and heuristic methods were constructed in search of
"immune" (problem independent) optimizer. According to our best knowledge such a
method does not exist, though success of approaches such as genetic algorithms and

634

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

simulated annealing is out of question. MD, alike both of these heuristics, bases on
the principles which come from nature. Let us assume that in Eqs.(l) a small
dissipative factor is introduced. After some time, when kinetic energy of the particle
system is removed, the particles stop moving and a minimum of the total potential
energy of the system is gained. When dissipation of the kinetic energy is sufficiently
slow, the global minimum is achieved.

[;Jj fYit*nÜ,iI Missal» jaHWAltlftf

Fig.ll. The paths from starting point to the target for different initial velocities of a vehicle.
The most feasible path is the shortest one.

In Fig. 12 one can see a realization of this idea. A global minimum of a multimodal
and multidimensional function f(x) is searched. Initially the particles are scattered
randomly in the function domain. The particles, which coordinates are Xj (i=l,...,Af),
interact via two-body, one-directional forces. Only particle representing lower f(x)
value attracts the other one. A particle which gives the lowest function value for a
current simulation step is stopped. The force between two particles / and j is
dependent on the difference between the function values in Xj and x,, i.e., lf(Xi)-f(xj)l.
As one can see in Fig. 12 the right solution is found for relatively small number of
particles and without f(x) gradient calculation.

MD approach to global optimization was successfully applied in, so called, visual
clustering and non-linear mapping problems [22]. The principal goal of non-linear
mapping algorithms, consists in such a generation of points in 2(3)-dimensional space
that the distances between them approximate the distances between respective N-
dimensional points, which represents the measurement data. The method lets to
visualize the multidimensional forms in 2(3)-dimensional space. This is accomplished
by minimizing the criterion function

E = I2y0(Du,ru) (3)

The criterion (3) is the generalized case of the well known Sammon's criterion

635

FEUP - Faculdade de Engenharia da Universidade do Porto

*=?!$"•[%-$ (4)

where: Z); - is squared distance between points i and; in N-dimensional space, r~ -

is squared distance between respective i and; points in 2(3)-D Euclidean space, w and
m - parameters (m> 1 and we {-1,0,1}).

Fig.12. The application of MD paradigm in search for global minimum of multimodal and
multidimensional (10-D) test function.

. t.rtm--f.w;'l '■
fc*I M»2 w*«

Fig.13. The snapshots of MD mapping process of 100-dimensional data placed on the sphere.

A new method proposed in [2,22], uses MD for minimization of the criteria (3,4). It is
assumed that in 2(3)-D M particles are scattered randomly. Each particle corresponds
to the respective N-dimensional data point. The particles interact one with another via
two-body potential dependent on Z)„ and ru and equal to V^ZX,^). The particles

move according to Newton's laws of motion. The friction force assumed removes the
kinetic energy from the particle system, which stops moving eventually when the
potential energy (1) reaches global minimum. The positions of particles reflect the
final result of mapping (see Fig.l 1).

636

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

6 Conclusions

In the paper it is shown that the MD model can be treated as a natural solver which
has broad scope of use in different fields. The application of MD simulation in
mesoscopic scales for studies of collective movement of particles can be a valuable
supplement for classical, continuous models. For studies of nonlinear phenomena such
as Rayleigh-Taylor instability, which has their origins in microscale, MD can be
treated as an unique tool for simulation of initial phase of mixing and observation of
instabilities evolution. Moreover, MD algorithms yield a simple and effective parallel
computational code, which can be treated as a "backbone" for other more
sophisticated particle based methods such as dissipative particle dynamics and
smoothed particle hydrodynamics used in simulations of the macroscopic world
phenomena. The change of definition of a particle from single atom to the cloud of
matter and changes in the interaction potentials assumed, does not affect the structure
of the parallel codes used for pure MD formulation. The MD model can be also
applied for animation purposes of macroscopic objects giving an impression that the
objects dynamics is in good agreement with physical laws, though detailed physics
may be considerably simplified.

The encouraging results of tests of MD applications in global optimization
problems such as vehicle navigation problem and search of global minimum of
multimodal and multidimensional functions show that miscellaneous branches of
science are subordinated to the similar, general and universal rules, while the
computer science plays the important role in their extraction and dissemination.

Acknowledgments

Thanks are due to Dr W.AIda, M.Sc. R.Wcislo and Mr G.Popiela whose contribution to some
results used in this work is appreciated. Special acknowledgment is directed to Dr M.Bubak
and M.Pogoda for for suupporting us with the MD parallel code. The work is supported by
AGH funds No. 11.11.120.16 and 10.120.20.

References

1. Sloot, P.,M.,A., Kaandrop, J., A., Schoneveld, A.: Dynamic Complex Systems
(DCS): a new approach to parallel computing in physics. Technical Report of
Department of Computer Science, University of Amsterdam, CS-95-08 (1995).

2. Dzwinel, W.: Virtual Particles and Search for Global Minimum. Future Generation
Computer Systems, 12, (1997) 371-389.

3. in: Gather/Scatter Newsletter, 10, 3, (1994).
4. Haile, J.,M.: Molecular Dynamics Simulation. John Wiley&Sons Inc., New York

(1992).
5. in: IEEE Computational Science and Engineering, (1995), 78.
6. Beazley, D.,M., Lomdahl, P.,S., Jensen, N.,G., Giles, R„ Tomayo, P.: Parallel

Algorithms for Short-Range Molecular Dynamics. World Scientifics Annual
Reviews in Computational Physics, 3, (1995).

637

FEUP ■ Faculdade de Engenharia da Universidade do Porto

7. Rapaport, D.,C: Eddy Formation in Obstructed Fluid Flow: a Molecular
Dynamics Study. Phys.Rev.Lett., 57, (1986), 695.

8. Rapaport, D.,C: Microscale Hydrodynamics: Discrete-particle Simulation of
Evolving Flow Patterns. Phys. Rev, A36, 7, (1987), 3288.

9. Cui, ST., Evans, D.J.: Molecular Dynamics Simulation of Two Dimensional Flow
Past a Plate. Molecular Simulation, 9, (1992), 179.

10. Holian, B.,L, and Ravelo, R.: Fracture Simulation Using Large-Scale Molecular
Dynamics. Phys.Rev B., 51, 17, 1995, 11275.

11. Rapaport, D., C: Molecular-Dynamics Study of Rayleigh-Benärd Convection.
Phys. Rev. Let, 60, 24, (1988), 2480.

12. Moscinski, J, Alda, W, Bubak, M, Dzwinel, W, Kitowski, J, Pogoda, M, and
Yuen, D.: Molecular Dynamics Simulations of Rayleigh-Taylor Instability, Annual
Reviews of Computational Physics 5, (1997), 96-136.

13. Dzwinel, W, Alda, W, Kitowski, J, Moscinski, J, Wcislo, R, and Yuen, D.:
Macro Scale Simulations Using Molecular Dynamics Method. Molecular
Simulation, 15, (1995), 343.

14. Koelman, J.M.V.A. and Hoogerbrugge, P,V.: Dynamic simulation of hard-sphere
suspensions under steady shear. Europhysics Lett. 21, (1993), 363.

15.Peschek,A,G.and Libersky,L,D.: Cylindrical Smoothed Particle Hydrodynamics.
Journal of Computational Physics, 109, I, (1993), 76.

16. Form, W, Kohring, G.A., Melin, S, Puhl, H, and Tillemans, H,J.: Computer
Simulation of Critical, Non-Stationary Granular Flow in a Hopper. KFA-Juelich
Hochstleistung-srechenzentrum HLRZPreprint, 75/93, (1993).

17. Wcislo, R, Dzwinel, W, Kitowski, J, and Moscinski, J.: Molecular Dynamics for
Real World Phenomenon Animation. CCP5 Information Quarterly, Darresbury
Labolatory, Warrington, U.K, Sierpieri 1993, 38, (1993), 25.

18. Wang B, Wu Z, Sun Q, and Yuen, M..M..F.: A deformation model of thin
flexible surfaces. 6 Int. Conf. in Cent. Eur. on Computer Graphics and
Visualization, Plzen, Czech Republic, February 9-13, (1998).

19. Wcislo, R, Dzwinel, W, Kitowski, J, and Moscinski, J.: Real-time Animation
Using Molecular Dynamics Methods. Machine Graphics&Vision, 3(1/2) 1994
203-210.

20. Wcislo, R, Kitowski, J, Moscinski, J.: Parallelization of a code for animation of
multi-object system" in: Wasniewski, J, Dongarra, J, Madsen, K, and Olesen, D,
(eds.), Applied parallel computing - industrial computation and optimization.
Lecture Notes in Computer Science 1184 , 697-709, Springer, (1996).

21. Moscinski, J, and Dzwinel, W.: Simulation Using Particles in Robot Path
Planning. Proc. of Int. Conf. Methods and Models in Automation and Robotics.
10-13 September 1996, Miedzyzdroje, Poland, 3, (1996), 1000-1110.

22. Dzwinel, W.: On Search for the Global Minimum in Problems of Features
Extraction and Selection. Proceedings of the Third European Congress on
Inteligent Techniques and Soft Computing, EUFIT'95, 28-31 August 1995.
Aachen, Germany, 3, 1326-1330, 1995

638

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Co-design Decisions for High Performance Parallel
Architectures

J. C. Moreno, A. Alcolea

Department of Electronics and Communications Engineering
University of Zaragoza

Maria de Luna 3,50015 Zaragoza, Spain
Phone 34 (76) 761943

e-nMUjcmoreno@posta.unizar.es

Abstract Ihe goal of this paper is to propose cost-performance criteria which
can be used to take co-design decisions. Ihe criteria are simplified with some
assumptions, and are used to modify the hardware design of a fine grain
multiprocessor architecture. Ihe modifications optimize the execution time of
the elemental operations (addition, substraction, comparison and product). Ihe
criteria are a trade-off measure between Ihe hardware complexity and the
execution time of the elemental operations. The modifications improve the
system efficiency while the cost is maintained.

1 Introduction.

When some modifications should be done in a hardware design, and the cost of the
system is important too, one main question is: the performance increase justifies the
cost increase?. However, parallel architectures allow the interchange between the
processor element complexity and the number of processor elements of the system
while the total cost of the system is maintained. This means that, for the same total
cost, we can have more complex processor elements, but a lower number of them, or
we can have less complex processor elements, but a higher number of them. It is
obvious that there will exist a trade off between the processor element complexity
(unitary cost) and the system size that makes maximum the system performance for a
given cost. So, the new question is: the hardware modification increases the system
performance while maintaining the total cost?. It is clear that if the answer is yes, the
modification can be immediately accepted, otherwise the modification will be
accepted or not depending on the cost goal.

This paper proposes cost-performance criteria that allow to decide if a
modification can be immediatelly accepted or not. The criteria are used to evaluate
hardware modifications which try to decrease the execution time of the software
instructions for elemental operations.

But, what was the problem that led us to this point?. Some time ago, we
designed a vision oriented SIMD architecture [1], but it is well known the saturation
effect that SIMD architectures show: in most cases, the slope of the performance

639

FEUP - Faculdade de Engenharia da Universidade do Porto

function decreases as the number of the processor elements increases for
intermediate and high level vision algorithms. We have demonstrated in previous
works [1] that the reconfiguration of the datapath width palliates this problem.

The reconfiguration consists in the interchange between the number of processor
elements of the system and their datapath width. So, we can have a system integrated
by n processor elements with 1-bit datapath width and we can reconfigure it to a
system integrated by n/B processor elements with B-bit datapath width. The problem
ansed when we evaluated the speed of the hardware for elemental operations in
reconfigurated mode. This speed was low, and hardware modifications became
necessary for a high performance in reconfigurated mode.

Then, in order to have objective parameters to measure the convenience of a
hardware modification, we proposed the cost-performance criteria which are
explained in this paper.

Other works have been developed in the literature about this theme. References
P], [3] give general ideas about the hardware-software co-design. However only
general criteria are shown in [4] and [5]. In [4] are presented optimization criteria
which can be applied to architectures that show a linear cost in their communication
network (i.e. a processor element can always communicate with the same processor
elements for all system sizes). In [5] the criteria take into account a non-linear
dependence on the cost with the interconnection network and can be applied to more
complex connection patterns.

2 Cost-performance criteria.

The total cost of a system may be very difficult to model: hardware, software and
penphencal circuitry, among others, are different parts of the cost. In order to obtain
reliable models, [4] and [5] take into account the hardware cost due to the silicon
area, which is the most important in most cases.

We have used the criteria described in [4] because in our SIMD architecture
every processor element can communicate with the same neighbours (North, East,
South, West) without dependence on the system size. Reference [4] gets the
condition which a modification has to verify:

^L>[l+toop(Ai)x(R-l)]x

P-
Tpoop(Af)

E(Ni,Ai)
E(NfAf) (1)

WAi) ' (2)

to»(Ai)- ToqPiAi).
nioop "'"T00p(Ai)

640

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Where:

Ay{ = Initial/final area, before/after the modification.

Ni/f = Initial/final number of processor elements.

E(Ni/f, Ai/f) = Initial/final system efficiency.

Tpoop (Ai/f) = Time per optimized operation in the initial/final conditions.

Tnoop/oop = Time which is needed by a processor element to execute the non

optimized/optimized operations of the task.

If the modification implies a higher area for the processor element, then

normally E(Ni,Ai)/E(Nf,Af)>l and a harder condition, which is easier to
verify, is:

^->[l+toop(Ai)x(R-l)]. (4)

The simplified procedure to evaluate the convenience of a modification is the
following (we suppose that initial conditions are known):

a) Calculate the final area Af.

b) Obtam the final time per optimized operation Tpoop (Af).
c) Get the reduction factor R.
d) Find the time relation between the optimized operation and the total task in

the initial conditions toop(Aj).

e) Check the eq. (4). If it is verified and the modification has increased the
processor element area, then the modification can be accepted, else it is

necessary to evaluate the final efficiency E(Nf, Af) and to check the eq. (1).

3 Criteria application to the addition operation.

Figure 1 shows an addition example the data 1 is added to the data 2 and the result is
obtained This type of addition (reconfigurated mode) presents two main problems:

a) The carry generated by the most significant processor element should be
communicated to the least significant processor element. Besides, the
communication path depends on the number of processor elements rows that
integrate a multibit processor (see fig 2). For an even number of rows, it is
necessary a horizontal communication followed by a vertical one, while for an
odd number of rows, it is only necessary one vertical communication.

641

FEUP - Faculdade de Engenharia da Universidade do Porto

b) The least significant processor element receives zero in its ALU carry input
for the first sum, and for long data (more than one word), it receives the carry
from the most significant processor.

DATA1

PR1 PK2 PRJ PR4

DATA 2

PR1 PR2 PR3 PR4

RBSULT

P1U MB MU MU

1 1 1 0

— m an, am

1 1 1 0

■7 « ■n KT4

0 0 1 1

■m -r. ■oa m

1 1 1 1

■n „. art mm

PRl PR7 PR« PRS PM PR7 PR* PR5

PRl PR3 PRJ PR4

IKK VI ■ri

™"

PRt PR7 PR6 PK3

1 1 0 0

m Kri an MI*

1 0 0 0

■n H» am. -ru

1 1 1 0

KIT

0 0 0 0

■Oil man an »

PRt PR7 PR« PRS

Figure 1. Muhibit addition example.

These and other considerations makes the multibit addition no efficient. It is
clear that for a 100% of efficiency these two terms should be equal:

a) Number of clock cycles to execute one monobit addition.
b) Number of clock cycles to execute B multibit additions. Remember that B is
the datapath width in the reconfigurated work mode.

Brro am Bin Biro Bin sm am

BIB RIT4 Bin am BIT« BITS BIT4

BIT« am BITS sm BIT» Birio Birii

t BIT15 Brri4 BTT13 arm

Figure 2. Communication carry path depending on the number of processor element rows.

Actually, a multibit processor is integrated by B processor elements, so a fair
comparison is to evaluate the clock cycles for the same number of operations in both
work modes (monobit and reconfigurated). This implies the previous equality
because B additions are executed in parallel in monobit mode, and their time cost is
the number of clock cycles for one monobit addition, so B additions should be
executed in multibit mode. It is clear that because of the bit paralellism and for 100%
efficiency, every multibit addition should execute in 1/B times the number of clock

642

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

cycles of one monobit addition. However, due to the hardware design and the
difference between the datalength and the datapath width of the architecture the
efficiency will be lower than 100%.

Figure 3 shows the efficiency for the addition operation with the initial hardware
design. In order to increse its efficiency we have modificated the hardware design
The modification allows the carry communication between the most significant
processor element and the least significant processor in a single clock cycle

■MTAU90IH

Figure 3. Efficiency (%) for the multibit addition respect to the monobit addition without
hardware modification.

The hardware modification adds one input to the output multiplexer and to the
ALU carry input multiplexer. Figure 4 shows the efficiency with the hardware
modification included in the design. Note that the efficiency has been duplicated.
This means that the execution time per multibit addition has been reduced to half

IMIAUMJra

Figure 4. Efficiency (•/.) for the multibit addition respect to the monobit addition with
hardware modification.

643

FEUP - Faculdade de Engenharia da Universidade do Porto

The increase on the processor element area due to the modification is 2% using
ES2 library for 0,7um double metal CMOS technology.

Once we have the time relation and the area relation, we can evaluate the eq. 4. In
this case: Aj/Af =0.98 andR= 0.5 .

So, from eq. 4, 1^(^)^3.9% . This means that, for the modification
acceptance, at least the 3.9% of the total execution time of the task, in the initial
conditions, should be dedicated to addition operations in reconfigurated mode.

A global vision task is normally divided into different subtasks. Every subtask
may have part of the object code that is executed in monobit mode, and other part
executed in reconfigurated mode. Besides, not all operations are additions in
reconfigurated mode. So, depending on the vision task, the hardware modification
will be or not accepted.

4 Conclusions.

Cost-performance criteria have been proposed in this paper that can be applied to
multiprocessor architectures with no cost dependence on the interconnection network
(the number of interconnections per processor element does not depend on system
size). The criteria have been simplified to make the equations easier to evaluate and
one example has been explained.

The example demonstrates that the criteria can be extended to other hardware
modifications. The criteria measure the interchange between the processor element
complexity and its unitary cost, while the total cost of the system is maintained.
However, this interchange allows to maximize the system performance. This means
that for a given total cost, we can obtain the processor element design that
maximizes the system performance.

References.

}' ^J^?0'*" Me£? ,SIMD Az,Matan "& Reoonfigurable Datapath Width Efficiently Adaptable

S5SSSKSS^' *"*ofthe Ten,h *"•Conf-on Sys,ena and Integraed CM

2. N. Woo, A. Dunlop, W. Wolf. "Codesdgn from Coapecifioation". Computer, January 1994.

3L D. Tlomas, J. Adams, H. Scfamt "A Modd and Methodology for Hardware-Software Codeam- IEEE
Design & Tea of Computers, September 1993.

1, l CI",M0^I1°;A- M<Xiea- "Ar*it«*ural Optimization Via Oat-Performance Criteria". Proc. of the
hleventh Int. Corf, on Systems and Integrated Circuits Design (SICD), November 1996.

5n£JH?7* 1°°* T1 T^C0<* Effediviness rf Multiprocessing". IEEE Transactions on Parallel and Distributed Systems, June 1993.

644

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Achieving Data Availability on Parallel and
Distributed File Systems

Francisco Rosales1 and Raimundo Vega2 *

frosaHSfi.upm.es Facultad de Informätica, Universidad Politecnica de Madrid
rvegaQuach.cl Facultad de Ingenien'a, Universidad Austral de Chile 2

Abstract. We present an enhanced data availability I/O Subsystem
model for ParFiSys, a Distributed and Parallel File System. We evaluate
the application of data redundancy at the different levels of the I/O
hierarchy. A virtual distributed and redundant device, known as VRAID,
is used as the basis to achieve both I/O accesses parallelism and better
fault tolerance.
Keywords: Parallel, file system, data availability, redundancy.

Introduction

ParFiSys [2] is a Distributed and Parallel File System l devoted to exploit as
much as possible the I/O Subsystem on architectures where several I/O nodes
are interconnected by a high performance network. ParFiSys early design was
focused on improving I/O performance, and data availability problems due to a
large number of underlying devices [9] were not taken into account.

In this paper, we describe a new redundant I/O Subsystem model for ParFiSys
that should be able to offer data availability even on underlying device failures.
We detail the algorithms used to improve performance by minimizing both, the
impact of redundancy management on communications, and the reconstruction
phase overhead. We evaluate the model over a massively parallel architecture
simulator that has also been developed [10,12,13].

1 I/O Subsystem Model

The I/O Subsystem (Fig. 1 is built on the I/O hardware of a massively parallel
machine with a high performance interconnection network. The physical storage
devices are distributed over several I/O network nodes. Additionally, two logical
storage devices are defined, one per I/O node server (SERV), that manages
remote accesses to any other storage device of the node, and a single virtual
redundant storage device known as VRAID, that distributes the data all over
the SERV devices of the whole system. •

* Thanks to Professor De Miguel for his technical advice.
1 ParFiSys was developed at the Polytechnical University of Madrid, under the ES-

PRIT project P5404 funded by European Union.

645

FEUP - Faculdade de Engenharia da Universidade do Porto

Hod« o

(User) (User)

Nod* 1

(User)

PuFiSyi

Fig. 1. I/O Subsystem Architecture

The Raids and VRAID can be configured as level 0, 4 or 5 [4,3]. Usually the
redundancy unit is known as stripe-unit, and is composed of one storage unit of
each underlying device, one of which (the parity unit) contains the exclusive-OR
calculation of all the others. It is important to note here that at any time the
parity unit contents must be consistent with the rest of the information stored in
the stripe, so a locking mechanism must be used to organize concurrent accesses
involving parity units. This means that we will need to use locks at every access
but when reading a free of fault device.

VRAID Distributed Lock Management In the VRAID, the parity calculation is
done at the node that makes the I/O request, so a lock mechanism is required
to ensure the correct order between any number of parallel remote accesses.

We have chosen to locate a lock service at SERV, and to lock only the parity
units involved. Therefore, the distribution of locks will follow the same mapping
as those of parity units. This means three things: a) this distributed consensus
will ensure per stripe-unit consistency, b) this will not suppose a bigger bottle-
neck than the access to the parity unit itself and c) there will also be a unified
distributed consensus on the new lock server to use in case that the device goes
to degraded state.

Improving Performance Depending on its size, an I/O action could correspond
to a huge number of subactions over a (possibly sparse) set of individual storage
units of the underlying devices (i.e. Fig. 2). In order to reduce the amount
of individual subactions and to optimize underlying device access, this set is
reordered by joining subactions that are logically contiguous: 1) they refer to
the same underlying storage device, 2) they are of the same action type (lock,
read, xor, write or unlock) and 3) they concern to a set of contiguous units.

646

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Device logical view

Raid level 5 mapping

0 1 2 P

3 4 P 5

6 P
;i

e

P 9 fjf ii
12 13 14 p

15 16 P 17

LOCKIP1
L0CK1P:
UJCK1P1
lOCKIP!

Per stripe-unit subactions

, REM>|3>, XOR. HRITEI1 P 5), UHLOCKfPI
XOR, WRITE!« P 7 I), UKLOCKIPI
XOR, «RITEIP > 10 11), UKLOCKIPI

, READIli P), XOR, HRITE[12 PI, UHLOCXIPl

Per undelaying device actions

LOCKI3I LOCXI2I LOCK(l) LOCK MI

0 12 3
Underlying device

Fig. 2. Raid level 5. Write from 4 to 12 decomposition

The resultant set of actions ordered is processed running in parallel actions
for each device, but doing it in the following order: all locks, all reads, the internal
xor calculation, all writes and finally the unlocks. This method has the following
properties: a) ensures consistency between data and parity of each concerned
stripe-unit, b) minimizes the final number of actions and therefore, (in the case
of VRAID) the network traffic, b) the final per device action is more compact
and could be done faster.

2 System and Workload Characterization

All the performance analyses in this paper have been made over a simulation of
a massively parallel machine characterized as shown in table 1. The File System
is feed by workers distributed over the nodes in a round robin way. Each worker
executes I/O operations continuously from the selected synthetic workload (Tab.
2). We use enough workers to make the system to perform at its limit.

We have done experiments in order to determine the system scalability and
its behavior on different combinations of redundancy levels and VRAID states
(fault-free, degradated and during the reconstruction phase).

Table 1. Systems Evaluation Parameters

Network crossbar topology with 100 MB/s links
Nodes 2 to 32 (plus one for VRAID type 4 or 5)
VRAID Levels 0, 4 and 5. Unit of 64KB or 4KB for OLPT
RAID Levels 0, 4 and 5. Unit of 4KB.

With 4 disks (5 for levels 4 and 5)
Disks "Seagate Elite3", 2627 cylinders * 21 tracks * 99 sectors

5400 RPM and seek times 1.7 min., 11.0 avr. and 22.5 max. (ms)

647

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 2. Synthetic Workloads Parameters

OLPT SSIM
Online Transaction Processing [6,11].

80% reads of 4KB, 16% writes of 4KB
2% reads of 24KB, 2% writes 24KB.

All uniformly distributed.

Scientific Simulation.
50% sequential 1MB accesses to one 100MB file

(90% reads, 10% writes)
50% uniform 512KB accesses to 10 5MB files

(10% reads, 90% writes)

3 Results Analysis

In Fig. 3 we show comparative performance for different system sizes running
with VRAID level 5 in fault-free, degradated and recovery states.

OUTUHXOoMnVnMIMimtui ■»•MMnHlMHUai

Fig. 3. Performance in Different VRAID States

We observe that the performance in degraded state shows a better scalability
for OLPT than for SSIM. Whereas the overhead of degraded accesses grows with
the number of involved nodes, the probability that an OLPT operation does not
concerns the failed node also grows. This is not true for SSIM accesses, that
affect all nodes, so for each write, a previous read of the parity information is
needed.

During the reconstruction phase one special worker recovers the failed device.
This implies an added overhead. To improve performance recovery is done in
chunks which are put to normal service as soon as recovered. As Fig. 3 shows
the mean bandwidth during recovery phase is improved over the degraded one.

648

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

FS bandwidth for OtPT workload

Fig. 4. Comparative Performance for Different Redundancy Models

In Fig. 4 we show a 32 node system with different models of redundancy both
for VRAID and Raids.

Our results show that SSIM workload gives around 160MB/s peek bandwidth
whereas OLPT gives 25MB/s. SSIM is not affected very much by the redundancy
model, because large operations involving contiguous blocks on all disks, are done
much more efficiently. Obviously VRAID level 0 gives the best bandwidth, but
does not protect us from a node failure, it is given for comparison.

The OLPT workload involves very small size operations (4KB and 24KB),
so the redundancy management overhead is more significant than in SSIM. Nev-
ertheless combination VRAID 5 - Raids 4 has very similar performance than
VRAID 5 - Raids 5.

4 Conclusions and Future Work

Given the observed system behavior, we can conclude that the systems scales
very well, and systems of 128 nodes or more are possible. For small systems (32
nodes or so) we suggest configurations with VRAID level 5 and Raids level 0,
this allows for the same recovery procedure from a node or a disk failure.

The recovery time for a disk failure using the VRAID redundancy at is im-
practical in larger systems. Therefore, we suggest the use of level 5 redundancy
at both VRAID and Raids levels.

We are now including the effect of different caching alternatives on the above
results.

649

FEUP - Faculdade de Engenharia da Universida.de do Porto

References

1. Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, John K.
Ousterhout: Measurements of a Distributed File System. SOSP (1991)
ftp://ftp.cs.berkeley.edu/ucb/sprite/papers/measureS0SP91.ps

2. J. Carretero, F. Perez, P. de Miguel, F. Garcia, L. Alonso: ParFiSys: A Parallel File
System for MPP. ACM SIGOPS 30, (1996) 74-80

3. Peter M. Chen, Edward K. Lee: Striping in a RAID Level 5 Disk Array. Proceedings
of the 1995 ACM SIGMETRICS Conference on Measurement and Modelling of
Computer Systems

4. P. Chen, E. Lee, G. Gibson, R. Katz, D. Patterson: RAID: High-Performance, reli-
able Secondary Storage. Acm Computing Survey, Vol 26, N? 2, (June 1994)

5. Drog G. Feitelson, Peter F. Corbett, Sandra Johnson Baylor, Yarsun Hsu: Parallel
I/O Subsystems in Massively Parallel Supercomputers. IEEE Parallel & Distributed
Technology 3(3), (1995) 33-47

6. Mark Calvin Holland: On-Line Data reconstruction In redundat Disk Array. Dept.
of Electrical and Computer Engineering, Carnigie Mellon University (1994)

7. John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M.
Satyanarayanan, Robert N. Sidebotham, Michel J. West: Scale and Performance
in a Distributed File System. ACM Transaction on Computer Systems. (February
1988)

http://das-www.harvard.edu/cs/academics/courses/cs261/readings/hovard-1988.html
8. Nils Nieuwejaar, David Kotz: Low-level Interfaces for High-level Parallel I/O. Dart-

mouth PCS-TR95-253 (1995)
ftp://ftp.cs.dartmouth.edu/TR/TR95-253.ps.Z

9. Q. M. Malluhi, W. E. Johnston: Techniques For Availability And Reliability of
Distributed Parallel Storage Systems. Proceeding of the Lasted International Con-
ference Parallel and Distributed System-Euro-PDS'97 (June 1997) Barcelona Spain.

10. Raj Jain: The Art of Computer Systems Performance Analysis. Wiley Professional
Computing. ISBN 0-471-50336-3

11. Apratim Purakayastha, Carla Ellis, David Kotz, Nils Nieuwejaar, and Michael
Best: Characterising Parallel File-Access Patterns on a Large-Scale Multiprocessor.
Technical Report CS-1994-33, (Oct. 1994) Presented at IPPS95.
http: //www. cs. duke. edu/" carla/ap.ps

12. Chris Ruemmler and John Wilkes: An introduction to disk drive modelling. IEEE
Computer 27(3), (March 1994) 17-29

http://www.hpl.hp.com/personal/John.Wilkes/papers/IEEEComputer.DiskModel.ps.Z
13. Chandramohan A. Thekkath, John Wilkes and Edward D. Lazowska: Techniques

for File System Simulation. SPE 24(11), 981-999 (November 1994)
http://columbus.cs.nott.ac.uk/cgi-bin/getpaper?paper=spe922ct.pdf

650

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

PC and DSP based AC motor adaptive vector control
system

David Bedford Guaus, Antoni Arias Pujol, Emiliano Aldabas Rubira,
and Jose Luis Romeral Martinez

Electronic Engineering Department, Polytechnic University of Catalonia, c) Colom, 1,
08222 Terrassa (Barcelona), Spain

Bedford@Eel.upc.es

Abstract. In this paper we propose a system with an architecture capable of
parallel processing. Also, due to its computational power, the system is able
to handle complex algorithms. This structure is applied to an AC motor
vector control system, formed by two control loops which are running
simultaneously: a speed control loop and a motor model parameters (needed
by the speed controller) identification loop. This architecture allows the
experimentation of new control algorithms in this field. Some results are
presented that show the system's performance.

1 Introduction

The new control algorithms experimentation requires the availability of a system
with an architecture that allows the easy reprogramming of their elements separately
and the execution of complex algorithms, which can be executed simultaneously.
Also, many industrial controls are based on a multi processor architecture, that use
two or more low cost processors instead of one complex (expensive) processor. In
this paper we present an architecture based in two processors that will allow the
experimentation of the control techniques that we have previously studied
analytically and/or simulated, which will be afterwards implemented in a
multiprocessor configuration.

2 Proposed system architecture

The implemented system architecture is shown in figure 1. The system has two
processors: a 486 (PC) and a Digital Signal Processor (32 bits floating point DSP).
The DSP is placed in a PC ISA bus slot, which acts as the physical interface. The
data exchange between the two processors is done using a Dual Port RAM
(DPRAM), which can be accessed simultaneously by both processors. The DPRAM
allows fast information exchange between the PC and DSP without disrupting the

651

FEÜP - Faculdade de Engenharia da Universidade do Porto

processing of either device. If it is necessary, the DSP is able to interrupt the PC by
means of the IRQ3 line; also the PC can interrupt the DSP using one of its four
interrupt lines (INT3). The PC is able to control and monitor the DSP by means of
an I/O mapped interface. The communication of the system with the external world
is done by means of the following devices, which are connected to the DSP: an A/D
converter module with four 16 bit channels, with a maximum sampling speed of 50
kHz, and a digital I/O board, with 32 user configurable I/O channels. This
configuration is clearly being used in many fields [1]. The PC is programmed using
C language (Borland C). The DSP is programmed using either Assembler and C
language. In the latter, the routines that are time critical are programmed using
Assembler to control precisely the execution time.

PC/C32

0 $

DPRAM
(1KX32)

PC MEMORY
INTERFACE

AJSA

DA JGHTER MOC III f

PC
(486) DSP

TMS320C32

INT 0

AM/D160S
(A/0 4X16!

1

I—
IRQ 3

IN1 »

0 3
CONTROL ANO

STATUS
REGISTERS

PC I/O
INTERFACE

*—
^sp

V2
INKN

V
010 32

Fig. 1. System architecture

3 AC motor control system

The block diagram of the AC motor adaptive vector control system that we have
implemented is shown in figure 2. This control system has two loops which are
running simultaneously: the speed control loop, that actually controls the motor
speed, and the parameters identification loop that tunes the FAM controller
parameters.

3.1 Speed control loop

This loop controls the AC motor speed. It has the following elements:

Speed Controller. It computes the torque setpoint (T) from the speed error (Ew).
This controller algorithm has been implemented using fuzzy logic, due to its major
robustness faced by system changes (inertia, load) [2].

652

VECPAR '98 ■ 3rd International Meeting on Vector and Parallel Processing

FAM Controller. It computes the voltage (V) in amplitude, phase and frequency
that has to be applied to the AC motor from the torque setpoint (T). It uses the Field
Acceleration Method, that maintains the motor magnetising flux constant, thus
avoiding electromagnetic transients. To achieve this it is necessary to tune the FAM
controller parameters precisely in accordance with the AC motor [3], which is
performed by the other loop.
Inverter Controller. It generates every 100 fis the control signals for the inverter
gates from the desired voltage (amplitude, phase, frequency). Is based in a vector
modulation algorithm that takes into account the necessary inverter dead times, and
it uses an accumulated error algorithm to improve its performance (harmonic
distortion).
Inverter. It is the power device that supplies the voltage and current consumed by
the AC motor. This device includes the logic necessary to protect it from
overvoltages and overcurrents.
AC motor. It is the machine whose speed (and torque) we control.

PC DSP
r

SPEED
CONTROL
(FUZZY)

TORQUE
CONTROL

(FAM)

l_ 3^

w 12-18 b
V 10 b

i 1» ,

r
IS II 2x16 b
W 1*12 b

PARAMETERS
IDENTIFICATION

(M, Rs. Rf)

INVERTER
CONTROL 3

P

PROTECTIONS

INVERTER

J
IS II 2X 16 b
W 1 X 12b

A/D
(MINIMUM t X 12 bits

2X 16 bits)

Fig. 2. AC motor control system, formed by two loops

3.2 Parameters identification loop

This loop modifies the FAM controller parameters. It is formed basically by the
Model Reference Adaptive Controller (MRAC), which is the block that performs the
parameters identification that the FAM controller needs, by means of an algorithm
programmed using fuzzy logic. To perform this task the MRAC controller compares
the intensity that the AC motor consumes with that estimated by the FAM model; as
a result of the comparison, an amplitude and phase error are obtained, from which
the MRAC algorithm calculates the parameters' new values. This algorithm has
been programmed from the study of the parameters variation effect over the
amplitude and phase intensity consumed by the motor.

653

FEUP - Faculdade de Engenharia da Universidade do Porto

3.3 Tasks assignment

The tasks assignment is presented in figure 2. As can be seen, the DSP executes the
inverter controller and the MRAC controller algorithms. The DSP main task is the
MRAC controller, and is interrupted every 100 \is by the inverter controller
algorithm, whose output signals can't be delayed. The 486 executes the speed
controller and the FAM controller algorithms, monitors all the system and stores
system variables (speed, torque, voltage,...). The AC motor speed and the current
consumed are acquired using the A/D acquisition board. The control signals for the
inverter gates are generated using 7 lines (6 gates, 1 enable) of the digital I/O board.
With this task assignment, the 486 discharges the DSP computing load, allowing the
experimentation of more complex algorithms.

3.4 Data exchange

The data exchange can be easily made by means of the DPRAM. The DSP provides
the PC with the motor speed acquired by the A/D converter module, and the new
AC motor parameters obtained by the MRAC controller. The PC provides the DSP
with the desired voltage (amplitude, phase, frequency) that has to be applied to the
motor. As one processor writes to the DPRAM without interrupting the other, this
data exchange is made with no interaction between them.

4 Results: discussion of performance

To demonstrate system's performance, we have studied the control system's
response to a ramp, using the FAM controller with its parameters not properly tuned
(stator and rotor resistance, Rs and Rr respectively). In these experiments, the
parameter identification loop (MRAC controller) is tuning the model parameters
(_Rs, _Rr) that the FAM controller uses, meanwhile the speed control loop is
controlling the motor speed. As we can see from the graphical results (figure 3), the
MRAC controller tunes the model parameters (JR., _Rr) to the real ones (R, Rr)'in a
few seconds. It works properly even during transients in the speed control system.
Furthermore, the parameters identification loop improves the system's performance,
because it obtains the real AC motor parameters that the FAM controller needs. As
we mentioned before, the parameters identification algorithm compares the real
current consumed by the AC motor with that one estimated using the model. In
order to measure the phase of the real intensity, a zero-pass detection circuit is used,
which interrupts the system every cycle. This means that, at most, is possible to
execute an identification cycle each period of the power supply signal. If we use a
single processor, the system won't be able to execute the parameters identification
algorithm so often, while is executing all the other control routines (that have to be
executed to avoid the degradation of the control system performance), and the

654

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

identification time will be longer compared with that one of a parallel processing
system (figure 4).

Fig. 3. Speed (co) and torque (T) control system response to a ramp during parameters
identification (R,, Rr) with two processors

E
2. 0.5
S c a
I 0.4
C

0.3 • Rr _Rr

1 jT
1 jT

1 jT

//

0 12 3 4 5 6 7
time (s)

Fig. 4. Speed (a>) and torque (T) control system response to a ramp during parameters
identification (R^ R) with one processor

5 Conclusions

We have presented a parallel processing architecture with two processors running
simultaneously: a 486 (PC) and a DSP. The latter is placed in the ISA bus, giving an
interface with enough immunity to conducted and radiated interferences. This

655

FEUP - Faculdade de Engenharia da Universidade do Porto

architecture solves the data exchange between processors and allows the
experimentation of an AC motor control system with two loops that have to be
executed simultaneously: the speed control loop and the parameter identification
loop. The main advantatge of this system is that we can reprogram the algorithms
that one processor executes without changing the ones executed by the other
processor. Also the system is capable of acquiring external signals (current
consumed by the AC motor, DC bus voltage) and generating digital output signals
(inverter control). The results presented show that the system formed by the two
processors is able to control the AC motor speed and, simultaneously, tune the
motor model parameters used by the FAM controller.

References

1. Chi-KwongLuk, P., Drissi El Khamlichi, D.: "An innovative DSP-based teaching module
for electrical machine drives", IEEE Transactions on Education, vol. 39, N° 2 May 1996
pp 158-164.

2. Romeral, J.L., Bordonau, J., Bedford, D., Aldabas, E.: "Adaptive fuzzy speed controller
for an AC drive", EPMC'96.

3. Romeral, J.L: "Optimization de modelos de control digital para motores AC", Doctoral
Thesis, Electronic Engineering Department, UPC. June 15, 1995.

4. Papamichalis, P.E.: "Digital signal processing applications", Prentice Hall, 1990.
5. Yamamura, S.: "AC motors for high-performance applications. Analysis and control"

Marcel Dekka, Inc., 1986.
6. Novotny, D.W., Lipo, T.A.: "Vector control and dynamics of AC drives", Clarendon

Press, 1996.
7. Böse, B.K.: "Power electronics and AC drives", Prentice Hall, 1986, pp. 266-280.
8. Harris, C.J., Billings, S.A.: "Self-tuning and adaptive control: theory and applications",

IEE Control Engineering Series 15, Peter Peregrinus Ltd, 1985.

656

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Parallel Optimisation
for

Optical Lens Design

Enric Fontdecaba Baig •*, Jose M. Cela Espfn, and Juan C. Dürsteier Lopez

1 Universität Politecnica de Catalunya enricfflac.upc.es
2 Universität Politecnica de Catalunya celaflac.upc.es

3 Industrias de Optica S.A. Dusflindo.es

Abstract. This paper presents the parallelization of a non linear non
constrained optimization code used in a industrial design, two different
approaches are presented and the results of the comparison is shown.
Keywords: Non linear optimisation, Parallel Algorithms, Lens Design,
Parallel Linear Solvers.

1 Introduction

In this paper we will discuss an industrial design problem, we will show the
difficulties encountered and why a parallel approach was needed. Furthermore
the parallel algorithm will be described, and the performance obtained also will
be presented.

Industrias de Optica S.A. is the biggest Spanish lens manufacturer, the flag-
ship product of the company is the progressive lens. This kind of lens is used to
compensate the presbiopya, resulting from the aging of the eye. This product is
growing its market share.

A progressive lens has three different vision zones, in one of them the user
can see distant objects, in the second (intermediate vision zone) a progressive
change of optical power is made in order to allow the wearer see all distances.
The last zone is used in near vision. It is known that there is no analytical
solution that gives the best possible progressive lens, so it is mandatory to use
an optimization algorithm. [2]

In addition to these three zones, used in phoveal vision, there is a fourth
zone, the lateral zone. All the effort in the optimisation process is devoted in
reducing the astigmatism in this zone, improving the overall lens performance.
In figure 1 the different zones can be observed.

In the Progressive Addition Lens design process, it is necessary to optimize
the lens surface in every performed trial. This being an iterative process, it is
very important to use the fastest possible algorithm. This is the motive that led
us to a parallel approach.

Also in Industrias de Öptica S.A.

657

FEUP . Faculdade de Engenharia da Universidade do Porto

Far Vision Zone

Intermediate Vision zone

Lateral Zone

Near Vision Zone

Fig. 1. Progressive Addition Lens vision zones

2 Mathematical approach

2.1 Lens Modeling

The issue in this optimisation problem is to h,.iM ,
a surface modeling tool is needed. We uSeB SrtL? TT* ""*"*' thuS

epical surface. With this basis, two ^^^V^T* *»

^Ä ™ ZZ^T01 P°int °f a B-Spli- ^1, onlv the
c SXSSS SfÄ^S.^1 et ™s —*is —

-ism, the lens properties r^^^Z^Z^^^

This technique allows enough flexibility A Ion ..
is possible to obtain a more accurate rnolf ' °Ur alSorithms improve, it
points.[3] Urate model creasing the number of control

2-2 Optimization Algorithm

After a complete review of thp Hiff
tion algorithms available, the Ne^Zl^ **, COnstrained optimisa,
reviewed were, Polytope Method^Ä^T selected. The algorithms
Newton and Newton deepest Descent, Conjugate Gradient, Quasi-

658

VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing

With this modification the calculation time for a Hessian was reduced enough
to make the Newton algorithm preferable to a Quasi-Newton approach. [6] [4]

3 Parallelization approaches

The targeted platform was a workstation cluster, so we choose PVM as the mes-
sage passing environment for the new application. [8]
In order to start the parallelization a profile of the algorithm sequential version
was performed. As a result of this profile it was clear that the biggest part of
the CPU time was spent on building the Hessian. Those routines where the first
ones to be parallelized. With the first parallel program, performance measure-
ments were done to study its behaviour. We used the analysis tools available
on the CEPBA (European Center for Parallel Computing of Barcelona) [7], the
Dimemas and Paraver tools, to perform those tests.

3.1 Objective Function Parallelization

The numerical test revealed that a very important part of the calculation time
was spent in computing the objective function. Furthermore, the most impor-
tant part is the Hessian computation. So, the first parallel approach faced the
reduction of this time.

The Hessian is computed by finite differences of the gradient. In order to
improve the performance, an analytical gradient routine was implemented. It is
notable that mathematical packages like Mathematica or Maple failed to com-
pute this analytic derivative.

In order to obtain a finite difference Hessian approach, it is necessary to cal-
culate n +1 (n is the problem dimension) function gradients. Those calculations
are independent, so they are splitt among the different available processors. A
master-slave approach is used. The other computations needed by the algorithm,
the linear search and the linear equations system, are computed by the master.
In table 1 the speed-up results of different problem sizes are shown. The tests
were performed for 2,4,8,12 and 16 processors in order to study the algorithm
scalability.

Studying the code and profiles, it was clear that the algorithm bottleneck
was the linear solver. The traces obtained in our performance analysis tool cor-
roborate this conclusion. In order to improve the scalability, the parallelization
of the linear system solver was decided upon.

3.2 Linear Solver Parallelization

In order to achieve a better scalability we parallelized the linear solver. We used
preconditioned Krylov subspace iterative methods as linear solvers (Conjugate
Gradient and GMRES(m)). The selected preconditioners are a set of different
Incomplete Factorizations. The parallelization of the linear solvers is based on a

659

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 1. Parallel Speed-Up with Function Parallelisation

Dimension 2 Proc 4 Proc 8 Proc 12 Proc 16 Proc

70 1.69 2.63 3.75 3.38 3.95
140 1.85 3.16 5.00 6.13 6.96
390 1.92 3.56 6.12 8.10 9.18
1390 1.95 3.78 6.90 9.08 12.39

Domain Decomposition data distribution. [1] The main bottleneck of the linear
solver is the solution of the sparse triangular linear system arising from the pre-
conditioned The communication requirements of this operation depend on the
block structure of the triangular factors. In order to minimize this bottleneck
two strafptrioc oro itco^. two strategies are used:

1. Control the fill-in at the block level with a different criteria than at the
element level.

2. Perform a coloring of the domains which minimizes the fill-in at the block
level and ensures the maximum parallelism.

Because the granularity of the Hessian assembly and the linear solver is quite
different, we use a different number of processes in each phase. This means that
additional communications are required to redistribute the data before and after
the linear system solution phase. We must find for each problem size the optimum
number of processes of each part in order to obtain the minimum execution time
in this way we can improve the scalability of the whole application.

The results are shown in table 2 and table 3. The results with the smaller data
sets are not shown because due to their size they did not achieve any reasonable
speed-up.

Table 2. Parallel Speed-Up with Function and Linear Solver Parallelisation Using 2
processors in the Linear Solver. s

Dimension 2 Proc 4 Proc 8 Proc 12 Proc 16 Proc

390 1.84 2.91 4.08 4.63 4.20
1390 1.97 3.58 6.06 7.88 9.27

Surprisingly, we achieve no increases in speed in parallelising the linear solver
Analysing the results and the code, we find two reasons for this behaviour:

660

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Table 3. Parallel Speed-Up with Function and Linear Solver Parallelisation. Using 4
processors in the Linear Solver.

Dimension 2 Proc 4 Proc 8 Proc 12 Proc 16 Proc

390 1.73 2.58 3.45 4.02 3.34
1390 No convergence

- As we use an iterative method, the number of iterations needed in order
to solve the linear system is a key parameter. The parallelisation, involv-
ing a matrix reordering increased the number of iterations. Futhermore, in
the bigger case (when we expected some performance improvements), the
reordering affected the algorithm convergence in such a way that made it
diverge.

- With the solver parallelisation, the number of communications is greatly-
increased. In the Hessian parallelisation there are two communications, at
the beginning and the end of the parallel phase. With the linear solver, there
is comunication in each linear solver iteration.

Summarising, the linear system involved in the optimisation algorithm is too
small and too badly conditioned to be solved with a parallel iterative method.

4 Conclusion and Future Work

The speed-ups obtained are satisfactory for the industrial process. It is not ex-
pected to use more than 12 machines at the same time. In fact INDO is installing
a network of 6 DEC Alpha workstation with a Fast Ethernet switch. Taking the
previous results into account, with the targeted platform, the first parallel ap-
proach is the most suitable for the company.

It is also interesting to remark that the problems with the parallel linear
solver. In our previous experience with linear systems from numerical simulations
we have never found such a bad conditioned problem. In order to overcome this
behaviour we are thinking about new reordering methods.

The future work includes an upgrade of the basic sequential algorithm, and
the changes needed by this improved approach. We also want to study the pos-
sibilities of Quasi-Newton approaches to our problem.

5 Acknockledgements

We would like to thanks all the R&D staff of INDO for their support in the
development of this project. Specially to Roberto Villuela for their contribution
to the tests and in developing key parts of the code.

661

FEUP - Faculdade de Engenharia da Universidade do Porto

References

1. Cela, Jose M.; Alfonso, J. M.; Labarta, J.: PLS: A Parallel Linear Solvers library
for domain decomposition methods: EUROPVM'96, Lecture Notes in Computer
Science 1156, Springer-Verlag, 1996.

2. Dürsteier, Juan Carlos.: Sistemas de Diseno de Lentes Progresivas Asistido por
Ordenador.: PhD Thesis. Universität Politecnica de Catalunya, 1991.

3. Farin, Gerald.: Curves and Surfaces for Computer Aided Geometrie Design. A Prac-
tical Guide.: Second Edition. Academic Press, 1990.

4. Gill, Philip E.; Murray, Walter k Wright, Margaret H.: PracticaJ Optimization.:
Academic Press, 1981.

5. Dennis & Schnabel.: Numerical Methods for Unconstrained Optimization and Non
Linear Equations.: Prentice-Hall, 1983.

6. Nemhauser, G.L.; Rinnooy Kan, A.H.G. & Todd, M.J.: Optimization.: Elsevier Sci-
ence Publishers B.V. 1989.

7. Labarta, J., Girona, S, Pillet, V., Cortes, T., Cela, J.M.: A Parallel Program De-
velopement Environment: CEPBA/UPC Report No. RR-95/02 (1995)

8. Gueist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchel, R., Sunderam, V.: PVM
3 User's Guide and Reference Manual: Oak Ridge National Laboratory TM-12187
(May 1994)

662

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Supercomputer Optimized
Microwave Domestic Oven Design via FD-TD

Gaetano BELLANCA ', Paolo BASSI',
Giovanni ERBACCI2, Gianni DE FABRITOS 2 and Ruggero ROCCARI3

1 Dipartimento di Elettronica Informatics e Sistemistica (D.E.I.S.)
University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

2 CINECA, Interuniversity Computing Center
Via Magnanelli 6/3, 40033 Casalecchio di Reno, Bologna, Italy

3 De' Longhi Italia, Treviso, Italy

Abstract Finite Difference Time Domain (FD-TD) is a numerical technique
widely used to evaluate the electromagnetic field distribution in
geometrically complicated devices. The explicit formulation and the
intrinsic parallel structure of the FD-TD algorithm suggest the possibility to
increase the code performance, particularly in terms of computation time
reduction, using parallel architectures. In this paper, advantages in the
design process of domestic microwave ovens via FD-TD on massively
parallel computers are described and commented. Comparisons between the
simulation times required using different workstations and the Cray-T3D
parallel computer are finally reported.

1 Introduction

In the design of microwave ovens, overall performances in terms of heating
uniformity of the load and energy conversion efficiency, user's safety and device cost
reduction must be taken into account and optimized. The availability of a CAD tool is
fundamental for oven designers. In fact, this allows not only to obtain improvements
in heating uniformity and efficiency, but also to prevent possible microwave leakage
and abnormal heating or arcing in the feeding system.
The Finite Difference Time Domain (FD-TD) method is a numerical technique that
can be profitably used to investigate the electromagnetic (e.m.) behavior of a
microwave heating applicator [1] [2]. Because of the complexity of the overall
equations, and also the generally complicated geometry of the heating devices, the
determination of the e.m. field distribution inside the oven could require many days of
simulation on ordinary Personal Computers or Workstations [3]. To reduce the
mathematical dimensions of the problem, some approximations can be taken into
account, but this could introduce unacceptable loss of accuracy.
This bottleneck can be overcome using modern parallel computers. However, to
obtain the best results from this architecture, the simulation code must converted in
parallel form and correctly optimized. The FD-TD approach [4], being based on

663

FEUP - Faculdade de Engenharia da Universidade do Porto

explicit formulation with an intrinsic parallel structure of the solving equations is
well suited to take full advantage on this kind of architecture
In the following after a short introduction to the algorithm, the code parallellization
will be discussed and its performances presented, showing the computation time
reduction obtained on the CINECA's 128 processors Cray-T3D system
This program will be used as the basic kernel for an European Community HPCN
project a demonstration action devoted to the introduction of High Performance

i ™PUterS m thC design pr0cess of domestic microwave ovens. The project is
named POPCORN (Production Of Parallel Computer Optimized micRowave S
and is managed by a consortium composed by De' Longhi, CINECA and D.E.I.S.

2 The numerical approach

The electromagnetic field inside a metallic microwave cavity representing the oven has
been described by the Time Domain Maxwell's curl Equations. Differential operators
have been written in difference form following the Yee's scheme [4]. The resulting
equations for all the 6 field components (electric and magnetic) have the same form
and differ only from the values of the multiplication coefficients, that are evaluated
according to the dielectric properties of materials in each cell of the computational
domain. As an example, the equation of the E, field component can be written as:

E7%J,k) = C(iJ,k)E:{i,j,k) +
c«M)[Ärx(/+i.y+i.t)-Är4+i.y-i,t)]+

^(u4H;y'(i+ijMi)-„^{i+iJ>k_^
(1)

where n is the iteration time step, (/, ;, k) represents the generic node of the discrete
computational domain and the coefficients C;, C2 and C} are functions of both the
local values of the dielectric properties and the spatial step increments along y and z
These equations are well suited to be solved on a parallel computer. In fact, as it'is
easy to observe, the three electric field components do not depend from each other, but
are only functions of the previous value of themselves in the same cell and of the
magnetic field components in the surrounding cells. A similar result holds also for all
the three magnetic field equations.

3 The parallel implementation

The Cray-T3D is a massively parallel system that integrates commodity
microprocessors with a proprietary system interconnection network and high-speed
synchronization mechanisms. Each Processing Element (PE) consists of a processor
the associated logic and a connection to the interprocessor communication network
The processor is a DEC Alpha chip 21064, a 64-bit RISC architecture with dual-
issue, pipelining instruction stream, that provides 150 Mflop/s peak performance
bach PE is equipped with a direct-mapped cache of 8 Kbyte for the data, and with a

664

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

DRAM local memory of 8 Mwords (64-bit words). The global memory subsystem is
a directly connected shared distributed memory architecture in which memory is
globally addressable but physically distributed. The interconnection network is a 3D
torus which operates asynchronously and independently from the PEs to access and
redistribute global data. The 3D toms topology ensures short connection paths and
high bisection bandwidth(300 Mbytes/s in every direction).
The original FD-TD code has been parallelized on the Cray-T3D using the CRAFT
work sharing paradigm. A preliminary version of the parallelization scheme is reported
m [5]. CRAFT is a Cray proprietary parallel programming model, similar to HPF,
that allows the use of a global address space and supports the SPMD (Single Program
Multiple Data) programming style. The same program is loaded and executed in all the
PEs, but controlled by processor number and data. CRAFT is based on directives to
the Fortran compiler, to express data and work distribution among the PEs, and it is
efficient and easy to use. Unfortunately the portability is restricted only to the Cray-
T3D massively parallel systems [5]. One of the tasks of the POPCORN Consortium
is to overcome this limitation. In order to accomplish this task, the FD-TD code will
be parallelized also using the MPI message passing paradigm, a more general and
portable parallel programming model than the work sharing one. In this way the
program will be ported on different parallel architectures to investigate the
performances that can be reached even on a cluster of PC's, thus making this tool
practically useful for the Research and Development division of an industry.

4 Results

In the structure of the developed FD-TD simulator three main sections can be
identified: pre-processing, field evaluation and data output.
Data input and initialization of all variables are the activities of the first section.
Information related to the physical structure of the computational domain (dimensions,
e.m. properties of the considered materials, used mesh, etc.) are obtained reading ä
binary file produced by an external program used for the modeling. Then, once all the
dielectric properties of each mesh point are known, values of all the variables used for
e.m. field evaluation can be prepared. The second section contains the field
computation procedures, based on the Yee's algorithm for the inner domain and
boundary conditions for the outer faces. Also field excitations is performed in this
section. Output binary files are used for final post-processing procedures.
As an example, the FD-TD approach has been used to simulate the behavior of a
domestic microwave oven represented by 32 x 32 x 32 cells and for a temporal
evolution of 1000 time steps. Simply adapting the existing code to the parallel
machine, we have observed that the simulation times in all the parallel regions scale
very well with the number of the used processors. However the global performances
are always limited by the unoptimised sequential I/O procedures, which shown an
almost random contribution to the overall simulation time. The solution to this
problem has been obtained modifying the I/O routines, increasing the number of data
associated to each I/O request (Fig. 1).

665

FEUP ■ Faculdade de Engenharia da Universidade do Porto

1000

1PE 16 PE 32 PE 64 PE 128 PE

Fig. 1. Comparisons between the computation times (Log scale) requited by the I/O
procedures of the parallel FD-TD simulator before and after the optimizations.

300

200

100

1PE 16 PE 32 PE 64 PE 128 PE

Fig. 2 Computation times before and after the optimizations of the field evaluation section
using different number of PEs.

Other optimizations have also been introduced to increase the computation speed on
the Cray-T3D parallel computer. This has been done modifying the data structure of
the coefficients used in the Yee's field equations, avoiding the so called cache miss
phenomenon. With this solution we have doubled, in terms of Mflop/s, the
performances of each PE. For the main computational part of the code the
improvements shown in Fig. 2 have been obtained.
The speed-Up of each section of the code as a function of the used PEs is reported in
Fig. 3. This speed-up has been evaluated as the ratio between the simulation time
required to perform a given procedure on a single PE and the time required to perform
the same part of the code in parallel. As it is possible to see, parallel procedures
(Yees coefficient preparation (PrepcY) and field computations (Calc)) scale
accordingly with the number of used PEs, confirming the good implementation of the

666

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

code. Loss of efficiency results for operation defined over data subspaces (as, for
example, those related to preparation of coefficients for the boundary conditions,
indicated as PrepcB, and those related to field excitation and boundary field evaluation,
which influence the behavior of the Calc procedures). The resulting performance,
however, can be considered satisfactory.

PrepcY

Calc

PrepcB

1 16 32

Fig. 3. Speed-Up of the different procedures of the FD-TD simulator vs the used PEs.

CRAY 64 PE» 157

97.57

0 10 20 30 40 50 60 70 80 90 100

Timing-Ratio

Fig. 4. Timing ratio of the 128 PEs Cray-T3D system respect the same system with
different number of PE and some SUN workstations.

Using this code, the behavior of a more complicated microwave domestic oven with
different load situations has been simulated [6]. For a 7500 time step run of a

667

FEUP - Faculdade de Engenharia da Universidade do Porto

64 x 64 x 64 mesh and 128 PEs, the overall CPU time has been reduced to 215 s
respect to the about 9 h and 3.5 h required respectively by a Sun SPARCStation 20
and a Sun ULTRA 1 workstations. Obtained Speed-up are reported in Fig. 4.

5 Conclusions

In this paper, advantages in the design process of domestic microwave ovens using
massively parallel computers have been described and commented. Comparisons
between simulation time required by different workstations and the Cray-T3D parallel
computer have been reported, to show the obtained performance increments. Speed-up
of 59 and 154 have been shown comparing Cray-T3D 128 PE and Sun's ULTRA1 and
SPARC20 workstation's results. This code will be used as the basic kernel for the
POPCORN European Community project. The FD-TD simulator will be ported to
the new CINECA's Cray-T3E parallel computer and on a PC cluster using the
message passing paradigm (MPI), to investigate the level of performance that can be
reached and to make this tool available for industrial Research and Development
divisions engaged, for example, in domestic microwave oven design.

Acknowledgments

This work was supported by the "POPCORN" ESPRIT Project n° EP 27213.

References

1. Sundberg M., Risman P.O., Kildal P-S, Ohlsson T.: Analysis and Design of Industrial
Microwave Ovens using the Finite Difference Time Domain Method. Journal of
Microwave Power and Electromagnetic Energy, Vol. 31, No. 3, (1996), 142-157.

2. Bellanca G.: Microwave Domestic Ovens Performances evaluated by FD-TD Simulations.
Rapporto '95, Scienza e Supercalcolo al CINECA, (1995), 361-368.

3. Bellanca G., Botti S., Erbacci G., Ansaloni R.: Advances in Microwave Ovens design
via FD-TD on Supercomputers. VI International Conference "Microwave and High
Frequency Heating", Fermo (AP), 9-13 Sept. 1997, 7-10.

4. Yee K.S.: Numerical Solution of initial boundary value problems involving Maxwell's
equations in isotropic media. IEEE Trans. Ant. Prop., Vol. 14, No. 5 (1966), 302-307

5. Erbacci G., Bellanca G., Botti S., Ansaloni R.: Supercomputing based Microwave Ovens
Design via FD-TD, E Italian-Latinamerican Conference on Applied and Industrial
Mathematics (ITLA '97), Rome, Jan. 27-31, CNR/GNFM n° 53 (1997), 90-93

6. Pase D. M., MacDonald T., Meltzer A.: The CRAFT Fortran Programming Model"
Scientific Programming, Vol. 3, (1994), 227-253.

7. Bellanca G., Botti S., Bassi P., Falciasecca G.: Sensitivity of FD-TD simulations to
Small Mesh Modifications in Microwave Ovens design. VI International Conference
"Microwave and High Frequency Heating", Fermo (AP), 9-13 Sept. 1997, 60-63.

668

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Debugging Message Passing Parallel Applications: a
General Tool

Ana Paula Claudio1, Joäo Duarte Cunha2, Maria Beatriz Carmo1

'Faculdade de Ciencias da Universidade de Lisboa
Departamento de Informätica - Campo Grande - Ediffcio C5 -Piso 1-1700 LISBOA ■

Portugal
{ape, bc}@di.fc.ul.pt

2Laboratörio National de Engenharia Civil
Av. do Brasil, n° 101, 1799 LISBOA CODEX - Portugal

jdc@lnec.pt

Abstract. The paper describes a general purpose tool for the debugging of
message passing parallel applications. The basic components of this tool are the
trace/replay mechanism, the graphical user interface and the central component,
called visualization engine. The engine, which plays the central role during the
replay phase, can be used with different message passing environments and
different graphical interfaces. This is a significant step to ensure a wider range
of usability. Also relevant is the fact that this engine is able to learn how to
detect predicates.

1 Introduction

Debugging sequential programs is not an easy task and it is common knowledge that
the insertion of print statements is one of the most popular debugging techniques.

Henry Lieberman calls debugging "the dirty little secret of computer science" and
concludes that it is still, largely, a matter of trial and error [10]. The fact that the April
97 issue of "Communications of the ACM" is entirely dedicated to debugging, proves
how relevant the subject is. The debugging problem has largely been ignored what
contrasts sharply with the remarkable progress in software development over the last
thirty years [3].

Debugging parallel applications is even more difficult than debugging sequential
programs due to non-determinism caused by race conditions. These conditions happen
since processes in a parallel application must communicate with one another.

That is why our tool focuses on communication events. The tool includes a replay
mechanism and a graphical interface. Between these two components, a central
component, the visualization engine, makes the tool easily adaptable to different
message passing mechanisms and different graphical environments.

669

FEUP - Faculdade de Engenharia da Universidade do Porto

2 Comparing Similar Tools

In November 1993 a group named Parallel Tools Consortium ' was established
whose "mission is to take a leadership role in defining, developing, and promoting
parallel tools that meet the specific requirements of users who develop scalable
applications on a variety of platforms". According to this consortium, parallel program
debuggers, execution trace visualizers, and tools for performance tuning," are
subgroups that form a larger group named Execution Analyzers. Besides this, there are
two more groups: Source code analyzers which are used to analyze and convert serial
programs to parallel code and Parallel languages and libraries.

The usage of execution analysis tools is mandatory for programmers to obtain
correct and tuned parallel programs and it takes place after the usage of any tool from
the other groups. Among those, debuggers have to be used before execution trace
visualizers and tools for performance tuning. There are myriades of tools of these
sorts, therefore, one can only mention a limited number of them.

Among execution trace visualizers and tools for performance tuning we can
mention AIMS2, mp2sddf2, ntv2, Pablo2, VT2, Paragraph [6], Forge2, XProfiler2

Paradyn\ PATOP\ Poet [7]. The following belong to the group of debugging tools'
xpdbx2, TotalView2, DETOP3, Xmdb\

Our tool is intended to be independent of the message passing software. However
it is being tested for PVM applications so, it makes sense to mention execution
anahzers exclusively applicable to this message passing system: Xpvm2 Hence4

PVaniM [11], Xab3J, DBPVM-\ TAPE/PVM\ DDBG [4] and TOOL-SET [12]. The
last one comprises a set of integrated tools, among them the debugger DETOP and the
performance analyser PATOP, previously mentioned.

A complete description of all these tools and a detailed comparison with the one
described here, is outside the scope of this paper. Nevertheless, it is possible to
identify two of its distinctive features. First, it incorporates both a replay mechanism
and a graphical representation, and second, its basic component, the visualization
engine, builds an object-oriented model of the message passing application. Taking
full advantage of inheritance and polymorphism, the tool becomes easily adaptable to
different message passing softwares and/or to different graphical representations or
graphical softwares.

Besides, due to the adoption of the object-oriented paradigm, the tool is flexible
enough to acquire an important additional skill: predicate detection.

1 http://www.ptools.org
2 Links to a site containing information about this tool can be obtained in

http://www.tc.cornell.edu/Parallel.TooIs/exec-analysis-tools.htmI
-1 Links to a site containing information about this tool can be obtained in

^ http://www.cse.ogi.edu/DISC/projects/mist/related-work/monitoring.html
Links to a site containing information about this tool can be obtained in
http://www.henceedp.com/

670

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

3 Our Tool

As explained before, the tool includes three components: a replay mechanism, a
graphical interface and a centra! component named visualization engine.

The replay mechanism makes a particular execution repeatable, allowing cyclic
debugging, a frequently used technique in sequential programs. The replay mechanism
adopted is similar to the one described in [9] for applications based on the shared
memory paradigm. Assuming that the individual processes in the parallel application
do not contain nondeterministic statements, this mechanism is based in the principle
that if each process is supplied with the same input values, in the same order, during
successive executions, it will exhibit the same behaviour each time. The mechanism
includes two distinct phases: trace phase and replay phase. In the trace phase, minimal
information is stored in order to minimize the probe effect. Although minimal, the
stored information is enough to assure that, during the replay phase each process will
consume the same messages, in the same order.

It should be emphasized that it is not necessary to modify the code of a parallel
application to use this debugging tool. The monitoring code is inserted in the standard
libraries of the message passing software, which should not be modified by the
common user. In the trace phase, the application under study must be linked with one
modified library (trace library); for the replay phase, it must be linked with a second
modified library (replay library).

During the replay phase, the visualization engine builds an object-oriented model of
the application. The model provides the necessary semantic feedback to answer most
of the questions the user may ask about the application, during and after replay.

The engine contains two sorts of classes: classes that define the building blocks of
the model (namely, class Process and class Message) and management classes. In this
last group, the most important classes are class Manager and class Agent.

There is one Agent executing in each machine that is running processes of the.
replaying application. Each Agent receives information from the local processes and
sends it to the object in charge of building the object-oriented model of the
application and maintaining its coherence along the replay. This object is an instance
of a class derived from Manager.

In order to support different graphical representations or different graphical
environments we take profit of inheritance, a major property of object-oriented
models. A Graphical Interface Manager (GIManager), derived from Manager,
contains the knowledge necessary to deal with the graphical interface. Similarly, the
model contains classes GIProcess, derived from Process, GIMessage, derived from
Message and so on.

In this way, data and code that depend on the graphical interface are encapsulated
inside GI classes. On the other hand, everything that depends on the message passing
software used by the parallel application, is encapsulated inside class Agent. Agents
must be able to understand the message passing "dialect".

Inheritance will be adopted again, this time to teach the model how to detect
predicates [2]. In order to achieve this feature, for each specific predicate new specific
classes, subclasses of the classes in the model, will be defined.

671

FEUP - Faculdade de Engenharia da Universidade do Porto

These classes inherit the behaviour of their superclass(es) and additionally know
how to detect that predicate. For each predicate, particular information has to be
collected and processed. Therefore, those classes must contain specific attributes and
methods. Some of these methods will be overridden methods giving rise to
polymorphic behaviour.

Two granularity levels for the observation of a parallel application are defined-
Level 1: external events level

External events, that is, communication events, are observable.
Level 2: internal events level

Internal events, concerning each individual process, are observable, together with
communication events.

Our tool directly supports level 1. However, it is prepared to support level 2 as
long as a sequential debugger is integrated. This kind of integration has been
accomplished in similar tools [4].

A message has a source, one or several destinations', a tag and a body
Accordingly, the sort of bugs that an user is able to detect, using a tool which support
level 1, are: r

- Bugs concerning one message
- On the source side

wrong destination;
wrong tag;
wrong body.

- On the destination side
wrong source;
wrong tag.

- Bugs concerning all messages
race conditions.

- Bugs concerning communication primitives
wrong type of primitive.

Each of the following examples illustrates one of the previous sort of bugs- a
process disturbs the application's expected behaviour because it has sent a message to
the wrong destination (this one is a bug concerning one message, on the source side)- a
process waits for a message that will never arrive, meanwhile the correct message has
arrived and will not be consumed (this is a bug concerning one message, on the
destination side); the programmer intended to develop a race-free application but in
tact he did not (this is a bug concerning all messages); the user intended to use a
blocking receive and instead used a non-blocking one (this is a bug concerning
communication primitives).

A source or a destination is a process identity.

672

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

With level 1 tools, detectable predicates are those properties that depend
exclusively on variables associated with communication events. For instance, suppose
that process PI processes a n-dimensional matrix, and after having processed each line
sends it to process P2; the property " has process P2 received exactly n messages from
process PI ?" is a detectable one.

General predicates will be detectable as long as the level 2 of granularity
observation is guaranteed.

The tool has been tested with PVM applications [1] (PVM [5] supports message-
passing paradigm); C++ was used to develop the visualization engine and OSF-Motif
for the graphical interface.

Although our debugging tool is easily adaptable to different graphical interfaces,
we have started with a rather simple representation, the time space-diagram [8]. We
made this choice because we think that a complex representation disturbs user's
attention. He spends more time trying to understand all the symbols than focusing his
mind in what really matters: the parallel application.

REFERENCES

1. Claudio, A., Cunha, J.: Monitoring and Debugging of Message Passing Parallel Applications.
In Proceedings of the 5'h International Conference on Educational, Practice and Promotion of
Computational Methods in Engineering Using Small Computers, Macau, August 1995

2. Cooper, R., Marzullo, K.: Consistent Detection of Global Predicates. In: ACM/ONR
Workshop on Parallel and Distributed Debugging- ACM Press Sigplan Notices, Vol. 26 No
12,1991

3. Crawford, D.: Editorial Pointers. In: Communications of the ACM, April 1997, Vol. 40, No.
4, page 5

4. Cunha, J., Lourenco, J., Antäo, T.: An Experiment in Tool Integration: The DDBG Parallel
and Distributed Debugger. Submitted to Euromicro Journal of Systems Architecture

5. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM: Parallel
Virtual Machine. MIT Press, 1994

6. Heath, M., Etherridge, J.: Visualizing the Performance of Parallel Programs. IEEE Software,
September 1991

7. Kunz , T., Black, J., Taylor, D., Basten, T.: Poet: Target-System-Independent Visualisations
of Complex Distributed Appliaction Executions. In:Computer Journal, Vol. 40, No 8
February. 1998

8. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. In:
Communications of the ACM, July 1978, Vol. 21, No. 7, 558-565

9. Leblanc, T, Mellor-Crummey, J.: Debugging Parallel Programs with Instant Replay. In:
IEEE Transactions on Computers, Vol C-36, No. 4, April 1987

10. Lieberman, H.: The Debugging Scandal and what to do about it. In: Communications of the
ACM. April 1997, Vol. 40, No. 4, 26-29

673

FEUP - Faculdade de Engenharia da Universidade do Porto

.Ine,°i996 '^ ' ""*" ^ °n'ine "nd P°Stm0rtem VisUa,ization S^°« «* PVM. June
12

Mellner, G The TOOL-SET Project: Towards an Integrated Tool Environments for Parälle
Programing. In. Proc. of the 2»' Sino-German Workshop on Advanced "re Proclsll
Technologies, Koblenz, Germany, September 1997 processing

674

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Parallel Ensemble-Averaged Molecular Dynamics
Simulation of Shock Wave on Distributed

Memory Multicomputers

Sergey V.Zybin *

High Energy Density Research Center, Institute for High Temperatures,
Russian Academy of Sciences, Izhorskaya 13/19, Moscow 127412, Russia.

Abstract. In this paper we present a simple parallel algorithm for en-
semble-averaged molecular dynamics simulation of non-stationary trans-
port processes in Lennard-Jones systems on distributed memory MIMD
multicomputers. This algorithm has been used for simulation of shock
wave in two- and three-dimensional solids and calculations of ensemble-
averaged particle distribution functions of kinetic and potential energy as
well as the pair correlation functions for several cross sections within the
shock layer. The algorithm is based on parallel simulation of independent
systems from a canonical ensemble on different processors allowing a
computation of the ensemble-averaged structural and thermodynamic
properties. We have implemented the algorithm in the PVM program-
ming environment and performed simulations on various multicomputers.

Keywords: parallel computing, molecular dynamics, shock wave, PVM.

1 Introduction

The molecular dynamics (MD) is a powerful simulation tool for studing struc-
tural and dynamical properties of liquids and solids. Recently, more attention
has been focused on understanding the molecular mechanisms of nonstationary
macroscopic processes such as shock wave [1, 6], detonation [8], fracture and
failure [3], partly due to the advent of massively parallel computers.

In the present work we apply the MD method for simulation of a planar shock
wave in Lennard-Jones solid. The principal limitation to such simulation is that
the shock layer properties can vary significantly within a few lattice spacings. In
the most general case, both the space- and time-dependences of all the dynamical
quantities need to be considered. Thus, sufficiently large cross-sectional area is
required to reduce large nonphysical fluctuations. Up to now, the number of
atoms per transverse plane was typically 102 - 103 which is not sufficient for
reducing the fluctuations considerably. Owing to these fluctuations, important
characteristics of the shock layer, such as the evolution of velocity distribution
function across the layer, have not been well studied. One way to improve the

* Present address: Universidade Federal de Sergipe, DEI/CCET, 49100-000, Säo-
Cristöväo - SE, Brazil, e-mail: zybin@sergipe.ufs.br. This research was supported
by Russian Foundation for Basic Research, grant 96-01-01901.

675

FEUP - Faculdade de Engenharia da Universidade do Porto

quality of simulation is to take a time average, but it is possible for modeling
only steady shock waves. It has been employed in [1] through the use of special
potential configuration, which makes it possible to generate a steady shock wave
at rest in the laboratory frame. Recent advances in parallel computers provide
a means for multi-million atoms simulations of such nonstationary processes
[2, 3], which enables one to extend considerably the cross-sectional area. How-
ever, the implementation of message-passing multi-cell MD on massively paral-
lel computers [2, 9] usually involves intensive interprocessor communications on
each time step and possible non-uniform workload of processors. It complicates
the implementation of spatial-decomposition technique on less sophisticated
and cheap heterogeneous multicomputers such as network-connected clusters
of workstation or PC-clones coupled with free PVM/Linux software.

Here we implement an alternative ensemble-decomposition approach that
consists in taking a statistical average over canonical ensemble by repeating
the shock wave simulations with different initial conditions. An advantage of
this approach is a straightforward implementation on parallel computers with
virtually no interprocessor communications, where each processor is responsible
for independent simulation. It has been applied in modeling a shock wave in
Lennard-Jones crystal with 102 - 103 atoms in the cross-sectional area and 102

simulation runs. The time-dependent profiles for density, velocity, mean square
fluctuations of the longitudinal and transverse velocity components, internal
energy and pressure tensor were obtained. We also measured the velocity distri-
bution functions, the probability density for the potential energy and the pah-
correlation functions in several transverse planes within the shock layer.

2 Parallel ensemble-averaged MD algorithm

We have developed a parallel algorithm of ensemble-averaged MD method
in the PVM programming environment for simulation of shock wave in the
fee lattice composed of atoms interacting via Lennard-Jones (6-12) potential
U{r) = Ae[{<x/r)12 - (a/r)6}. The program was initially developed in the PVM
on distributed shared memories machine CONVEX SPP-1000 and then adapted
on IBM SP2 RS/6000 and the network-connected PC-clone. The algorithm has
the "master-slave" parallel structure presented by the following scheme

Master
1.Initialization: Compute initial data and send to A' Slaves
2.The beginning of parallel computations

for n=l to number of simulation steps pardo
receive from Slaves binned profiles of variable ak, Jk = 1 A'
compute ensemble average (a; /) = £ £t ak (or by Metropolis procedure)

end pardo
3.Repeat the step 2 if required
4.Kill Slaves and finish the computations

676

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Slaves
1.Initialization: Receive from Master initial data
2.Computations in Slave k (k=l,...,K)

for n=l to number of simulation steps do

compute forces f(r"~1)=-J2jla^f^, move atoms to new positions r?
compute binned profile of dynamical variable a*
send eck to Master

end do
3. Repeat the step 2 if required

The algorithm consists in concurrent simulations of different systems from a
canonical ensemble generated by randomization of the initial velocities of atoms.
From time to time, the binned spatial profiles of a dynamical variable a are
calculated in each simulation subtask. Then the averaging over K systems of
ensemble is performed yielding the expectation value (a;f) for a distribution
function /. The theoretical speed-up for the algorithm presented above is

Speed-up = (jtompK)l(Tcomp + Tcomm/Nx),

where Nx is the number of atoms in cross-sectional area, rcomp, Tcomm -
the parameters responsible for computation and communication time. As the
computational experiments show, the communication time is negligible small in
comparison to the comüutation time (see Fieure IV

4.0

3.0 -

§•

t»

2.0

1.0

0.0

SPP-1000, Nx=100

SPP-1000, Nx=20

IBM SP2, Nx=100

tljljlilijjlil IBM SP2, Nx=20

PE
1 2 3 4 5

Number of processors
Fig. 1. The speedup obtained on different computer architectures: (a) single hypernode
of the CONVEX SPP-1000 (4 processors), (b) 4 IBM RS/6000 POWER2 networked
workstations (for different numbers Nx of atoms in cross-section).

677

FEUP - Faculdade de Engenharia da Universidade do Porto

It should be noted that any standard MD program optimized for sequential
execution can be readily implemented in this algorithm with minor changes
However, there are two cases where its use becomes impracticable- when it is
necessary to use a large system size (due to the memory limitations on the
number of atoms) and when the simulation time is longer than can be realistically
achieved using a single processor (due to the large update time per atom) In such
situations the best approach is the parallel spatial-decomposition MD technique.

3 Simulation results

The algorithm has been used for a simulation of shock wave in a lattice composed
of argon atoms (m = 40 a.u., a = 3.4Ä, e/kB = 120 °K). The rectangular
simulation cell had the length of 100 - 150 unit cells (200 - 300 planes of atoms)
in the z direction of shock propagation. The transverse x dimension was usually
50 - 100 unit cells with periodic boundary conditions imposed along the x axis
The initial density n0 was chosen to be 0.93-1.03 and the temperature T0 = 0.1.

A planar shock wave is initiated by causing a few atom planes to move
with a constant piston velocity up in the z direction. During a simulation the
piston atoms are constrained to remain at their moving lattice sites. The time-
dependent profiles for velocity, density, mean square fluctuations of the longitu-
dinal and transverse components of atom velocity ("kinetic temperature" compo-
nents), internal energy, and pressure tensor were obtained. We also measured the
pair correlation functions, the distribution functions of the velocity components
and the probability density for the potential energy in several planes z = const
within the shock layer at different times for describing the evolution of the lattice
structure during the shock compression.

The simulation cell is divided into bins along the z direction to obtain the
shock-wave profiles. Typically the number of bins was equal to twice the number
of unit cells in uncompressed lattice, giving a bin width Q.87o--0.96cr. The local
properties at a point are obtained by taking a spatial average over a bin around
point and an average over the systems of an ensemble. We have followed the
approach [4] based on the formulas given in [7] for the expectation value (Q/)

of dynamical variable a over an ensemble having distribution function /. It is
assumed that a local property dependent directly on atomic position, such as
the mass density, is given by

n(v,t) = Y,{miA(ri-r);f}, A(rt - r) = f1/^^ f " ¥ < * < - + U.
,: (0 ptherwise,

where d is the bin width, S is the area of cross section of MD cell, and A(n - r)
is the localization function (in [7] the Dirac's «-function was used). For a'local
property dependent on interatomic separation P0-, such as the stress tensor the
interaction of atoms on the opposite sides of S are taken into consideration

'(r.O = -D^(vv-u)(vi-u^(r<-r);/)+i2/£iffli^i!^ia(ri_r):/'

678

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

where u(r,t) is the mean velocity in the bin centered about r. All the generated
systems are accepted for taking ensemble averages, implying the constant dis-
tribution function. The fluctuations of internal energy measured for different
systems of an ensemble were sufficiently small in the simulation. Besides, one can
use the canonical distribution function by introducing a Metropolis procedure
to accept or reject the new realization at a given time t as in [5].

Figure 2 shows some simulation results of typical example of shock wave in
2D lattice with 100 atoms in the cross section. The parameters of simulation (pis-
ton velocity uP/c0 = 0.7, where Co - longitudinal zero-temperature sound speed,
Mach number M = 3, compression ni/n0 « 30%) are representative for rather
strong steady shock wave. The simulation makes it apparent that the fluctuation
of the longitudinal velocity component, Tn ~ J2i(vit ~ u*)2> Srows faster tnan

the fluctuation of the transverse component Tt ~ X^fe - uT)
2. A similar

phenomenon has been observed previously [1, 6]. The difference between Tn and
Tt leads to the anisotropy of pressure within the shock layer and to the effect
similar to the surface tension [1]. The evolution of the velocity component tu
distribution function across the shock layer reveals significant deviation not only
from the Maxwellian equilibrium distribution but also from the corresponding
bimodal distribution. The virial terms of normal P'n and tangent P[components,
and the difference between them are also presented as well as the evolution of
potential energy distribution function across several planes z = const within
the shock layer. The simulation results were obtained for 200 systems from an
ensemble showing a considerable reduction in statistical fluctuations.

The experiments on network-connected multicomputers in PVM environment
confirm an efficiency of the algorithm for obtaining ensemble averages of the
time-dependent dynamical variables. The three-dimensional ensemble-averaged
MD simulation of a shock wave in solid states are currently in progress.

The computational resources were provided by the Keldysh Institute of
Applied Mathematics of Russian Academy of Sciences and the National Center
of Supercomputing of the Federal University of Rio Grande do Sul. I would like
to thank S.I.Anisimov and V.V.Zhakhovskii for encourangement, support and
many useful discussions concerning this work.

References

1. S.I. Anisimov, V.V. Zhakhovskii, and V.E. Fortov. JETP Lett. (1997).
2. D.M. Beazley and P.S. Lomdahl. Paral. Comput. 20, 173 (1994).
3. P. Gumbsch, S.J. Zhou, and B.L. Holian. Phys. Rev. B 55, 3445-3455 (1997).
4. R.J. Hardy. J. Chem. Phys. 76(1), 622-628 (1982).
5. D.W.Heerman, P.Nielaba, and M.Rovere. Comp. Phys. Comm. 60, 311-318 (1990).
6. B.L. Holian. Phys. Rev. A 37, 2562-2568 (1988).
7. J.H. Irving and J.G.Kirkwood. J. Chem. Phys. 18, 817-829 (1950).
8. J.W. Mintmire. D.H. Robertson, and C.T. White. Phys. Rev. B 49, 14859 (1994).
9. S. Plimpton. J. of Comput. Physics 117, 1-19 (1995).

10. N.J. Wagner. B.L. Holian, and A.F. Voter. Phys. Rev. A 45, 8457-8470 (1992).

This article was processed using the LTgX macro package with LLNCS style

679

FEUP - Faculdade de Engenharia da Universidade do Porto

iE

Fig. 2. a) Spatial profiles of mean-square fluctuations of the longitudinal Tn and trans-
verse Tt velocity components with corresponding profiles of the density n. b) Spatial
profiles of normal (Pn) and tangent (Pt') components of potential contribution to the
pressure tensor. Distance * from the piston is given in a units, c) Distribution func-
tions of the longitudinal v, velocity component in different layers normal to S-axis
d) Distribution functions of the potential energy in different lavers normal to -axis
Layers are numbered from upstream to downstream. Piston velocity «p = 0 7c0 (r0

- longitudinal zero-temperature sound speed). Shock velocity is 3.0 c0 , compression
«i/tio is 307c. The data were averaged over 200 systems from an ensemble

680

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

THE INFLUENCE OF COMMUNICATION
PATTERNS IN THE ^-RELATION HYPOTHESIS IN

THE IBM SP2

Roda, J.L, Rodriguez C, Almeida F., Morales D.G.

Dpto. Estadfstica, Investigation Operativa y Computation,
Universidad de La Laguna, Tenerife, Spain

roda@ull.es

Abstract The Bulk Synchronous Parallel Model, BSP has been proposed by
Valiant to predict the performance of current parallel systems. In the BSP
model the computation is divided in supersteps. The fundamental assumption of
the BSP model is the /i-relation hypothesis. This states that the communication
time of a given superstep is proportional to the maximum number h of packets
communicated by any processor. This paper makes a brief survey of the BSP
parallel computational model and studies the validity of the A-relation
hypothesis using current standard message passing parallel software and current
standard network technology. We measure the influence of the communication
pattern on the time invested in an /i-relation. The conclusion is that a linear
model based in the /t-relation hypothesis can be used to predict the execution
time for a wide set of algorithms written using Standard Message Passing
Libraries.

1 Introduction

Among the plethora of parallel computational models proposed, PRAM, Networks,
BSP and LogP are the most popular. The PRAM model [3] has been widely used to
represent the complexity of parallel algorithms. The model is simple and useful for a
gross classification of parallel algorithms but is unrealistic because all processors
work synchronously and inter-processor communication is free. It assumes a single
shared memory where each processor can access any cell in unit time and neglects
contention caused by concurrent access to different cells within the same memory
module. In a Network Model [6], communications are only allowed between directly
connected processors; other communications are explicitly forwarded through
intermediate nodes. Many algorithms have been created which are perfectly matched
to the structure of a particular network. However these elegant algorithms lack
robustness, as they usually do not map with equal efficiency onto interconnection
structures different from those for which they were designed.

Many of current parallel computers consist of a collection of complete computers
connected through a network interface to a multistage interconnection network. Culler
et al. [2] believe that this hardware organization is going to dominate commercial

681

FEUP - Faculdade de Engenharia da Universidade do Porto

Massively Parallel Computers in the near future. The LogP Model, [2] characterizes a
parallel hardware/software platform by four parameters: the number of processors (P)
the gap (g), the latency (L) and the communication overhead o. The model also
assumes that if a processor attempts to transmit more than [L/g] not consumed
messages, it will stall until the message can be sent without exceeding the limit
Although the model encourages the careful scheduling of communication and
overlapping of communications and computations, there is a concern that a complete
LogP analysis for non-trivial algorithms is in not few cases almost unfeasible

Section 2 introduces the BSP model. Section 3 measures the influence of the
communication pattern on the time invested in an A-relation. Section 4 concludes that
the linear model approach proposed in section 3, can be used to predict the
performance of PVM [4] and MPI [11] bulk synchronous programs.

2 The Bulk Synchronous Parallel Model.

The BSP model [12] tries to provide a simple but accurate interface between the
domains of parallel architectures and algorithms. In the BSP model, a parallel
machine consists of a set of processors, each with its own private memory and an
interconnection network that can route packets of some fixed size between processors
The computation is divided in supersteps. In each superstep, a processor can perform
operations on local data, send packets, and receive packets. This local computation
must depend only on data present in the local memory of the processor at the
beginning of the superstep. A packet sent in one superstep is guaranteed to be
delivered to the destination processor at the beginning of the next superstep
Consecutive supersteps are separated by a global synchronization of all processors

The two basic BSP parameters that model a parallel machine are: the gap g which
reflects per-processor network bandwidth, and the minimum duration of a superstep
L, which reflects the latency to send a packet through the network as well as the
overhead to perform a global synchronization. Let be A the maximum number of
packets a processor communicates (the sum of the packets received and sent) in a
superstep (such a communication pattern is called an A-relation). The fundamental of
the BSP model lays on the A-relation hypothesis introduced by Valiant. It states that
the communication time spent on an A-relation is given by

Communication Time = gh n\

Let denote by W the maximum time spent in local computation by any processor
during the superstep. The BSP model guess that the running time of a superstep is
bounded by the formula: v

Time Superstep = W + g A + L n\

In consequence, the design of algorithms under the BSP model tries to minimize
the number of supersteps, the maximum number of operations performed by any
processor Wand the maximum number A of packets communicated. A virtue in BSP
of having barriers available as a primitive is that analysis is simplified by assuming
the processors exit the barrier in synchrony. Special libraries have been built to
support the BSP style of programming [8], However, such software is not still widely

682

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

extended. There is no doubt that MPI and PVM constitute the facto current standards
for distributed computers.

3 Checking the Validity of the h -relations Hypothesis

The experiments were done in the IBM Scalable POWERparallel SP2 [1]. In this
distributed-memory parallel computer, processors or nodes are interconnected through
a High Performance Switch (HPS). The HPS is a bi-directional multistage
interconnection network. The computing nodes are Thin2, each powered by a 66MHz
Power2 RISC System/6000 processor. All the algorithms were implemented in PVMe
[5], the improved version of the message-passing software PVM.

The /i-relation hypothesis does not consider the influence of communication
patterns. For example, independently of the number of pairs, processors
communicating according to a PingPong algorithm fall in the same A-relation class.
That is h = n, where n is the size of the outgoing packets. Their cost under the BSP
model matches the cost of a single couple of communicating processors: g *n. This h-
relation class appears for the exchange pattern for packets of size n/2. When p-
processors are involved, the personalized OneToAH and AllToOne communication
patterns fall into the same former class of ^-relations for packets of size m = nJ(p-i).
The same /i-relation appears under the personalized AHToAll communication pattern
when the size of the outgoing messages is m = n/2*(p-l). Each processor sends (p-
l)*m packets and receives the same number (p-l)*m. The number of communications
performed by any processor is 2*(p-l)*m = n = h. The actual times spent on these
five patterns for their respective packet sizes have to be similar if the /i-relation
hypothesis holds.

Table I shows the influence of the communication pattern in the time spent in an h-
relation. Experiments were carried out for each pattern with the /i-relation size
between 420 and 13762560 bytes and the number of processors between 2 and 8. For
the PingPong and Exchange, 2, 4, 6 and 8 communicating couples were used. For the
others, experiences involved 4, 6 and 8 processors. For each fixed number of
processors, 500 experiences were performed. The entry in each column shows the
average time in seconds. The Exchange pattern is the fastest due to the maximum
parallelism it achieves. On the Exchange pattern the two processors in each couple
simultaneously send their messages. On the other extreme, the PingPong
communication pattern is the slowest since it implies the most sequential case of
sending (receiving) by one processor the h bytes implied in the /j-relation. The time
for any other pattern is in the range between these two. An straightforward
implementation of the personalized OneToAH is to consecutively send "the whole
message to each of the other processors. The policy we propose is to divide the
message in packets and proceed to apply to each packet the former algorithm. This
policy is optimal using a packet size of 32KB. The best policy for the AHToAll
pattern for /t-relations under 430080 Bytes is to start sending all the messages
according to a processor permutation. From this size on, the network becomes
saturated and it is better to consume the incoming messages. Although the values do
not appear in Table I, for all the patterns, the dependency of times in the number of
processors was negligible (under 0.2% for /i-relations larger than 215040 bytes).
Observe that, the times for Exchange, OneToAH, AllToOne and AHToAll keep closer

683

FEUP - Faculdade de Engenharia da Universidade do Porto

among them than the PingPong time. The maximum difference percentage max, {(
max(ti(/!))-min t.(A))/min{timek(A)} / i,j,k * PingPong} is 21%, reached for "h =
13762560 bytes.

PingPong Exchange OneToAll AllToOne AllToAll AvErr MaxErr
420 0.000114 0.000114 0.000269 0.000157 0.000352 40.30 202.94
840 0.000139 0.000121 0.000286 0.000169 0.000362 37.51 188.03
1680 0.000191 0.000153 0.000313 0.000206 0.000380 34.19 141.69
3360 0.000259 0.000217 0.000356 0.000265 0.000439 27.89 100.63
6720 0.000394 0.000306 0.000442 0.000377 0.000527 17.57 62.21
13440 0.000659 0.000470 0.000659 0.000596 0.000689 7.44 25.47
26880 0.001168 0.000855 0.001081 0.000993 0.001088 0.46 20.75
53760 0.002239 0.001553 0.001939 0.001822 0.001887 -3.73 26.11
107520 0.004820 0.003105 0.003745 0.003562 0.003492 -1.79 32.48
215040 0.009418 0.006418 0.007508 0.007080 0.006883 -0.75 29.61
430080 0.018768 0.012684 0.015016 0.014222 0.013685 -0.36 30.27
860160 0.037199 0.025448 0.030131 0.028558 0.026845 -0.39 29.26
1720320 0.074260 0.050447 0.060469 0.057548 0.053980 -0.10 29.46
3440640 0.148477 0.100577 0.121139 0.115967 0.106736 -0.09 29.62
6881280 0.297393 0.201113 0.241496 0.232967 0.212628 -0.06 29.89
13762560 0.593549 0.402237 0.487938 0.467001 0.422079 0.03 29.61

(3)

Table 1. Pattern Communication Times and Error Percentage for different Ä-relation
sizes.

To obtain the general linear approach to the /j-relation time we have computed the
least square fit of the average times of the five patterns. This gives L = 1.06* 10-4 and
g = 3.45*10-. Compare these BSP-PVM values with the obtained using the Oxford
BSP library: g' = 35*10", L' = 4.62*104 for the same machine [7]. Columns labeled
Av. Err. and Max. Err. respectively show the average and maximum errors defined as:

AvErrih) =]00{(I JßVSHgh+L)}/^ Tß)/5): i in the set of patterns}.

MaxErr(h) =1001 max ^TßHgh+Ljl /min J T/h): i, j in the set of patterns}.

Negative numbers in the Average Error column correspond to cases in which the
model time is larger than the actual time. For h larger than 26880, the Average Error
is under 4%. From 13440 on, the Maximum Error keeps almost constant around 30%.

4 Conclusions.

The collective computation provided by MPI fits the Bulk Synchronous Programmin«
Methodology. Extensions of PVM like La Laguna C [9] make PVM a tool suitable for
the expression of BSP algorithms. Based in the A-relation hypothesis, a linear model
approach to predict the performance of PVM/MPI bulk synchronous programs has
been presented. The maximum error incurred by neglecting the influence of

684

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

communication patterns is under 30% for medium and large /i-relation sizes. A more
accurate prediction can be achieved by using the values for g and L obtained for each
pattern [9].

Acknowledgments

Part of this research has been done using resources at the Centre de Computaciö i
Comunicacions de Catalunya (CESCA-CEPBA).

References

1. Arruabarrena J.M., Arruabarrena A., Beivide R., Gregorio J.A. Assesing the
Performance of the New IBM-SP2 Communication Subsystem. IEEE Parallel and
Distributed Technology, pp. 12-22. 1996.

2. Culler D., Karp Richard, Patterson D., Sahay A., Schauser K.E., Santos E.,
Subramonian R., von Eicken T.. LogP: Towards a Realistic Model of Parallel
Computation. Proceedings of the 4"' ACM SIGPLAN, Sym. Principles and
Practice of Parallel Programming. May 1993.

3. Fortune, S. Wyllie, J. Parallelism in Randomized Machines. Proceedings of
STOC, pp. 114-118. 1978

4. Geist A., Beguelin A., Dongarra J., Jiang W., Mancheck R., Sunderam V.. PVM:
Parallel Virtual Machine - A Users Guide and Tutorial for Network Parallel
Computing. MIT Press. 1994.

5. IBM PVMefor AIX User's Guide and Subroutine Reference Version 2, Release 1.
Document number GC23-3884-00. IBM Corp. 1995.

6. Leighton, T Introduction to Parallel Architectures; Arrays, Trees, Hypercubes,
Morgan Kaufmann, San Mateo, CA. 1992.

7. Mann, J. Martinez, A. Testing PVM versus BSP Programming, VIII Jomadas de
Paralelismo. pp 153-160. Sept 1997

8. Miller, R Reed, J.L. The Oxford BSP Library Users' Guide. Technical Report,
Programming Research Group, University of Oxford. 1993.

9. Roda J., Rodriguez G, Almeida F., Morales D.. Predicting the Performance of
Injection Communication Patterns on PVM. 41" European PVM/MPI Meeting
Group. Cracow, Poland. Springer-Verlag. Nov-1997.

10. Rodriguez, C, Sande F., Leon C, Garcia L. Providing Nested Parallelism and
Load Balancing on Message Passing Libraries. 61" IEEE Euromicro Workshop on
Parallel and Distributed Processing. 1998.

ll.Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J. MPl: The
complete Reference. Cambridge, MA: MIT Press. 1996.

12. Valiant L.G.. A Bridging Model for Parallel Computation. Communications of the
ACM, 33(8): 103-111, August 1990.

685

FEUP - Faculdade de Engenharia da Universidade do Porto

686

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

One-sided Block Jacobi Methods for the
Symmetric Eigenvalue Problem *

D. Gimenez1, J. Cuenca1, R. M. Ralha2 and A. J. Viamonte3

1 Departamento de Informätica y Sistemas. Univ de Murcia.
Aptdo 4021. 30001 Murcia, Spain. ({domingo,jcuenca}@dif.um.es)

2 Departamento de Matemätica. Univ do Minho. Campus Gualtar.
4710 Braga, Portugal, (rj-alha@math.uminho.pt)

3 CEMPA. Univ Portucalense. R. Dr. Antonio B. de Almeida, 541-619.
4200 Porto, Portugal, (ajs@uportu.pt)

Abstract. In this paper we study theoretically two different one-sided
block Jacobi algorithms for solving the Symmetric Eigenvalue Problem.
Sequential and parallel versions of the algorithms are analized and com-
pared with a two-sided block Jacobi algorithm. The main advantage of
the one-sided algorithms is that they are better suited to parallel com-
puters, and when computing eigenvalues and eigenvectors on multicom-
puters a more reduced execution time is predicted for the one-sided al-
gorithms than for the two-sided algorithm.

1 Introduction

In this work we studied the design of two one-sided block Jacobi algorithms
for the Symmetric Eigenvalue Problem. The algorithms are designed using as a
basic the two one-sided Jacobi algorithms proposed in [1].

We begin by explaining how a two-sided block Jacobi method works [2], and
after that the two-sided method will be compared with two one-sided block Jac-
obi methods. The main goal of the comparison is to conclude if one-sided block
Jacobi algorithms can be designed maintaining the high degree of parallelism
of the algorithms not working by blocks, and the one-sided methods can be
competitive with two-sided block algorithms.

2 A two-sided block Jacobi algorithm

The method works over two matrices: the matrix A and a matrix V where
the rotations are accumulated. Matrix V is initially the identity matrix. Both
matrices .4 and V are divided into columns and rows of square blocks of size
s x s, and these blocks are grouped to obtain bigger blocks of size 2s x 2s.

* Partially supported by Comisiön Interministerial de Ciencia y Tecnologia, project
TIC96-1062-C03-02; Consejeria de Cultura y Educaciön de Murcia, Direcciön Gen-
eral de Universidades, project COM-18/96 MAT; and Accion Integrada Hispano-
Lusa HP1996-0007.

687

FEUP - Faculdade de Engenharia da Universidade do Porto

Jacobi methods work by constructing a matrix sequence {At} by means of
-4/+1 = QiA,Q\ , / = 1,2 where Ax = A. In a non block version of the
method, Q, represents a plane rotation and each product QiAiQ) annihilates a
pair of nondiagonal elements, ay and ajt, of matrix Ai, but in a block version
each Qt represents a set of rotations that nullify elements in a block of At. In each
block the algorithm works by making a sweep over the elements in the block.
The subdiagonal elements belonging to diagonal blocks will not be zeroed. To
correct this, blocks corresponding to the first Jacobi set are considered to be
of size 2s x 2s, adding to each block the two adjacent diagonal blocks and the
symmetrical block. The work over each block can be performed using level-1
BLAS. The corresponding rotations are accumulated to form a matrix Q of size
2s x 2s. Finally, the corresponding columns and rows of blocks of size 2s x 2s
of matrix A and the rows of blocks of matrix V are updated using Q. These
matrix-matrix multiplications can be effected using level-3 BLAS.

After completing a set of blocked rotations, a swap of column and row blocks
is performed, according to the order we are using. The odd-even order will be
used, [3], because it simplifies a block based implementation of the sequen-
tial algorithm, and allows parallelization. If n = 8, numbering indices from
1 to 8, and initially grouping the indices in pairs {(1,2), (3,4), (5,6), (7,8)}.
the sets of pairs of indices are obtained as follows: {(1,2 ,(3 4) (56W7 SU
{2.(1,4),(3,6),(5,8),7U(2,4),(1,6)!(3,8),(5,7)}).... M ' M " "'

This data movement brings the next blocks of size s x s to be zeroed to the
subdiagonal, and the process continues similarly to operations performed in the
first step. However, in this case the elements to be nullified are in square blocks
of size s x s inside diagonal blocks of size 2s x 2s. This data movement will imply
data transferences in the parallel version of the algorithm.

The cost per sweep is:

8^3n
3 + (12^1-16Ä;3)n.2s + 8/fe3ns2 flops, (1)

where h and k3 represent the cost of an arithmetic operation performed usins
BLAS 1 or BLAS 3, respectively.

2.1 A parallel algorithm

It is possible to obtain a balanced algorithm for a ring. Grouping blocks of size
2s x 2s of matrix A and V in bigger blocks A(j and V{j of size 2sk x 2sk we
assign to each processor Pit with p = § and ^_ = q< rows of b]ocks • and

q-l-i of matrices A and V. Therefore, each processor P,- contains blocks 4,-,
and .4,.1-i,j, with 0 < j < i, and Vtj and K„_i_i,j, with 0 < j < q.

Due to the data movement between odd and even steps, it is necessary to
reserve some additional memory, and (2s*+s)(2n+2s*+2s) positions of memory
are reserved on each processor.

The arithmetic cost per sweep when computing eigenvalues and eigenvectors
is:

688

VECPAR'98 ■ 3rd International Meeting on Vector and Parallel Processing

8A-3—+ (12*i-8fc3) —+ 12*!— flops. (2)
J> P P

And the cost per sweep of the communications is:

n (2n2\
ß(p+Z)- + r(8n2 + 2ns -J , (3)

where ß and r represent the start-up and the word-sending time, respectively.

3 A one-sided block Jacobi algorithm. First version

We analized the first one-sided Jacobi algorithm in the paper [1]. The algorithm
works on matrices B0 = A and W0 = I, obtaining Br+\ = VrBr, Wr+1 = VrWr,
with Vr the rotation matrix nullifying a non-diagonal element of matrix Ar =
Brw*r = v;_! v;_2... VoBoWM... v;_v

To nullify a,j it is necessary to compute a,-,-, ajj and ct,j, because the al-
gorithm works on matrices Br and Wr, and not on matrix Ar. These elements
are obtained with three dot products. After that, rows i and j of BT and Wr

are updated. If the diagonal elements are stored in an auxiliary vector, it is not
necessary to compute a,-,- and ajj every time, and the cost per sweep is:

7n3 _ _n. + _ fhps (4)

We propose a one-sided block Jacobi algorithm by combining the ideas of the
two-sided block algorithm and the ideas of the one-sided algorithm.

Matrices B and W, of size n x n, are divided in blocks of size s x n, and
blocks of ,4 = BW are treated using the odd-even ordering.

Initially the ^ blocks corresponding to the first Jacobi set are treated, mak-
ing a two-sided sweep on blocks of size 2s x 2s of matrix A and accumulating
rotations. These operations are done using BLAS 1.

After that, matrices B and W are updated multiplying the rotation matrices,
of size 2s x 2s, by the corresponding blocks of B and W, of size 2s x n. In this
case matrices B and W are not symmetric.

In the two-sided algorithm a movement of rows and columns of blocks is
performed in order to have the blocks grouped according to the next Jacobi set.
This movement can be include in the updating of the matrix if it is done on the
rotation matrix before updating A. In the one-sided algorithm the movement of
rows of blocks of B and W can be done in the same way (figure 1).

In successive steps it is necessary to compute An, Ajj and Ajj, because the
work is not done directly with matrix A. If we call Bi and W, the i-th row of
blocks of B and W in figure l.a), Au =BiW,f, Ajj = BjWj and A{j = BtWj.
If the diagonal blocks are stored it is not necessary to compute An and Ajj.

After the blocks An, Ajj and Aij are computed, a matrix of size 2s x 2s is
formed, and a two-sided sweep is performed on this matrix, accumulating the
rotations.

689

FEUP - Faculdade de Engenharia da Universidade do Porto

0 1
0
3
2
5
4

1
2
3
4
b
b 7

6 /
a) b)

Fig. 1. Distribution of matrices ß and W on the first one-sided block algorithm: a)
initially, b) after application of the first set of rotations.

2sl
W

Fig. 2. Initial distribution of matrices B, D and W in the system of processors for the
first one-sided parallel block algorithm.

The cost per sweep is:

9k3n
3 + [12ki-9k3)n2s flops. (5)

3.1 A parallel algorithm

It is possible to assign to each processor A; consecutive blocks of size 2s x n, with
n = 2skp, of matrices B and W (figure 2). In the figure the distribution of the
matrices is shown, but also in this case it is necessary to reserve some additional
memory to store data in sucessive steps of the algorithm. The quantitv of memorv
reserved in each processor is (2k+ l)sn to store elements of B, the same quantity
to store elements of W, and (2* + \)s2 to store elements of D.

The arithmetic cost per sweep is:

9*3- + 12/^ + 12*!— flops.
P P P (6)

It is not necessary to broadcast the rotation matrices because each pro-
cessor updates the rows of blocks it contains. The only communications are
those between steps to group data according to the next Jacobi set. In odd steps
blocks of size s x 77 of 5, and W, and a diagonal block of size s x s are sent from
Pi to P,-_i, with ?' = 1,2,.. .,p- 1, and in even steps the same communications
are done from P^x to />■. Therefore, the cost per sweep of communications is:

2-ß+{4n2 + 2ns)r s ' (<:

690

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

2s:

Fig. 3. Initial distribution of matrices A and D in the system of processor for the
second one-sided parallel block algorithm.

4 A one-sided Jacobi algorithm. Second version

The second one-sided Jacobi algorithm proposed in [1] has the advantage of a
lower execution time, but also has the disadvantage of a worse precision [4].

The method works by diagonalizing matrix B = A2 but without explicitly
form B. Rotations V nullifying elements 6,j of B are applied to A If initially
-4i = A and Bx = AiA\, we will have Ar+1 = VrAr, and A must be updated
only by one side. Because BT = ArA

f
r, it is necessary to perform dot products

to obtain ba, bjj and &,•_,-, which are needed to obtain the next Jacobi rotation.
The cost per sweep is approximately 4n3 flops if the elements of the diagonal

are stored.

The method has some problems derived from the fact that the eigenvalues
computed are those of A'J, but not the eigenvalues of A [1, 4].

To design an algorithm by blocks matrix A is divided into consecutive blocks
of size s x n.

Before each subsweep on a block 5,-,-, Bjj and Bijt are computed (or only 5,j
if the diagonal blocks are stored). Even if the diagonal blocks are stored, in the
first step all the blocks must be computed, because the algorithm works with A
and not with B.

The cost per sweep is:

bk3n
3 +[12^-5k3)n

2s flops. (8)

4.1 A parallel algorithm

The distribution of matrix A and matrix D, where the diagonal blocks are stored,
can be that shown in figure 3. Also in this case it is necessary to reserve some
additional memory. The size of memory reserved on each processor to store data
from matrix A is (2k + l)sn and to store data from matrix D is [2k + l)s2.

The arithmetic cost per sweep is:

5A-3—+ 12A-!—+ 12*!— flops.
P P P (9)

691

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 1 Predicted execution time of different parallel block Jacobi algorithms.

n = 1024 P = l p = 2 p = 4 p = 8 p= 16 p = 32 p= 64 p = 128
tivo — sided 412.3 217.5 108.9 54.6 27.5 15.9 9.4
one — sided, versionl 463.8 246.5 123.6 62.1 31.3 16.0 9.3 5.2
one — sided, version'2 257.6 143.1 71.7 36.0 18.1 9.2 5.2 2.9

The only communications are those produced by the data movements between
steps. In odd steps s(n + s) elements are sent from P, to P,_!, and in even steps
the same quantity is sent from Pt- to Pi+1. The cost per sweep of communications
is:

—/?+(2n2 + 2n«)r (10)

5 Comparison and Conclusions

The first version of the one-sided algorithm has a higher cost than the two-sided
method, but the difference is smaller in the algorithms working by blocks than
in the algorithms not working by blocks. The second one-sided algorithm has the
lowest cost, but has worse precision. Communications are less costly in the one-
sided algorithms because it is not necessary to broadcast the rotation matrices
Also in the communications the second one-sided algorithm is better because
it works with one matrix and only half of the data must be transferred Table
1 shows the execution time predicted on the Touchstone Delta for matrix size
1024 and a variable number of processors. The estimated values of the constants
are ([2]) k, = 0.137/i«, *3 = 0.048^5, 0 = 61//s and r = 0.149/z.s. We can see the
behaviour of the one-sided algorithms is better when the number of processors
increases. This is why it could be interesting to implement the algorithms here
anahzed and to compare them experimentally. This is what we are doing now.

References

1. B. A. Chartres. Adaptation of the Jacobi Method for a Computer with Magnetic-
tape Backing Store. The Computer Journal, 5:51-60, 1963.

2. D. Gimenez, V. Hernandez, R. van de Geijn and A. M. Vidal. A block Jacobi method
on a mesh of processors. Concurrency: Practice and Experience. 9(5):391-411. May

3. G. H Stewart. A Jacobi-like algorithm for computing the Schur decomposition of
a nonhermitian matrix. SI AM J. Sei. Stat. Comput., 4:853-864 1985

4. Ana J. Viamonte. Metodos de Jacobi para o Cälculo de Valores 'e Vectores pröprio,
de Matrizes Simetricas. Tesis de Mestrado. Universidade do Minho. 1996.

This article was processed using the &TEX macro package with LLNCS style

692

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Efficient sparse data distribution for the
Conjugate Gradient on distributed

shared memory systems

D.E. Singh, F.F. Rivera, and J.C. Cabaleiro

Dept. Electronics and Computer Science. Univ. Santiago de Compostela
Campus Sur. 15706 Santiago de Compostela. Spain.
david@dec.usc.es, fran@dec.usc.es, caba@dec.usc.es

Abstract. In this paper we set out to study the performance of par-
allelization of iterative method on shared memory multiprocessor using
different data distributions. We start with the study of block and cyclic
distributions, and then propose a mixed distribution which combines ad-
vantages of both.

Keywords: Conjugate Gradient, Data Distribution, Distributed Shared
Memory Systems, Sparse Systems.

1 Introduction

This work tackles the parallelisation of the non-stationary iterative Conjugate
Gradient method [1,6], which is used to solve sparse linear equation systems.
This type of operation frequently appears during the resolution of partial differ-
ential equations, and one of its characteristics is that the matrix of coefficients
must be symmetric and positive-defined. The results obtained can be generalised
to other iterative methods, due to the fact that all of them use the same kind of
computations.

The system on which the parallelisation of the algorithm was implemented
was the distributed shared memory multiprocessor Origin 2000 by Silicon Graph-
ics, which consists of 8 MIPS R10000 processors using a hardware cache coher-
ence protocol based on the directory [4].

2 Data distributions

We used the data-parallel programming paradigm which, as well as being easy
to program, presents high complexity in the establishment of optimisations. The
programming language used was fortran77. The parallelization is expressed by
means of parallelization directives [5], which direct the compiler in the generation
of calls to the low level libraries in the multiprocessors. The elements of a vector
can be allocated in the memory of the system using two distributions: block and

693

FEUP ■ Faculdade de Engenharia da Universidade do Porto

cyclic. By means of a block distribution, the elements of a vector of size N are
divided into P blocks of size B = N/P (where P is the number of threads) In
a cyclic distribution, the elements are divided into pieces of size L (in our case
L - 1), and then they are distributed cyclically over the threads.

On the Origin 2000 two techniques can be used to carry out these distribu-
tions, regular and reshaped. In the regular scheme the elements to be distributed
have to be pages of 16Kb. In the case in which data must be allocated in dif-
ferent memories are in the same page, the compiler will not be able to resolve
the conflict, and will place the whole page in one of the memories. This causes
a great number of conflicts of false sharing, especially for cyclic distributions, as
at the level of cache line consecutive elements will belong to different threads.
This is reflected in a strong increase in the number of operations of coherency,
like invalidations or exclusive to shared transitions in cache lines

BP1
OCKP?IS1SIBUTI°^ CCLIC DISTRIBUTION

Jl Ti •" PP PI P2 P3 ... Pp PI P2 P3 ... pp

RESHAPE L RESHAPE
Pp P3 P2 PI __B !p~p—

Fig. 1. Reshaped scheme over a vector.

In our case we use the reshaped scheme illustrated in figure 1, with which
the compiler can reorganize the size of the blocks in the storage structure of
the memory to obtain the desired distribution. This can be achieved by storing
consecutively the array elements that corresponds to each local memory. Using
the reshaped scheme, both the cyclic and block distributions obtain similar values
in the number of coherency operations.

3 Computations

The parallelization of the algorithm is based on two types of operations which
represents the greatest computation costs: sparse matrix-vector products and
vectorial operations [3]. '

The sparse matrix-vector product is carried out by accessing the matrix by
columns, which is the same as reading its rows, as the matrix is symmetric. In
this way it is possible to parallelize the product so that each processor computes
the value of the different elements of the resulting vector, thus eliminating pos-
sible conflicts in writes. The format for accessing the matrix is the Compressed
Column Storage, by means of which the matrix is characterised by just three
vectors [1].

The algorithm also uses some vectors to carry out various intermediate op-
erations to compute, the residue, the successive approximation to the solution
and the search direction. With these vectors two types of operations are carried

694

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

out: linear combinations of vectors and dot products. These operations have
great influence over the efficiency of the parallel program. Moreover, the perfor-
mance does not depend on the type of distribution, due to the use of the reshape
technique.

4 Results

Initially two different distributions were evaluated: the block and the cyclic ap-
plied to all of the vectors, including those which characterise the matrix. Then,
a new distribution was tested, which we will call hybrid block-cyclic in which
the vectors that characterise the sparse matrix are distributed in blocks, and the
rest of them cyclically.

Table 1. Matrices used as benchmark.

matrix bcsstkl4 bcsstk!7 zenios random

order 1806
nnz 63454

10974 2873 10000
428650 21842 110576

In our analysis we used sparse matrices of different sizes and patterns. All
of these, come from the Harwell-Boeing collection [2], in addition to one matrix
generated randomly. The characteristics of them are shown in table 1.

Number of processors Number of processors

■«pwdup^ilqch —1—spwduthcydic —A—spwdup^iytrid ...»■■■ Btm^lodt ■■■&---Tlmfrcydic ■ • ■ A-• • • time^iybiKl

Fig. 2. Speedup and run time per iteration.

695

FEUP - Faculdade de Engenharia da Universidade do Porto

In figure 2 the speedups and run times for iteration are shown. Note that the
best results have been obtained for the block distribution, whereas in the cyclic
case there are irregularities in these values due to an increase in the number
of cache misses. These irregularities are eliminated with the use of the hybrid
distribution.

The performance of the parallelization of this algorithm will depend mainly
on the management of the memory, an important factor being the volume of
data accessed by each processor. The pattern of access to the data in the sparse
matrix-vector product in each processor is shown in figure 3, and is determined
by the distribution of vector Y. In other words, each processor will access those
parts of the matrix which correspond to their elements of vector Y.

A.

IB
Y -

m : ff=ff
E3 mm\

(a) BLOCK (b) CYCLIC

Fig. 3. Pattern of access in sparse matrix-vector product.

Note that, in the block distribution the access to the matrix is performed on
adjacent columns. In this way, as the number of processors increases, each one
must access a smaller number of pages and cache lines. In the case of a cyclic
distribution of vector Y, it is necessary to access practically all the pages of the
matrix. This is reflected in the large number of TLB misses. For matrix bcsstkll
the number of pages it occupies is more than the number of TLB entries, so that
in a single processor a great number of misses is generated as they have to access
the whole matrix. When the number of processors increases, in the block case the
number of TLB misses decreases, whilst in the case of the cyclic distribution it
remains almost the same. However, the main problem with the latter distribution
is that the consecutive elements of the matrix belong to different cache lines, so
that the number of lines accessed by each processor is much larger than in the
block case.

Figure 4 shows the number of cache misses. In a block distribution the lowest
values in cache misses are obtained. With a cyclic distribution a marked increase
in the number of cache misses in the case of four processors can be observed.
The reason is that in this case all the lines read by each processor do nor fit in
its cache, thereby producing a large number of operations of replacement. In the
next iteration these replaced lines are demanded again, thus provoking capacity
misses in the cache. By means of a hybrid distribution it is possible to solve
this problem to a great extent, as consecutive elements in the matrix will be
consecutive in memory (except if they are assigned to different processors) and
therefore will probably belong to the same cache line. In this way it is possible to
reduce the number of accesses to cache lines, and then the replacement problems
have been eliminated. However, these values will always be larger than in the
case of block distributions, given that it is necessary again to access a greater

696

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

memory space than in the block case, due to the cyclic distribution of the vector.
The higher the number of non zero elements the greater will be this effect. Thus,
in the case of the matrix zenios, as it has a small number of non zero elements,
the results archived in the run time for iteration are similar for all distributions.
The size of matrices bcsstkl7 and random is higher than that of the secondary
cache and this produces a large number of capacity misses when the algorithm
is executed in a single processor. This also produces superlineal speedups for the
matrix bcsstkl7.

bcsstkU

Z soo

2 < 6

Nol;toe«MK

,„■ bcsstkt7

3 *
c
f

Jl
0
Z

ix

'"■°*.n.'»'. .
2*61

zenios random
IOOO—i 1 1

■00 | \\ J

mi

2000 \ /...*-.......;

j'

Lai'-«-l-4--0'-l[

Nofpncoun
2 t <

NofpraenuN
t i t

Nolpiouusrs

— B- -BLOCK — ♦- -CYCUC --•• -HYBRO

Fig. 4. Cache misses.

The main problem of this distribution arises when matrices with non uniform
patterns, such as zenios, are used, as they cause a load unbalance between the
processors which operate over the densest parts as against those that operate
over the sparsest parts. This can be noted in figure 5, which represents the load
unbalance given by B = Cmax/Cmed, where Cmax is the number of floating point
operations of the thread which has the greater work load, and Cmed is the average
value. High values of B limit the value of the speedup when a high number of
processors is used. By means of the use of a cyclic distribution, the problem of
load unbalance is then solved. Note that speedup for the zenios matrix is more
scalable for the hybrid distribution.

BLOCK-RESHAPE

s1-

BCSSTK14
BCSSTK1?
ZENIOS
RANDOM

Number of processors

CYCLIC - RESHAPE
1 J

I.4S
-^ BCSSTKU

BCSSTK17
ZENI05

1.35

■ •>. RANDOM

«
(O 1.3

3 1 25

t ?
a .IS

1.1 n >-i
.05 _.<r.. - s ""^"*''

Number of processors

HYBRID - RESHAPE

Number of processors

Fig. 5. Load unbalance.

697

FEUP - Faculdade de Engenharia da Universidade do Porto

5 Conclusions

The use of regular distributions is inefficient in sparse systems, given that in
these cases the pattern of the matrices is not known at compile time. By using
a hybrid distribution the advantages with regard to the load balancing of the
cyclic distribution are maintained, and the execution times per iteration are
similar to the block distribution. In this way, the results using matrices with
regular patterns are similar to the block distribution, and faced with matrices
with irregular patterns, the load unbalance is resolved.

Acknowledgements

This work was supported in part by the CICYT under grant TIC96-1125-C3-02
and Xunta de Galicia under grant XUGA20605B96. We would like to thank the
University of Malaga for the use of their systems.

References

1. R Barrett and M.Berry et al. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM, Philadelphia, 1994

2. Iain S. Duff, Roger G. Grimes, and John G. Lewis. Users' Guide for the Harwell-
Boeing Sparse Matrix Collection. Research and Technology Division, Boeing Com-
puter Serv1Ces, Mail Stop 7L-21, P.O. Box 24236, Seattle, WA 98124-0346 USA
release I edition, October 1992.

3. K.Dincer, K.A.Hawick, A.Choudhary, and G.C.Fox. High perfomance Fortran and
possible extensions to support Conjugate Gradient algorithms. Technical report
^nn ?fo*c ^ Architecture Cent«> HI College Place, Syracuse, NY 13244-
41UU, 1996.

4. James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA highly scalable
server. In Computer Architecture News, volume 25, pages 241-251 SCA'24 Pro
ceedmgs, May 1997. Special Issue.

5. Guy-Ren Perrin and Alain Darte. The data parallel Programming model. Springer,

6 COMPANY' ItemtiVe Meth°dS f0r ^^ Lin6al Systems- PWS PUBLISHING

698

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Synchronized Parallel Algorithms
on RedBlack trees*

Xavier Messeguer and Borja Valles

Universität Politecnica de Catalunya
Departament de Llenguatges i Sistemes Informatics

Campus Nord-Mödul C6
C/ Jordi Girona Salgado, 1-3

08034 Barcelona, Spain
Contact author: peypoch@lsi.upc.es

Abstract. We present an approach for designing synchronized parallel
algorithms to update RedBlack trees. The resulting algorithms update k
keys with k processors on trees of size n in time 0(logn +logk) which
is very close to the optimal speedup of 0(log n) (sequential time for one
search or update). The algorithms are designed as a pipeline of waves
of processors, which are created at the bottom of the tree and flow up
to the root. The design is made following the E.W.Dijkstra approach by
first choosing the invariant properties and then the rules to update the
tree.

Keywords: Synchronized parallel algorithms, PRAM algorithms, Red-
Black trees.

1 Introduction

The so called Synchronized parallel algorithms are those that manage data types
in a synchronized manner (PRAM algorithms [Akl89]). They can be envisaged
as many sequential algorithms running simultaneously and executing the same
sentence at the same time. Therefore, it may happen that several processes read
or write on the same memory location at the same time. Our goal is to avoid
these concurrent accesses.

The first synchronized parallel algorithms on search trees were designed by
W. Paul, U. Vishkin and H. Wagener for 2-3 trees in 1983 [PVW83]. They proved
that the time needed to search or update Ar elements with k processors on a tree
with n keys is 0(logn + log k) which is very close to the optimal speedup of
O(logn).

They designed parallel algorithms to dynamically maintain a parallel dic-
tionary working simultaneously with many keys. The algorithms first hang the
keys from the leaves (search phase), and later rebalance the tree (rebalancing
phase) using pipelines of processors. These pipelines can be envisaged intuitively

* This work has been partially supported by ESPRIT LTR Project, no. 20244 —
ALCOM-IT and DGICYT under grant PB95-0787 (project KOALA).

699

FEUP - Faculdade de Engenharia da Universidade do Porto

in terms of traveling plane waves. Assume, for instance, the basic insertion case
in which every leaf incorporates at most one new key. Something like a wave of
processors is generated at the bottom of the tree, namely a plane wave, because
all leaves of a 2-3 tree have the same depth. This wave is sent up in further
iterations until it disappears. Note that the wave goes to the root and at each
iteration it strictly increases its height and decreases its depth. The life-time of
each wave i.e. the number of steps taken by a wave before it disappears, is an
open problem, but some preliminary results [BYGM97] strongly suggest that it
is logarithmic on k.

In the general insertion case, in which a packet of many new keys can hang
rom a single leaf, a pipeline of waves is generated to get something like harmonic

traveling waves. Each new wave is created as follows: some iterations after the
last wave has been created, the packets are split, the middle key of each one
is attached as a new leaf and the remaining left and right subpackets are hung
from the new leaf. This set of new leaves created by the middle keys constitute
the new wave.

This rebalancing phase synchronizes the processors that belong to the same
wave, and these processors locally manage the data and test the conditions to
become inactive or to continue one step more. For this reason we say that pro-
cessors are controlled by Local Rules. These are sequential algorithms composed
by a small and fixed number of sentences that access a small number of neighbor
nodes. The rebalancing phase can be written:

While there are active processors do
For all waves do

For all active processors of a wave do
Select and apply rules

endforall
endforall

endwhile

These ideas were applied on B trees by L. Higham and E. Schenk [HS941. on
Skip lists by J Gabarro, C. Martinez and X. Messeguer [GMM96], and on AVL
trees by J. Gabarro and X. Messeguer [GM96].

The RedBlack trees are an important basic data structure, namely a balanced
binary search tree, which implements the dictionary abstract data type The bal-
ancing criterion differentiates RedBlack trees from 2-3 trees, because it does not
force the tree to be perfectly balanced: it is possible to deal with RedBlack trees
whose leaves have significantly different depth. Therefore, it could be difficult to
synchronize the processors of a wave because there is no obvious way to create
plane waves.

We address in this paper the design of the synchronized insertion paral-
lel algorithm on RedBlack trees with the same cost O(logn + log*), and the
exclvsive-read and exclusive-write policy (EREW [Akl89]).

700

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

We omit the search phase of the update algorithms because it is well known
(see previous references). We only design the rebalancing phase of this algorithm
in which k keys are updated with k processors. The deletion algorithm can easily
be designed using the same technique.

We prove the algorithm correctness following the approach developed by
E.W.Dijkstra, in which the proofs are based on the preservation of some proper-
ties, called invariants, at each iteration, and the strict decreasement of a function,
called variant function, at each iteration. This approach, very common in basic
sequential algorithmic courses, has not been applied yet on parallel algorithms
on balanced search trees.

The rest of paper is organized as follows. Section 2 recalls RedBlack trees.
Section 3 addresses the synchronized insertion algorithm. Finally section 4 shows
the local rules of the algorithm.

2 RedBlack trees.

Following [CLR90], each node n of a RedBlack tree stores a key, denoted key(n),
and each internal node has three pointers left(n), right(n) and parent(n) point-
ing respectively to its sons and parent. A RedBlack tree satisfies the following
properties:

Pi : Every node is either red or black.
P2 : Every leaf (NIL) is black.
i>3 : If a node is red then both its children are black. This is equivalent to, no

path from the root to a leaf contains two consecutive red nodes.
P4 : Every simple path from a node to a leaf contains the same number of black

nodes.

The last condition P4 allows the definition of the function called black-height in
[CLR90]:

blackh(n) = the number of black nodes on any path from,

but not including, a node n to a leaf.

We recall the sequential insertion algorithm:

Search phase. The key to be inserted falls until it is attached to a new red
node n at the bottom of the tree. As this new node n is red, the property
Pi is maintained.
Rebalancing phase. If the parent of n is black P3 holds and the insertion
is over. Otherwise, n and parent(n) are red and the bottom-up rebalancing
phase really starts. By performing rotations and node recoloring, the redness
of consecutive nodes disappears or rises up. Finally, if the root becomes red
it is colored black. Figure 1 depicts the local rules applied in this phase.

701

FEÜP - Faculdade de Engenharia da Universidade do Porto

Fig. 1. The three basic local rules (under symmetry) of the sequential algorithm. The
first rule (a) propagates up the redness and the Mowing two rules, (6) and (c), rotate
down the blackness.

3 Synchronized parallel insertion

Assume that the parallel search phase has ended and that the packets of kevs
hang from the leaves. We force each iteration of the rebalancing phase to hold
the following invariants:

h: Properties Pu P2 and P4 of RedBlack trees.

h: Only those red nodes whose parent is also red have an active processor. We
identify the node with its processor, then we sometimes talk about ''active
nodes". Therefore, when there are no active nodes property P3 holds, and
by /j the tree is a. RedBlack tree.

h: All active processors of a wave have the same black-height,

Vp,9 € wave : blackh(p) = blackhfa).

This property allows us to define the black-height of a wave w:

blackh(w) = blackh(p) for any p such that p 6 w.

h: The black-height of the last created wave is at least two. This property
means that if the black-height of every wave gets increased by one unit at
each iteration, then between two consecutive waves there is at least one black
node. Therefore, if an active node has a grandparent gr, then gr is black.

The variant, function involves the number of keys hanging at leaves, denoted
AKEYS, and the sum of the depths of all existing waves, denoted DEPTH.

702

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

(a) Two active nodes that are brothers (b) All other cases (e.g.: four active nodes

Fig. 2. The two basic new local rules (under symmetry) of the parallel algorithn

Namely, it is denned by the ordered pair (NKEYS, DEPTH). It strictly de-
creases at each iteration because new keys are attached to the tree, and when
there are no keys, we force waves to strictly increase their black-height.

Each iteration is composed of two separate actions: (i) the creation of a new
wave and (ii) the moving up of all waves.

(?) A wave is created by selecting the middle key of each packet and attaching
it into a new red node, so Ix holds. Each new red node n is controlled by
an active processor pn. Then active processors test their parents color and
become inactive if it is black, so I2 holds. As all nodes of the last created
wave satisfy blackh(n) = 1 (black leaves hang from them), 73 holds.

(ii) Active processors run local rules which will be showed in the following
section. We design them so they satisfy the the previous invariant and so
they increase the black-height of all waves. Finally, we again update the
active nodes.

4 Local rules for insertion

Let us deal now with the rules we apply to make the waves go up. If there are
active nodes without a grandparent, we simply turn the root black. For each
active node n with a grandparent (that is black, by I4) we consider the area
defined by its grandparent gp, and the sons and grandsons of gp. In this area we
can have active nodes other than n, but in any case they are all grandsons of gp
and belong to the same wave, by IA. Depending on the number of active nodes
in the area we apply one rule or another.

If the grandparent of an area has only one active grandson we are in the same
situation as the sequential case so we can try the same rules (see [CLR.90]) and

703

FEUP - Faculdade de Engenharia da Universidade do Porto

check if they satisfy the invariants. If the grandparent has more of one active
grandson we are in a specifically parallel case so we need new rules. For every
area in this situation we need to select one representative of its active nodes so
we can apply the rules with only one processor. Note that counting the active
nodes in an area and selecting a representative may lead us to a concurrent read
situation. We avoid that possibility by just properly sequentializing that process.

In the sequential case we have three rules (see Figure 1): in (a) we move the
wave up just by recoloring. Note that the number of black nodes of each path
does not change but the variant function decreases, because the black-height
of the wave (whose only node is now the grandparent.) is one unit higher than
before. In (b) and (c) we need both rotations and recoloring. The number of
black nodes of each path does not change and the active nodes become inactive.

In the parallel case we find two new situations: if we have two active nodes
that are brothers (Figure 2(a)) we need one rotation and recoloring; otherwise
(Figure 2(b)) recoloring is enough, because both parents are red. Again the wave
moves up one level without changing the number of nodes of any path.

Summing everything up, in all cases the active nodes of a wave move up one
level (their black-height increases one unit) or they become inactive, which means
that the variant function actually decreases and I3 holds. The last created wave
has now black height two (I4). We also guarantee that every path from every
node to a leaf has the same number of black nodes, so we preserve Ir. Finally,
as we keep updating the active nodes, we also satisfy I2.

References

[Akl89] S. Akl. The design and analysis of parallel algorithms. Prentice-Hall, 1989.
[BYGM97] R.A. Baeza-Yates, J. Gabarrö, and X. Messeguer. Fringe analysis for par-

allel macrosplit insertion algorithm in 2-3 trees. Technical Report LSI-97-
38-R, Universität Politecnica de Catalunya. Dep. de Llenguatges i Sistemes
Informatics, 1997.

[CLR90] T. Gormen, C. Leiserson, and R. Rivest. Introduction to Algorithms Mc-
Graw Hill, MIT, 1990.

[GM96] J. Gabarrö and X. Messeguer. Massively parallel and distributed dictio-
naries on AVL trees and brother trees. In ISCA, editor. Proc. of 9th Inter-
national Conference on Parallel and Distributed Computing Systems, pages
14-17, 1996. An extended version appeared as Technical Report LSI-96-27-
R, LSI-UPC.1996.

[GMM96] J. Gabarrö, C. Martinez, and X. Messeguer. A design of a parallel dictionary
using skip lists. Theoretical Computer Science, (158):l-33. 1996.

[HS94] L. Higham and E. Schenks. Maintaining B-trees on an EREW PRAM. ./.
of Parallel and Dist. Comp., 22:329-335, 1994.

[PVWS3] W. Paul, U. Vishkin, and H. Wagener. Parallel dictionaries on 2-3 trees.
In J. Diaz, editor, Proc. 10th International Colloquium on Automata. Pro-
gramming and Languages, LNCS 154, pages 597-609. Springer-Verlag. 1983.
Also appeared as "Parallel computation on 2-3 trees" in RAIRO Informa-
tique Theorique, pages 397-404, 1983.

704

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Parallelization of GIS algorithms based on data
partitioning

M. Luisa Cordoba Cabeza and Antonio Perez Ambite

Departamento de Arquitectura y Tecnologia de Sistemas Informaticos
Universidad Politecnica de Madrid

mcordobaflfi.upm.es,
aperezSfi.upm.es

Abstract. In this paper we try to show that speeding up Geographical
Information Systems (GIS) by their process in parallel architectures is
possible. A spatial data partitioning and subdivision scheme is proposed,
to process GIS data in a distributed memory parallel machine. We also
provide solutions to classical problems in GIS systems and parallel pro-
cessing, such as data boundary matching, and how to distribute and
assign data among different processors to optimize both results quality
and communication time. Finally, we show results obtained with different
kind of hardware platforms: a net of computers organized in a cluster,
and a massive parallel machine.

Key words: parallelization, data partitioning, Geographic Information Sys-
tems (GIS), massive parallel processors (mpp), multicomputers

1 Introduction

Geographic information is characterized by its distribution over terrain surface.
This data organization makes their projection over an horizontal plane a good
data model to be recorded and handled. We also must realize that most of process
with these data is done considering parameters related with terrain surface [6].

A great deal of GIS algorithms (visualization, data interpolation, DTM gen-
eration from contour lines, intervisibility, shapes, planning, analysis, scheduling,
retrievals, etc) do calculations on data representing a terrain characteristic, and
therefore, easily structured as information data layers.

Both retrieval and data process of this information layers will be done on
a delimited area of terrain surface, considering only spatially close data. This
data neighbourhood property allows their process in parallel in a distributed
system with not many communication requirements. Tasks may be distributed
following data partitions of terrain surface, in such a way that partitions may
be close to the proper subset of processors, though is not to others. A good
data partitioning scheme among processors will allow parallel work with certain
autonomy distributed memory multiprocessor).

705

FEUP - Faculdade de Engenharia da Universidade do Porto

2 Geographic Information Systems (GIS)

Geographic Information Systems handle spatial information with a particular
behaviour. Geographic information includes cartographic or graphic elements
but also alphanumeric attributes. Main conceptual models in GIS are: vector
and raster models. Vector format uses line as graphic primitive, while raster
format uses point.

A vector representation of a geographical information uses points, lines poly-
lines and polygons as geometrical primitives. Attributes are linked to the geom-
etry. In a raster representation, the information is projected into a grid, each
grid-point defining the location and the attribute of the location.

Raster representation usually requires more memory, but on the other hand
yields a spatial distribution more homogeneous. This format has been more used
than vector one, due to the fact that most algorithms to be applied to this kind
of data are more efficient with this format.

Consequently, a classic problem in GIS is the huge requirements of memory to
storage geographical data, with all their consequences: high access times, memory
bandwidth saturation, concurrency problems, etc. These disadvantages would
be considerably reduced with several processors working in parallel, following a
distributed memory scheme [9].

3 GIS algorithms parallelization

The presented solution is based on spatial parallelism, partitioning data domain
in square or rectangular partitions. Every rectangular partition is assigned to
a virtual process node. This kind of data distribution is also named domain
decomposition [2]. Work to be done is assigned to the the processor whose data
are sited in, and that processor may communicate its neighbours as necessary.

An optimal data partition will optimize communications among different pro-
cess virtual nodes. But these processors should communicate others when they
require data sited on others. In general purpose applications, this communication
overhead becomes a great and serious bottleneck.

3.1 Communication requirements

Communications requirements due to data partitioning in a distributed Geo-
graphical Information System are:

- Initial data partition distribution
- Data boundary partitions matching problem
- Connectivity and neighbourhood algorithms

Some geographic data analysis may be done in parallel on different data
partitions with some autonomy. But connectivity and neighbourhood analysis
evaluate characteristics over an area that may cover several adjacent partitions
Therefore, processors may require data from adjacent nodes.

706

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Choosing the partition grain size is very important and not trivial. Partition-
ing grain must allow enough number of partitions to get the benefits of paral-
lelism, but also partitions must be big enough to provide a minimum autonomy
of work in case of connectivity or neighbourhood algorithms. Communications
will be limited to the subgroup of adjacent nodes.

We propose a parallelization scheme that reduce this communication and
solve the data boundary matching problem, trying to get the most benefit of
parallelism. The proposed scheme minimizes communications even with a fine
grain of parallelism.The solution is based in what we call the search area.

3.2 Search Area

The search area is a set of data surrounding every partition which is sent to a
processor to help calculations near partition boundaries. Data and process of
search area is really assigned to other processor, and are for read only to the
partition which is around.

The search area is in fact an overlapped region replicated in several process-
ing nodes. But only one processor should write on it. A synchronization and
communication protocol is needed to guarantee data coherence and atomicy.

The spatial parallelization scheme includes search area management, cre-
ation, and updating, as schematically showed in the following steps (fig. 3):

1. Data assign and distribution among virtual processing nodes
2. Search area creation
3. Local process in parallel of the partitions considering each processing node

its partition and its search area.
4. Search area updating, considering results already obtained in adjacent nodes.
5. Optional boundaries data correction at each partition, considering search

area already updated

312x462 625x924 1250x1849 2501x3699

Oata«iz*

Fig. 1. Execution time in T3E with increasing data sizes.

707

FEUP ■ Faculdade de Engenharia da Universidade do Porto

4 Results

We have implemented our proposed parallelization scheme in different parallel
hardware platforms because we wanted to propose a general scheme, indepen-
dent of the hardware: a cluster with several computers, and a massive parallel
processor.

Our main goal with this implementation is not only to demonstrate our par-
allelization scheme works properly, but also showing that contiguity and neigh-
bourhood algorithms may also be parallelized without loosing information and
therefore without significantly communication overhead. We have concretized
our tests for spatial interpolation from contour lines, one of the most represen-
tative neighbourhood algorithm in GIS.

We have also studied influence in time and quality results of different pa-
rameters in partitioning scheme, such as: size and number of data partitions,
number of real processor nodes, search area size, etc.

We have tested the following two hardware platforms: a cluster with 4 RS6000
(programming model PVM); and a massive parallel processor: T3E (Cray), with
up to 32 processors (programming Model of shared variables (HPF)).

In both platforms we have analyzed both quality of results and the execution
time.

Analyzing results quality, we studied the proper search area size and the par-
titioning grain (partitions size). Obviously, we obtained the same results quality
at both hardware platforms.

We established that the search area size depends on data distribution. For
spatial interpolation, we estimated that the search area size should obey the
following expression:

1 _ psa* > 08

where sas is the search area size expressed in number of data rows, and P is
the density of points with known latitude in input data.

This minimum search area size guarantees quite similar results quality near
boundaries partitions than in sequential processing.

We also got that with this search area size, partitioning grain could be fine
to get the benefits of parallelism. Therefore, the best partition size is determined
by the number of available real processors.

About execution time, results were rather different in the two platforms. Tests
in the cluster show that time processing heavily depends on the network load.
This network may become soon a bottleneck, and speed up with 4 processors is
not really spectacular for small files.

But our tests also show that speed up improves as data size grows up (fig. 1).
This is important, as these systems (characterized by managing huge quantities
of data) are involving more an more data.

Execution times with the mpp of Cray are quite better, with a high speed up,
thanks to a higher number of available real processors, and a better and dedicated
communication links. However, due to the fact that I/O was in this machine

708

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

sequential, total speed up is very influenced by sequential I/O. Considering just
interpolation time, excluding I/O operations, the speed up for 16 processors were
near 11, what is good (fig. 2 and 3).

Time (sec.) paterpokfion^me («c) foreje9 (1090x1720)1

2Pr.

■ u*>4 Baaa>1S alus-30

■» ■ March ana «la (n. rown)

itiai
sas-0 294 149 75 46 26
sas-15 301 151 76 47 27
sas-30 302 152 77 47 28

«Pr. 16 Pr

;.- Speed upifor*je9 (1090x1720)

—•— Spatial interpolation apMd up
— - Total tlnw apead up (*VO)

■lij HTM
Interpolation 1,99 3,92 6,43 10,79

speedup

Total speed up 1,59 2,23 2,63 3 02
(+seq. I/O)

♦ Pr. SPr. 16 Pr

Fig. 2. Interpolation times and speed up for Cray T3E.

5 Conclusions

A general parallelization scheme based on data partitioning is presented. The
proposed scheme minimize communication between process nodes, thanks to the
search area concept introduced and therefore, response times are considerably
reduced. The proposed scheme also presents solution to classical problems in
GIS, such as data boundary matching in spatial subdivision, the influence of
partitioning grain in quality and time of results, and data assignment to the
different processor nodes. Execution times are significantly better in the massive
parallel machine, where communications are not the bottleneck (in the cluster
the network is a serious bottleneck). However, a parallel I/O file system is truly
recommended when massive parallel processors are working.

709

FEUP - Faculdade de Engenharia da Universidade do Porto

INTERPOLATED DATA

SEARCH AREA

Data input 183 185

First interpolation 1S8 153

S each area updating nearO 1

Second interpolation 2 9

Data output ■236 237

■ ■■ Bk_

Fig. 3. I/O, interpolation and search area updating times for Cray T3E.

References

1. Allan, R.J. A Tutorial in Parallel Programming. Parallel Algorithm Design and
Implementation. Course at Physics Computing'92 Conference, Prague. Daresbury
Laboratory, DL/SCI/P824T. August, 1992.

2. Allan, R.J. An Introduction to Parallel Programming. Daresbury Laboratory Tech-
nical Memorandum DL/SCI/TM95T. May, 1993.

3. Burrough, P. A. Principles of Geographical Information Systems for Land Resources
Assessment. Oxford University Press. Monographs on Soil and Resource Survey
1986. ISBN 0-19-854592-4.

4. Carretero, J. Un Sistema de Ficheros Paralelo con Coherencia de Cache para Mul-
tiprocesadores de Propösito General. Tesis Doctoral. Facultad de Informätica de
Madrid. Univ. Politecnica de Madrid. DATSI. Mayo, 1995.

5. Cordoba, M. L.; Perez Ambite, A. Modelizaciön y Visualizacion del Terreno II
Conferencia sobre Informätica Gräfica. pp 1-8. Junio, 1990.

6. Cordoba, M. L. Estudio y Paralelizaciön de Algoritmos para Sistemas de Infor-
macion Geogrdfica. Tesis Doctoral. Facultad de Informätica de Madrid Univ
Politecnica de Madrid. DATSI. Febrero, 1996.

7. Cray Research, Inc. PVM and HeNCE Programmer's Manual. SR-2501 3 0 1992
8. Cray Research, Inc. CRAY T3D Emulator User's Guide. SR-2500 1.0.2. 1993
9. Hwang, K.; Advanced Computer Architecture: Parallelism, Scalability, Prooramma-

bihty. McGraw-Hill. 1993.
10. Shekhar, S.; Coyle, M.; Goyal B.; Liu D.; Sarkar, S. Data Models m Geographic

Information Systems. Comm. of the ACM, vol. 40, nro 4, April 1997.
11. Ulmann, U. Volume Reconstruction and Parallel Rendering Algorithms- A Compar-

ative Analysis. Ph D Dissertation. Univ. North Carolina at Chapel Hill. Department
of Comp. Science. 1993.

12. Valiant, L. G. A Bridging Model for Parallel Computation Communications ACM
vol. 33, nro 8, pp 103-111. August 1990.

710

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Emulating a superscalar processor to teach
pipeline and superscalar concepts

Santiago Rodriguez de la Fuente
M. Isabel Garcia Clemente
Rafael Mendez Cavanillas

Jose M. Perez Villadeamigo

Departamento de Arquitectura y Tecnologfa de Sistemas Informaticos
Universidad Politecnica de Madrid

srodri8fi.upm.es,
mgarciaafi.upm.es,
rmendezQfi.upm.es

Abstract. Current processors use special techniques to improve perfor-
mance such as pipeline and multiple instruction issue per cycle.
Using a real pipeline or superscalar computer to teach these concepts is
actually impractical, because these computers are designed to be pro-
grammed in high-level languages.
Hence, we have implemented a superscalar processor emulator, where
most of the processor parameters can be defined by the student. Its ob-
jective is to create a set of laboratory works allowing the student to
observe the execution evolution of his assembly program through the
different components of the computer, detecting the different kinds of
hazards and their impact on performance. Then, the student can ap-
ply some software techniques to avoid them. Moreover, he can obtain
statistics about caches.
Keywords: education, pipeline, superscalar, cache memory, emulator.

1 Introduction

This paper presents a superscalar processor (MC88110) emulator that we have
implemented to teach classical and modern Computer Architecture concepts at
the Facultad de Informätica of the U.P.M.

The motivation which lead us to develop a new emulator, instead of using
existing ones, is simple. We wanted an educational tool which could serve us
to make different practical works in which we could increase the complexity of
the concepts we want to cover. In a first stage, we want to use the emulator to
teach assembly programming and later to teach cache behavior, and pipeline and
superscalar computer concepts. Caches can be inhibited in beginner's laboratory
works for avoiding memory hierarchy concepts.

Although some educational emulators which could serve for our practical
works are available (spim, cl-spim, Dlx, DineroIII and SuperDlx), they are ori-
ented to specific purposes. We were also looking for a tool running on conven-
tional Unix stations and on personal computers with Linux.

711

FEUP - Faculdade de Engenharia da Universidade do Porto

Nowadays, the emulator is being used for laboratory works, to teach assembly
programming using a RISC approach, cache behavior, pipeline and superscalar
computers concepts. It is available for Solaris, Aix and Linux operating systems

The emulator has an embedded debugger. It allows the user to control the
program execution, and to observe the state of the different components of the
computer at every clock cycle. The user can set breakpoints, execute the whole
program or just a cycle, display and modify registers and memory contents and
display the instructions at the different pipeline stages and the history buffer
contents.

The emulator has currently a textual interface, although an X-window based
interface that will provide equivalent functionality is being finished.

2 Emulator description

The system emulates the functional units and behavior of the MC88110 pro-
cessor. We chose the MC88110 because at the beginning of this project (1993)
this processor had recently appeared and there was good documentation about
it. It included the most interesting characteristics of superscalar processors like
out-of-order completion of instructions, branch prediction, a mix of in-order and
out-of-order issue, and used shelving for some instructions.

This superscalar processor can issue two instructions every clock cycle a
suitable throughput for our purposes. Instructions are issued in the order'in
which they appear in the program, but they can be finished out-of-order due to
the different functional units latency. The processor also implements a partial
out-of-order issue model for branch and store instructions, that can be issued
even when its operands are not available.

Instructions are dispatched to ten different functional units that work in
parallel, although the two graphics units have not been emulated.

The instruction pipeline is a conventional four stages RISC pipeline:

- Fetch Two instructions are read together from the instruction cache
- Decode. The instructions previously read are decoded and their source reg-

isters are read from the register file. The branch target address is computed
to perform static branch prediction.

- Execution. If the operands and functional units are available, both instruc-
tions are dispatched and executed. At this stage branch instructions compute
the branch condition while load and store instructions execute their memorv
accesses.

- Write back. The execution results are written into the register file.

Latency is defined to be one cycle for all except for the execution stage. In
this case it depends on which functional unit is involved.

The evolution of instructions through pipeline stages can be displaved at ev-
ery machine cycle, marking explicitly those executed due to a branch prediction

Instructions dispatching can be stalled due to structural, data or control haz-
ards. The sequencer dispatches instructions according to the order in which they

712

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

appear in the program, except for store and branch instructions. In these cases
their functional units have two reservation stations, avoiding these instructions
to produce stalls in the pipeline due to data dependencies.

In order to diminish the overhead produced by structural hazards most of the
functional units, except divide, are pipelined, and a two writing ports register file
has been implemented. Also, there are two caches, so implementing a Harvard
architecture. Most of the cache parameters are also configurable: cache access
time, whole and line sizes, organization policies and write policy.

Both the actual processor and the emulated one include the scoreboarding
mechanism to track RAW and WAW data dependencies. Recent superscalar
processors include hardware mechanisms to eliminate WAW dependencies by
register renaming. The inclusion of this hardware mechanism makes tracking
of program execution harder, which we do not consider appropriate due to the
academic purpose of the emulator. We deal with register renaming statically,
that is, at programming time.

Concerning control hazards, the emulated processor includes delayed branch
instructions (one slot) as well as static branch prediction in the decode stage.
This allows the student to use the branch instructions available in the instruction
set to make their own predictions, comparing performance. The instructions
fetched due to a branch prediction are tagged (conditionally executed). If the
prediction was correct, the instructions that have been predicted are untagged
and they are converted to normal instructions. If a missprediction has been
detected, tagged instructions are aborted.

The emulator also implements the MC88110 history buffer, a FIFO queue
storing the issued instructions in the program order and the previous value of
the destination register, in order to restore the state previous to their execution
when there is a missprediction.

When the first instruction of the history buffer completes its execution, the
sequencer removes every instruction completed. If the instruction becoming the
head of the history buffer is a branch whose prediction failed, all the tagged
instructions are removed and the values of their destination registers are restored
to those saved in the history buffer.

3 Program execution debugging and visualization

We have developed an Assembler which generates the binary files used by the
emulator. This Assembler allows using a wide instruction subset of the actual
MC88110, as well as some pseudoinstructions specified in IEEE-694 standard
(org, res and data).

Figure 1 shows an assembly program fragment that performs the dot product
of two vectors (VI and V2). For instance, the instruction bbl.n 3, r3, loop
branches if the third bit of r3 (r4 not equal rO) is set. This instruction predicts
that the branch will be be taken. The suffix .n means the following instruction
will be executed before taking the branch (delayed branch).

713

FEUP - Faculdade de Engenharia da Universidade do Porto

and r8, rO, rO
loop: Id r5, rl, rO

Id r6, r2, rO
sub r4,r4,l
add rl, rl, 4
mulu.d r9, r5,
add r2, r2, 4
cmp r3, r4, rO
add.co r7, r7,
bbl.n 3, r3, loop
add.ci r8, r8, r9
st.d r7, rll, rO

error: stop

r6

no

;r8 contains the dot product

;r5 y r6 are loaded with an element
;of both vectors

;The counter is decremented
;Vl's pointer is incremented
;Multiply result is on r9 and rlO
;V2's pointer is incremented

;The result of mulu is accumulated
;if r4 <> 0 then branch to loop

;End of emulation

Fig. 1. Assembly program to perform the dot product of two vectors

The embedded debugger allows the user to control program execution. Every
time the program shows the prompt to the user, the emulator displays the pro-
cessor internal state: register contents, status register and pipeline state. Figure

°WS *^e "lformation Provided by the emulator: current instruction, program
counter (PC), register file (only selected registers), processor status regLr
some cache statistics and the pipeline state. Also the contents of the history
butter at that instant can be visualized.

PC=64 add r01,r01,4
FL=1 FE=1 FC=0 FV=0 FR=0

R01 = 00000074 h R02 = 0000009C
R05 = 00000000 h R06 =
R09 = 00000000 h RIO =

Instruction cache : 9 accesses

Tot. Inst: 13 Cycle : 31

h R03 = 00005998 h R04 = 0000000A h
00000000 h R07 = 00000000 h R08 = 00000000 h
00000000 h Rll = 0000006C h R12 = 00000000 h

3 misses, Hit ratio 66.6
Data cache : 2 accesses, 1 misses, Hit ratio 50.

FETCH:

DEC:
EXEC:
WBCK:

68
64

56
52
60

mulu.
add

Id
Id
sub

History buffer contents:

52 Id r05.r01.r00
56 Id r06,r02,r00
60 sub r04,r04,l

r09,r05,r06
r01,r01,4

r06,r02,r00
r05,r01,r00
r04,r04,l

Not executed
Not executed
Not executed

R05: 00000000
R06: 00000000
R04: 0000000A

Fig. 2. Emulator state after executing 30 machine cycle

714

c 56 Id r06,r02,r00
c 52 Id r05,r01,r00
c 92 St r07,rll,r00
c 88 add.ci r08,r08,r09

84 bbl.n 03,1-03,-8
80 add.co r07,r07,rl0

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

FETCH:

DEC:

EXEC:

WBCK:

History buffer contents:

80 add.co r07,r07,rl0 Not executed R07: 00000000
84 bbl.n 03,r03,-8 Not executed

Fig. 3. Emulator state after executing 52 machine cycles

When the first loop iteration finishes (see Figure 3), the instruction bbl has
been issued to the branch unit. Previously an effective branch has been predicted.
So, instructions stored at addresses 52 and 56 are tagged as conditional. As the
prediction was right, the branch unit will remove that tags at the end of this
cycle. Furthermore, the tag of the instruction 88 will be removed because it is a
delayed branch. On the other hand, the instruction 92 will be aborted. The final
pipeline state is shown in figure 4.

FETCH:

DEC:

EXEC:
WBCK:

History buffer contents

80 add.co r07,r07,rl0 Not executed R07: 00000000
84 bbl.n 03,r03,-8 Not executed
88 add.ci r08,r08,r09 Not executed R08: 00000000

Fig. 4. Emulator state after executing 53 machine cycles

4 Conclusions

This paper presents a superscalar processor emulator for educational purposes.
Most of the processor parameters are fully configurable, so it may be used to
teach cache behavior as well as pipeline and superscalar computer concepts.

64 add r01,r01,4
60 sub r04,r04,l
56 Id r06,r02,r00
52 Id r05.r01.r00
88 add.ci r08,r08,r09
80 add.co r07.r07.rl0
84 bbl.n 03,r03,-8

715

FEUP - Faculdade de Engenharia da Universidade do Porto

PBgHO&nuttW

0" fiH)*w fi*ag

| ROl ! 00000074
; Ros [00000000

I «M |"öööüoööir
I «13

002] 00O0OO8C
Regtttan

"ÖOOOOOOO R07 fwWOOOOO

«11 I OTOÖ0Ö6C" R12 |"
«15 f

RIB f OOOOOOOO

«14 t OOOOOOOO
i R17 I 08000000

I Ml I OOOOOOOO'

; R» p>5»0000"

f KS f"ÖÖÖÖÖÖÖÖ"

R18 | OOOOOOOO R19 i OOOOOOOO RZO
R2Z | OOOOOOOO

RZG foOOOOOOÖ- H27 ! OOOOOOOO RZS
R30 j fläÖOOÖÖO"" R31 |"ÖMÖÖÖOÖ PC f

•BtiucUoi: p53 . . rOl. rOl. 4

cy*«i (n Mt.- (IT

Trat« Stopt: p»"

ExacuUon I Trac* I

«story Burrar

Messane:

Fig. 5. em88110 emulator X-window interface

The emulator has currently a textual interface but we are implementing an
X-window based one (Figure 5 shows the information it will provide).

Currently we are improving the emulator to allow selecting the number of
instructions issued per cycle. The student will be able to choose whether one
or two instruction will be issued, in order to emulate a conventional pipelined
machine or a superscalar one.

References

1. Keith Diefendorff, Michael Allen. Organization of the Motorola 88110 superscalar
RISC microprocessor. IEEE Micro, 12(2):40-63, April 1992.

2. Moura, C. SuperDLX. A generic superscalar Simulator. ACAPS Technical Memo
64, McGill University Scool of Computer Science, 1993,

3. John L. Hennessy, David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, Los Altos, USA, second edition 1995

4. David A. Patterson, John L. Hennessy. Computer Organization and design. The
hardware/software interface. Morgan Kaufmann Publishers, Los Altos, USA, 1994

o. MC88110: Second Generation RISC Microprocessor. User's Manual. Motorol'a Inc.,

6. Mehdi R. Zargham. Computer Architecture: Single and Parallel Systems. Prentice-
Hall International Editions, 1996.

716

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

A Parallel Genetic Algorithm for solving the
partitioning problem in Multi-FPGA systems.

J. I. Hidalgo, M. Prieto, J. Lanchares and F. Tirado

Departamento de Arquitectura de Computadores y Automatica
Facultad de Ciencias Fisicas
Universidad Complutense

28040 Madrid, Spain
hidalgo@eucmax.sim.ucm.es, mpmatias@eucmos.sim.ucm.es,

{julandan.ptirado} @eucmax.sim.ucm.es

Abstract. In this paper we present the results we have obtained after applying
a parallel genetic algorithm (PGA) to the Multi-FPGA partitioning problem.
Solutions are based on Xilinx 3000 series FPGA's and satisfy some constraints
allow the routing within the set of FPGA that constitutes the Multi-FPGFA
system. To verify our studies we have used circuits from Partitioning
Benchmark93 at the NCSU CAD Benchmarking Laboratory. The experimental
results have been obtained using the CRAY T3E.

1.Introduction

Nowadays, FPGA systems are widely used because of their prototyping and
correction capabilities. Every day, new FPGA's are appearing in the market with
higher density integration and tools with wider capabilities. However, these
increasing capabilities do not support all the necessities of some designs, so it is
necessary to distribute these designs among several FPGA's. This is the major reason
for Multi-FPGA systems [1]. The first step in the design flow is to partition the
system. In other words, we have to decide how many FPGA's are needed to
implement the system, their type and their distribution. We present a PGA to solve the
partitioning problem of Multi-FPGA systems. These algorithms have been
successfully used in other optimization problems [2]. If the partition process precedes
the technology mapping, it is called functional partitioning, otherwise it is called
structural partitioning [3].

In the case of structural partitioning of Multi-FPGA systems, this method allows us
to obtain solutions with a great number of blocks. We can also use industrial tools,
such as XACT [4], to accomplish the first stages of the design flow. Our partitioning
algorithm then divides the results obtained after using XACT, on initial system
specifications.

In the area of Multi-FPGA system partitioning there are a few tools which involve
constraints, e.g., Kuznar's research [5][6]. Its major drawback is that this method has
been designed for heterogeneous systems but the implementation is undertaken on
homogeneous systems.

717

FEUP - Faculdade de Engenharia da Universidade do Porto

This paper is organised as follows. In Section 2 we describe a parallel genetic
algorithm. In Section 3 we show its application to the Multi-FPGA system-
partitioning problem and the experimental results are presented in section 4 The
paper ends with some conclusions and futures research.

2. Parallel Genetic Algorithms

Genetic algorithms [7] are optimization techniques which imitate the way that
nature selects the best individuals (the best adaptation to the environment) to create
descendants which are more highly adapted. The first step is to generate a random
initial population, where each individual is represented by a character chain like a
chromosome and with the greatest diversity, so that this population has the widest
range of characteristics. Then, each individual is evaluated using a fitness function
which indicates the quality of each individual. Finally, the best-adapted individuals
are selected to generate a new population, whose average will be nearer to the desired
solution. This new population is created making use of three operators: reproduction
crossover and mutation.

One of the major aspects of GA is their ability to be parallelised. Indeed, because
natural evolution deals with an entire population and not only with particular
individuals, it is a remarkably highly parallel process [8].

It has been established that GA efficiency to find optimal solution is largely
determined by the population size. With a larger population size, the genetic diversity
increases, and so the algorithm is more likely to find a global optimum A large
population requires more memory to be stored, it has also been proved that it takes^a
longer time to converge. The use of today's new parallel computers not only provides
more storage space but also allows the use of several processors to produce and
evaluate more solutions in a shorter time.

We use a coarse grained parallel GA. The population is divided into a few
subpopulations or demes, and each of these relatively large demes evolves separately
on different processors. Exchange between subpopulations is possible via a migration
operator. In the literature, this model is sometimes also referred as the island Model
Someumes we can also find the term 'distributed' GA, since they are usually
implemented on distributed memory machines.

Technically there are three important features in the coarse grained PGA- the
topology that defines connections between subpopulations, migration rate that
controls how many individuals migrate, migration intervals that affect how often the
migration occurs.

Many topologies can be defined to connect the demes. We present result using a
simple steppmg stone model and a master-slave model. In the former, the demes are
distributed in a ring and migration is restricted to neighboring demes. In the latter
there is a master population connected to all the slaves.

Choosing the right time for migration and which individuals should migrate
appears to be more complicated and a lot of work is being done on this subject
Several authors propose that migrations should occur after a time long enough to
a low the development of goods characteristics in each subpopulation[9]. However it
also appears that immigration is a trigger for evolutionary changes. In our algorithm

718

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

the migration occurs after each new generation, therefore the algorithm is more or less
equivalent to a sequential GA with a larger population.

In our problem, migrants are selected from the best individuals in the population
and they replace the worst in the receiving deme. The number of migrants may be
selected at execution time. With this operator, our PGA has better convergence
properties than the sequential version.

3. Genetic partitioning for Multi-FPGA systems

Figure 1 describes the design and implementation flow of a Multi-FPGA system. It
starts from an initial specification (a netlist or a HDL description), that is used as
XACT input. It returns the number of CLB's and IOB's. Then, it is necessary to
determine the optimum distribution of the CLB's on the different available FPGA's.
An optimum distribution has a minimal cost and guarantee the internal routability of
each FPGA. For this purpose we use the PGA described in section 2.

SCH input

Tedrertnev Manta! *
XACT

Fig. 1. Design and implementation flow of a Multi-FPGA system

The input to our algorithm must include the number of necessary CLB's to
implement the circuit. In order to evaluate the different solutions, it is also necessary
to have a FPGA library. It must include the number of CLB's and the cost of each
FPGA. In our case it has been used the corresponding data to the three simplest
devices of the series 3000 of Xilinx; XC3020, XC3030 and XC3042. After the
optimisation, the algorithm returns the number of circuits of each type, the
distribution of the CLB's and the percentage of utilisation of the FPGA's.

Our problem has been coded as follows: each individual represents a distribution of
CLB's in the set of FPGA's. We have supposed we have three different types of
Xilinx 3000 series FPGA's and we can use as many as necessary [10]. Each
individual is a chromosome with so many genes as the number of CLB's in the
original circuit. Each CLB is represented by a gene, which has a different value
depending on which kind of FPGA it uses.

719

FEUP - Faculdade de Engenharia da Universidade do Porto

M * S°lVt^e Partit'0n and Placement Problem simultaneously with the routine
lltlTn s TI

iS r°Tule WheneVCr the PercentaSe (PO of busy CLB 's does nol
exceed O.S. This is one of the constraints that our fitness function satisfies as figure 2
shows. Moreover, it minimizes the final cost (cost) of the circuit, according to 3000
series specifications and the number of holes (free CLB's). The term penalty that
appears in the fitness function acts when the system is not routable

12000
Penalty function

10000 ■

8000 I
6000 .

4000 .

2000 1 .
0 ^y

0 0.2

F =

0.4 0.6

I

0.8 1

£ [(hole)■*, + Penalty , + Cost.]
1 = 1}

Penalty , = K, * eKi* pc

Fig. 2. Cost and penalty functions used in the genetic algorithm.

The values of GA parameters are the followings: the crossover probability (P) is
fn Tn t0?\the, mTi0n Probability (pj is eq"a> «o O.OIS, the population size is set
to 60 individuals The constants K,, K, and K, have been adjusted experimentally to
satisfy the constraints. 3

4. Experimental Results

The circuits that we have used for testing our algorithm have been obtained from
the Partit.on.ng Benchmarks 93 suite. The characteristics of these circuits after usin,
the XACT tool are shown in table 1.

Table 2 compares our results with those obtained by Kuznar. The comparison is
made in terms of cost and occupation of CLB's.

Table 3 compares the sequential algorithms to the parallel versions (usin* 8
processors ,n the Cray T3E). The results show that the second approach has be«er
convergence properties due to its non-overlapping replacement characteristic.

720

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Circuit

C3540
C5315
C7552
C6288
S5378
S9234
SI 3207
S15850

IVum CLB's
283
377
833
489
381
454
915
842

num lOB's
72
301
64
313
86
43
154
101

Circuit

C3540
C5315
C7552
C6288
S5378
S9234
SI 3207
S15850

Table 1. Characteristic of the test circuits

AG cost AG Pc Kuznar cost Kuznar Pc
5.20 0.76 4.99 0.77
6.56 0.79 7.76 0.52
14.6 0.79 13.66 0.83
9.40 0.70 7.S 0.85
7.56 0.71 6.19 0.94
9.40 0.66 7.98 0.85
15.96 0.79 16.81 0.81
14.12 0.83 14.97 0.80

Table 2. Comparison between the Kuznar and the GA algortihms

Circuit Sequential Ring Master-Slave

C5315

S15850

PAG
C3540 19.78 (500) 3.883

(>2000) 10.298
C7552 85.31 (725) 11.465
C6288 61.78(900) 6.682
S5378 38.75(725) 6.504

PAG
3.973
10.548

8.525
15.975

S9234 57.34(900) 18.574 18.995
SI 3207 116.627(900) 15.734 28.917

■ (>2000) 25.980 26.546

Table 3. Comparison between the sequential and the parallel GA's (time in seconds)

721

FEUP - Faculdade de Engenharia da Universidade do Porto

5. Conclusions

The main conclusions of our research can be summarised as follow: (1) The PGA
improves Kuznar results. Although the cost is not always improved, the routability of
the system is almost assured in all the cases. We always obtain a cost improvement or
a routing improvement. (2) The logic blocks distribution that gives us the PGA
assures the internal routability of the system in 88% of the cases. The cost in dollars
of the resulting circuit has been reduced also in 45% in the experiments compared to
the Kuznar results. (3) The sequential version of the GA needs more than 2000
generations to obtain an acceptable solution, but the 8 processors (in the worst case)
Ring PGA only needs 225 generations and the Master-Slave PGA 300 generations.
This result is due to simultaneous search and the implicit non-overlapping
replacement of the PGA. (4) Finally, it is interesting to note that the Ring PGA gives
better results than the Master-Slave, due to premature convergence effects.

Acknowledgments

This work has been supported by the Spanish research grants TIC 96-1071 TIC
IN96-0510, UCM PR-181 / 96-6776, and the Human Mobility Network CHRX-
CT94-0459. We would like to thank Ciemat for providing access to the parallel
computer that have been used in this research.

References

[1] Hauck, S. "Multi-FPGA systems". Ph. D. Thesis. University of Washington. 1994
[2] Hidalgo J. I., Lanchares J.. "Functional Partitioning for Hardware-Software Codesign using

Genetic Algorithms" EuroMicro97, Budapest. IEEE Press, 1997.
[3] Wolf W. "Hardware-Software Co-Design of embedded Systems". Proc Of the IEEE Vol

82, n°7, July 1994.
[4] Xilinx ,"XACT User guide". 1994.
[5] Kuznar R. Brglez F., Kozminslei K. "Cost Minimization of Partitions into Multiple

Devices" 30'" ACM/IEEE DAC pp315-320. 1993.
[6] Kuznar R., Brglez F., Zafc B."Multi Way Netlist Partitioning into Heterogeneous FPGA's

and Minimization of total Device Cost and Interconnect", 31'" ACM/IEEE DAC 1994 PP
238-243.

[7] Michalewicz, Z., "Genetic Algorithms* Data Structures= Evolution Programs" Sprineer-
Verlag. 1994.

[8] Xavier Hue "Genetic Algorithms for Optimisation Background and Applications"
Edinburgh Parallel Computing Centre. Version 1.0 February 1997. Available fronr
http://www.epcc.ed.ac.uk/epcc-tec/documents/

[9] Liening, J. "A Parallel Genetic Algorithm for Performance-Driven VLSI Routing". IEEE
Trans on evolutionary Computation VOL.1 NO.l April 1997.

[10] Xilinx, "Xilinx Data Book". 1994.

722

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Haskell#: A Functional Language with Explicit
Parallelism

R.M.F.Lima & R.D.Lins

Departamento de Informätica, UFPE, Recife, PE, Brazil
e-mail: rmfl, rdl@di.ufpe.br

Abstract In his 1978 Turing Lecture[l], John Backus draw the atten-
tion of the computer science community to functional languages. One of
the claims he made was that pure functional languages offer a greater po-
tential for parallelism than other programming paradigms, because their
property of referential transparency means less interdependence between
parts of a program. Meeting this promise has been a challenge. This pa-
per, presents Haskell# a parallel functional language with explicit par-
allelism based on MPI (Message Passing Interface) for communication
between functional blocks of code.

1 Introduction

Functional languages are a nicer syntax to the A-Calculus, a function theory
widely used to provide semantics to programming languages of all paradigms[2].
The Church-Rosser theorems state that normal forms of A-expressions are unique
modulo variable renaming and that reductions of the leftmost-outermost re-
ducible expression at each point of the reduction sequence leads to normal form,
if it exist[2]. Thus, the reduction can be done even in parallel. This suitability
of functional languages for parallel processing have led various researchers to
propose different parallel implementation of functional languages.

The history of parallel functional programming complies two phases. The
first period, the 1980s and before, corresponds to the time in which parallelism
was sought as a way to make functional languages run as fast as imperative ones.
The second period is the time in which "real" parallel processing can find an
alternative in functional programming.

The first attempt to exploit parallelism of functional programs targeted ei-
ther the evaluation of actual parameters before replacing them by the formal
parameters or was done at combinator argument level. These strategies lead to
a very fine grained parallelism. As a result, it was believed that novel archi-
tectures were necessary to achieve high performance with functional languages,
and this led to a spate of designs for special-purpose machines, such as ALICE
(Transputer-based), ICL Flagship, EDS/Goldrush and GRIP.

723

FEUP - Faculdade de Engenharia da Universidade do Porto

Unfortunately, these experiments proved that hnilHi™
ware is costly and, too slow a process tmeet th? ^T P^ose hard"
general purpose machines advantages of commercial

formaT^^^ optional '-guages present per-

guages, sucL C or FORTRAN in thr„
gnr imPOTtant imperative 'an"

find a partner in parallel nrnJ!' Z ^^ Paralld Pressing might

These implementations, lfj^££&^ ™**M-

t^>°z:t m otor^'they create specu,ative <■»■ ^y-
tasks rep^TaT™ managGment °f SPeCUlati-

* ÄÄSS"emp,oy \higher-level parallel e™-
system workS' Usr g etlyTmf8 f ^^ dependb* °°
tasks S nly S°me lndlcatives to potential parallel

' ^^t^tzztJ \shar1 rgram/data *>*■ -

•"eÄTn^^ 'a«s, we
Message PasSln9 InHr/alMP 51 ^ ^? T ^ aü°Catl°n- throu*h

ming model and will be u ed o LtT T a.|ow-levd Para11^ Program-
munication between, twks llrth« ^ the

1.
Creat,on' dilution and corn-

sequential run-t^e systm FUrtherm°re' each task ™» Possess its own local

p™Ä:S;s::rris rtainiy not ea- s°™ ap-
rely on the programmed abihtv fo J? ^ Sranu'a"ty Problem. Some systems
-ting in paraflel. ^e^^^^TT"1^ ^ "" W°fth ^
the language. Other make use 71TIlde .<H?llat ^tracts/annotations into

1.1 Implicit Parallelism

»We in ge„erar,„d ,.'i',„°? ^V ""T^' »^ednes, is „„cl.cid-

724

VECPAR '98 ■ 3rd International Meeting on Vector and Parallel Processing

Despite efforts of several research groups around the world, trying exploit
implicit parallelism in functional languages, results are still very shy. In our
opinion this is a direct consequence of communication overhead brought by very
fine granularity tasks generated for this strategy.

1.2 Explicit Parallelism

In explicitly parallel languages - such as Occam[4] - it is up to users setting paral-
lel tasks. Results of implicit parallel implementations of functional languages as
well as the belief that the bottom line of any parallel system is raw performance,
and a program's performance can only be improved if it can be understoodflO],
led a number of researchers to exploit explicit parallelism.

Improving a sequential program by partitioning it in parallel tasks is not a
simple work and requires a complete knowledge of the program as well as the
architecture it will execute. Annotation for parallelism are usual. Hope+ on
Flagship employs strictness annotation to control the precise degree of evalua-
tion.

2 Haskell

Haskell is a general purpose, pure functional programming language which incor-
porates higher-order functions, non-strict semantics, static polymorphic typing,
user-defined algebraic datatypes, pattern-matching, list comprehensions, a mod-
ule system, monads, and a rich set of primitive datatypes, including arrays,
arbitrary and fixed precision integers, and floating-point numbers[3, 9]. Haskell
has now become de facto standard for the non-strict functional language.

Among the implementations of Haskell compilers Concurrent Haskell [8] and
GUM[10] seems to be very promising.

Concurrent Haskell is a concurrent extension to lazy functional Haskell, which
provide a more expressive substrate to build sophisticated I/O-performing pro-
grams, notably ones that support graphical user interfaces for which the useful-
ness of concurrency is well established. The goal of the designers of Concurrent
Haskell is to attain implicit, semantically transparent parallelism, but the version
available now uses explicit parallelism.

GUM is a portable, massage-based parallel implementation of Haskell. Porta-
bility is facilitated by using PVM communications harness that is available on
many multi-processors. GUM is available for both shared-memory distributed-
memory (network workstations) architecture. Initial performance figures demon-
strate speedups relative to sequential compiler technology.

3 MPI

Message Passing is a paradigm widely used on loosely coupled parallel machines.
Although there are many variations, the basic concept of processes communi-

725

FEUP - Faculdade de Engenharia da Universidade do Porto

eating through messages is well understood. Over the last ten years, substantial
progress has been made in casting significant applications in this paradigm

I he main advantages of using a message-passing standard are: efficiency
portability and ease-of-use. In a distributed memory communication environ-
ment in which the higher level routines and/or abstraction are built upon lower
level message passing routines the benefits of standardization are particularly
apparent. Furthermore, the definition of a message passing standard, such as
ha proposed in [5], provides vendor with a clearly defined base set of routines

that hey can implement efficiently, or in some cases provide hardware support
tor, thereby enhancing scalability. MPI also:

• provides an application programming interface;

• allows efficient communication: avoid memory-to-memorv copying and al-
lows overlap of computation and communication and offload to communi-
cation co-processor, where available;

• allows for implementations that can be used in heterogeneous environ-
ments;

• allows convenient C and Fortran 77 bindings for the interface;

• assumes a reliable communication interface: the user need not cope with
communication failures. Such failures are dealt with by the underlying
communication subsystem; "

• ?vAr^inierfaCe that iS n0t t0° different from current Practice, such as
i-'VM NX, Express, p4, etc., and provides extensions that allow greater
flexibility; °

• defines interfaces implemented on many vendors' platforms.

The parallel programming model supported by our implementation is mes-
sage passing: a set of tasks, each executing in its own address space, commu-
nicating via calls to the Message-Passing Library. Such a parallel programming
model offers a multitude of alternatives: some functions supported by microcode
on the adapter and some by software on the computing processor; some functions
executed in user space and some by kernel; trade-offs between more extensive use
of buffering and data copying and more eager use of interrupts; -push" versus
pull- protocols; flow control; etc.

4 Haskell#

Haskell# is a new language composed by parallel constructors (a subset of MPI

IRM SPOT rtabl7^ax) and ^notional programs (Haskell programs). An
IBM SP2 System with 9 (nine) processor nodes was chosen as testbed.

Baskell# has some important differences from other implementations:

• an explicit static task allocation is adopted;

726

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

• MPI is used to manage a coarse task program distribution;

• each task is actually a functional program, with a local run-time system
completely independent of the manager task module.

4.1 Parallel Module

Now, we will describe the main ideas on using MPI to implement Haskell#.

Program Structure Communication functions of MPI will be used to express
the parallelism following the same mechanism present in Occam [4] programming
language. According to the parallel constructors inserted by the user in a given
Haskell# program, MPI spawns the required number of processes to the avail-
able processors. Thus, Haskell# enables an application to be described as a
collection of processes, where each process executes concurrently, and communi-
cates with other processes through channels. Each process in such an application
describes the behaviour of a particular aspect of the implementation, and each
channel describes the connection between each of the processes.

Communication Library MPI supports two classes of message passing func-
tions: point-to-point calls, which send a message from one task to another task,
and collective communication calls, which establish a communication pattern
within a group of tasks.

MPI point-to-point communication includes blocking and non-blocking send
and receive functions. Use of non-blocking sends and non-blocking receives are
both safe (in terms of deadlock avoidance) and efficient. Some extra program-
ming effort is required, since the programmer must determine the status of the
communication before reusing the buffer (the memory location in the user's pro-
gram that holds the message data before transmission or after receipt)

Blocking routines protect naive programmers from accidentally altering mes-
sage buffer contents. The trade-off can be increased communication cost. Dead-
lock can occur in cases where a large message volume is being sent. The situ-
ations most appropriate for blocking routines are those in which there is little
work that can be done between initiation of the communication and use (or
reuse) of the buffer.

In this first approach, Haskell# uses MPI point-to-point call functions. Fur-
thermore, in order to provide safety and higher performance, we adopt the MPI
non-blocking communication library.

4.2 Run-Time System

The Recife Haskell Compiler (RHC) run-time system was adopted as evalua-
tion environment of the value expressions executing in a SP2 processor node.
Each process represents an individual sequential Haskell program, evaluated by
/JTCMC, an abstract, machine for efficient implementation of lazy functional lan-
guages. /yTCMC transfers the control of the execution flow to C, as much as

727

FEUP ■ Faculdade de Engenharia da Universidade do Porto

possible, to take advantage of the extremely low costs of procedure calls in mod-
ern RISC architectures. This yielded a substantial improvement in performance

Almost all implementations of parallel graph reduction proceeds on a shared
program/data graph[10], thus a primary function of the run-time system of these
parallel functional languages is to manage the virtual shared memory in which
graphs resides. However, in contrast with previous implementations, Haskell#

do not proceed parallel graph reduction on a shared program/data graph. Here,
individual task (process) has its own local stacks and heap. As a result, HaskelU
performs garbage collection locally.

4.3 Conclusions

In this paper, we presented the fundamental ideas behind Haskell# and drew
comparisons with its supposedly competitors. Haskell# is a simple explicit
parallel functional language where the MPI-based communication combinators
"glue' together large chunks of pure Haskell code, allowing a hierarchical pro-
gramming discipline that rescues the ability of reasoning about parallel func-
tional programs, feature lost by our competitors by including the parallel com-
binators in the language themselves.

Reference [7], presents further details of Haskell# language such as its se-
mantic model of parallelism as well as performance figures for benchmarks run-
ning on a 9-node IBM-SP2 platform.

Referen ces

[1] J. Backus. Can Programming be Liberated from the von Neumann style ? A
Functional Graph Style and its Algebra of Programming. CACM 21(8)613-
641,1978.

[2] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies
m Logic and The Foundations of Mathematics, vol. 103.

[3] P. Hudak, S. Peyton Jones & P. Wadler. Report on the Programming Lan-
guage Haskell, version 1.2. ACM SIGPLAN Notices, 27(5), 1992.

[4] Inmos Limited, Occam 2 Reference Manual. 1988.

[5] MPI: A Message-Passing Interface Standard. Message Passing Interface
Forum, University of Tennessee, 1995.

[6] R. Jones & R. D. Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley & Sons, 1996.

[7] R.M.F.Lima & R. D. Lins. The Parallel Functional Language HaskelU
To appear.

[8] S. L. Peyton Jones, A. Gordon & S. Finne. Concurrent Haskell. 23rd ACM
SPPL, pp. 295-308, 1996.

[9] S. Thompson. Haskell: The Craft of Functional Programming. Addison-
Wesley, 1996.

[10] P.W. Trinder. et al. S. L. Peyton Jones. GUM: a portable parallel imple-
mentation of Haskell. D. Comp. Science, Glasgow University, 1995.

728

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Parallel and Distributed Algorithm in State
Estimation of Power System Energy

Jose Beleza Carvalho ', F. Maciel Barbosa:

1 Institute) Superior de Engenharia do Porto

R. de S. Tome, 4200 Porto, Portugal

2 Faculdade de Engenharia da Universidade do Porto

Rua dos Bragas, 4099 PORTO Codex, Portugal

Abstract The State Estimation is nowadays considered the fundamental element of
modern electrical power networks control centers. In this paper we develop a theoretically
robust and computationally efficient state estimator algorithm, to solve the WLS problem
by using parallel processing. The computational aspects of the parallel processing, was
analysed and tested using the IEEE 30, 57 and 118 bus systems. Computational
experiments are compared with standard WLS methods, in the integral and distributed
version. An evaluation of the degree of natural decoupling in the state estimation problem
is also performed. The results indicate that a distributed processing for state estimation, is
the better way to adopt the parallel computing in power systems energy.

1. Introduction

The implementation of robust methods for power system state estimation, which maintain
performance suitable to the large models encountered in modern control centres is a topic that
has received significant attention. The estimator processes real-time redundant telemeter and
pseudo measurements to provide a complete, coherent and reliable system database, which can
describe the electrical state of the network [l]-[2]. These measurements, which include voltage
magnitudes, real and reactive line flows and nodal power injections, are measured from the
network at a certain moment, thus getting an estimate for the respective state vector (vector of
voltages modules and phases on different buses) [3]. The higher frequency in state estimation
execution requires the development of faster state estimation algorithms. The larger size of the
supervised networks will increase the demand on the numerical stability of the algorithms. At
same time, conventional centralised state estimation methods have reached a development stage
in which important improvements in either speed or numerical robustness are not likely to
occur. These facts, together with the technical developments in fast data communication
network technology, opens up the possibility of parallel and distributed implementations of the
state estimation algorithms [4]-[5]. The nature geographically distributed of power system
applications, can benefit from this form of decentralised computer architecture, in which
several remote processors perform local state estimation in network areas and the results are
send to a central computer that refines the calculation. The power system under consideration
may be partitioned into k areas, and each area is supervised by a local control center. The
measurement data in each area will be collected in each individual local control center that has
at least one computer system for data acquisition, data processing, and computation [9], The
computer systems of adjacent areas are connected by fast data communication links, and these
decentralised computer systems form a computer network.

729

FEUP - Faculdade de Engenharia da Universidade do Porto

2. WLS State Estimation Problem

Mathematically, the information model used in power system state estimation is represented by
the equation:

z = h(x) + e (1)

Where z is a (m*l) measurement vector, x is a (n*I) true state vector, h(.) is a (m*l) vector
of non-linear functions, e is a (m*l) measurements error vector, m is the number of
measurements, and n is the number of state variables. The static-state estimation problem of a N
bus power system, is a weight-least-squares (WLS) optimisation problem:

m

mmJ(x) = JdWi(Zi-hi(x))2=[z-h(x)Jw[z-h(x)] (2)
i=i

Weight w, represent the weight associated with measurement z. Weights are chosen as
proportional to the accuracy of the measurements: the higher the accuracy of a measurement
the bigger its weight. The solution of this optimisation problem gives the estimated state X,
which must satisfy the following optimality condition:

aJ(*) T r
dx = 0 =» H T(x)W [z - h(x)]= 0 (3)

Where

H(x) = ^l
ox

is the Jacobean matrix of the measurement function h(x). The solution of the non-linear
equation (3) may be obtained by an iterative method in which a linear equation of following
type is solved at each iteration to compute the correction,

x'+l =x'+Ax'

[G(x')kx'=HT(x')w[z-h(x')] (4)
where G(x) is called the gain matrix and is usually chosen as

G(x) = HT(x)WH (x)

Eq.(4) is called the normal equation of the WLS problem. As in loadflow calculations, it has
been found that state estimation algorithms based on decoupled versions behave adequately for
the usual power networks [2]. Therefore, the decoupled model that has been mostly adopted is:

*p = yftW + ep (S)

zq = hq(6,v) + eq (6)

where 6» (ne*l) and v (nv*l) are the vectors of true voltage magnitudes and phase angles, p
and q indicating partitions of vectors and matrices corresponding to active and reactive
measurements, respectively;

IIQ=H-\ ; «V = N,
N is the number of network nodes. This naturally decoupled characteristic, make this

method suitable for parallel processing implementation, with a great reducing of the required
computation time.

730

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

3. Parallel and Distributed State Estimation Problem

If we decompose the power network into "K" areas, connected through boundary buses which
belongs simultaneously to both adjacent areas, the state estimation problem introduced in (5)
and (6) can be presented as

Zk
p=hk

p(dk,Vk) + ek
p, k=l K (7)

zk
q=hk(dk,vk) + ek, *=,, K (8)

where Z„ and <, are vectors of active and reactive measurements in area k\ 6 and
V are vectors of voltage phase angles and magnitudes in area k, including the ones
corresponding to the boundary buses. The number of boundary buses may be kept to a
minimum and there are no injection measurements in the overlapping area buses. This is not a
limitation, because actual injection measurement buses in overlapping areas, can be replaced by
fictitious buses with no injection measurements connected to the actual buses, now placed
outside the overlapping area, by zero impedance lines [10]. Then, the problem of distributed
state estimation is to use the computer network associated with the measurement data collected
in each local control center to solve the following weighted least square (WLS) problem in a
distributed way:

minit;,-^(.)][/?;rt;-^(-)]=o

(9)

minf k-h:(.)][RkJ'k-hl(.)]=0

The iterative solution of above problem, for Jt =1K, is:

öV/+U=öiY/J+b;)-'[//jr[/?jl-,tj-^fö//;)v,f/jj] (io)

v*(/+i)=vi(o-rb;]-1[//;n^]-,[z;-^(0,(o,vt(O)] a»
Where

"" M" «=~~d?
are the Jacobean matrix, calculated for the initial conditions and kept constant in the

iterative process. In the boundary buses, the elements (6, V) obtained in (10) and (11) must be
affected with a weight medium of the values calculated in the neighbouring areas k and j [8],
and take the form,

A*

6 (/ + 1) = 0*O- + 1) + A0'(/ + 1) (12)
A*

v (/ +1) = v* (/ + !) +A/(/ + !) (13)

731

FEUP - Faculdade de Engenharia da Universidade do Porto

Where

Ae;(1 + 1) = 7Tif-Tk(/ + i)-0/o + i)] 8rr + g
(14)

LV* (I + U = /;r , [v*a + 1) - v/(i + 1)] (15)

S„ and £r
J
r are diagonal elements corresponding to boundary bus r of the inverse aajn

matrices of the neighbouring area k and;, respectively.

4. Analysis of Computation Experiments

The Parallel and Distributed State Estimation methodology analysed in this paper was tested

HIT-" rthaPVM3-'CPmndVirtualMachine)software-wi*p^am£3n Fortran 77 and running ,„ a DEC Alpha machine with a Ultrix operating system The
d.stnbuted computer system, connected in a network, used in practice for parallel or distributed
areas processing, was simulated with recurrence to PVM performances [6], that enable one to

tuTr t3ThS °n Van°US P™655™'t0 COntr01 message"P^sing between tasks, to synchronise
tasks, etc. The convergence, accuracy and numerical efficiency of the proposed simulation
study are presented in the following sections. s.muiation

4.1 Parallel Processing in the Integral Version
The algorithm implemented for this integral study version is represented in figure 1 The nature
decoupled of equation (10) and (11) make the algorithm suitable for parallel implementation
The algonthm presented in flowchart, calculates the B and v, update at every iteration in a
synchronous way. The IEEE 30, 57 and 118 bus standard networks were used to perform this
test. Two levels of global redundancy were specified for each measurement system: normal and
low level. Table 1 shows the data for each test case. In this table J is the sum of squared errors
in the estimates of measured variables.

c
■Aquisllion Data
•Network Power

Informalron /

i
Parallel Processing

CTrD (End ~) (End ~)

Fig. 1. Parallel Processing. Integral version. Fig. ^Parallel Processing. Distributed version.

All test simulations converge in 2 iterations for standard WLS method and 8 iterations for

0 00?n H0UnPnm "ÜT" ^ Md Para"el Pr°CeSSing- The conver?ence is obtained a,
0.00 pu and 0.001 rad. for module and phase of voltage. From we can see that figure 3 the
Parallel Processmg in integral version is not so accurate like the MDE method In a

732

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

synchronous process, due to idle times, the algorithm has to wait until the state vector is
updated before it starts a new iteration. If we run the above algorithm in an asynchronous way,
the precision of state estimation vector will be drastically deteriorated.

Table 1: Test Case Data

Tcsl
Case

N"»r
Bus

Rcdun
dancy

WLS MDE P.Pn cess.
l(s) J its) J Us) J

A] 30 1.4 0.39 30.5 0.24 32.7 0.57 3 2.7
A2 30 2.4 1.00 95.0 0.34 97.0 0.69 9 7.0
B! 57 1.7 5.40 91.5 1.60 100 1.60 100
B2 57 2.3 9.00 172 2.70 1X5 2.70 185
Cl I IK 2.3 1 15 419 30.0 425 34 425
C2 1 IS 3.2 220 802 70.0 806 74 806

4.2 Parallel Processing in the Distributed Version
Synchronous computation become too expensive when the processors are geographically
distributed [7]. So, asynchronous concurrent processing is an attractive alternative. We
analyzed this fact, dividing the test cases presented in table 1 in some areas and processing the
equations (10) and (11) for each area, like shown in flowchart of figure 2. For the boundary
buses, in the end of the asynchronous iterative process, we applied the restriction (12) and (13).
The convergence obtained for 0.001 pu and 0.001 rad, the processing time, accuracy and
numerical efficiency are shown in table 2 for WLS version, and table 3 for MDE version. The
results presented demonstrate that in parallel distributed state estimation, we can get an
elevated reduction of processing time, for essentially the same number of iterations, compared
with integral methods showed in table 1. The accuracy of results, generally, is better for cases
with more redundancy of measurements and for WLS state estimation version. The
improvement in processing time for MDE method, compensate the small depreciate of results,
compared with WLS version. In figure 3 we can see the performance of Parallel Processing in
the Distributed Version (PPD), applicated to test case C2 (118 buses), comparing the
processing time for standard WLS and MDE state estimation methods and the Parallel
Processing in the Integral (PPI) and Distributed version, comparing the processing time for
standard WLS and MDE state estimation methods and the Parallel Processing in the Integral
(PPI) and Distributed version.

Table 2: Parallel Processing of Distributed Areas.
Estimation accuracy for WLS version.

Tcsl N" of Average error in Average error in

Case ltcr (s)
phase angles
(rad* 1000)

voltage magnitud
(pu'1000)

J

Al 5;8 0.11 1.88- 10.9 1.31 - 1.79 14.5- 19.1
A2 5;7 0.13 1.49 - 6.53 0.99- 1.01 39.0 - 57.6
Bl 6;8 0.37 1.08-2.1 1.45-2.07 38.3-49.1
B2 5;8 0.54 1.02- 1.9 1.0-0.78 81 -95
Cl 5; 9; 11; 6 2.00 0.56-2.37-0.30-1.55 0.81-0.97-0.82-0.96 63-75-114-146
C2 5; 6: 11:5 4.00 0.41-1.85-0.18-0.31 0.95-0.96-0.94-1.08 167-161-228-335

Table 3: Parallel Processing of Distributed Areas.
Estimation accuracy for MDE version.

Test N°of Average error in Average error in

Case Iter (s)
phase angles
(rad» 1000)

voltage magnitud
(pu'1000)

J

Al 2;4 0.17 1.92-8.27 1.26-1.98 12.8-17.7
A2 2;4 0.29 1.33-5.13 0.99-1.26 35.8 - 57.8
Bl 2;3 1.15 0.92-1.90 1.30-2.00 35.5-50.1
B2 2;3 1.70 0.88- 1.70 0.95-1.06 71 -86
Cl 2; 2: 2; 4 8.00 0.59-1.69-0.35-1.02 0.81-0.95-0.81-1.29 51-69-111-174
C2 2: 2: 2; 3 15.00 0.36-0.84-0.18-0.3 1.02-0.95-0.96-0.3 152-143-226-290

733

FEUP - Faculdade de Engenharia da Universidade do Porto

5. Conclusions
Fig. 3. Parallel Processing Improvement.

In this paper some methodologies for parallel state estimation were introduced and tested,
based in conventional algorithms, like standard WLS version and standard decoupled MDE
version. The results of computational experiments show that for integral processing of state
estimation, the parallelism of algorithms does not bring any improvement, compared with the
conventional decoupled MDE algorithm. A distributed computing is the better way to adopt the
parallel computing in power systems energy. This fact was simulated tearing the IEEE standard
test cases in some areas. The PVM software tool, enables the simulation of distribute tasks on
various processors. The idle times of processors, synchronous computations become too
expensive when the processors are geographically distributed, so we tested the asynchronous
processing. For boundary buses, we apply the restrictions indicated in (12) and (13). The
computational results show that with this distributed methods we get a very high improvement
in manner of time processing, compared with integral standard version. The only drawback is
the discrepancy in values of boundary bus state variables estimated using different sets of
measurements, but in cases with higher redundancy levels, the values of the discrepancies are
acceptable and the effect on computational efficiency is minimal.

6. References

[l]

[2]

[3]

[4]

IS]

[6]

[7]

[8]

[9]

[10]

Do Couto Filho, M.B.; Leite da Silva, A.M. e Falcäo, D.M., - Bibliography On Power System
State Estimation (1968-1989). IEEE Trans, on PWRS, Vol.5, n" 3, August 1990.

A. Bose, K.E. Clements - Real Time Modeling of Power Networks. Proceedings of the IEEE, Vol.
75, n°l2, December 1987.

Masiello, R.D. e Schweppe, F.C. - A Trackini; Static State Estimator, IEEE Trans, on PWRS Vol
PAS-90, March / April 1971.

D.P. Bertsekas and J.N. Tsitsikilis, Parallel and Distributed Computation, Prentice Hall, 1989.
Felix F. Wu and a]. Parallel Processing in Power Systems Computation. IEEE Trans. On PWRS.
Vol.7, August 1992.

Jack Dongarra, Adam Berguelin. - PVM: Parallel Virtual Machine. Vaidy Sunderam, 1994.

V.C. Ramesh, - On Distributed Computing For On-Line Power System Applications. Electric
Power & Energy Systems, Vol. 18, 1996.

Falcäo. Djalma M. - Parallel And Distributed Processing Applications in Power Systems
Simulation and Control. COPE, Universidade Federal do Rio de Janeiro, July 1995.

Falcäo, D.M.; Felix F. Wu e Liam Murphy, - Parallel And Distributed State Estimation. IEEE
PES Summer Meeting, San Francisco, July 1994.

Monticelli, A. e Garcia, A. - Modeling Zero Impedance Branches in Power System State
Estimation. IEEE Trans, on PWRS, Vol. 6, November, 1991.

734

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Parallel Block Two-Stage Preconditioners
for the Conjugate Gradient Method

M. Jesus Castel, Violeta Migallon, and Jose Penades

Departamento de Ciencia de la Computation e Inteligencia Artificial,
Universidad de Alicante, E-03071 Alicante, Spain

{chus, violeta, jpenades}Odtic.ua.es

Abstract. Linear systems of the form Ax = 6, where the matrix A
is symmetric and positive definite, often arise from the discretization of
elliptic partial differential equations. A very successful method for solving
these linear systems is the preconditioned conjugate gradient method.
In this paper we study parallel preconditioners for the conjugate gradi-
ent method based on the block two-stage iterative methods. Sufficient
conditions for the validity of these preconditioners are given. Computa-
tional results of these preconditioned conjugate gradient methods on two
parallel computing systems are presented.

1 Introduction

We study the parallel solution of a linear system

Ax = b, (i)

where A € lRnxn is a symmetric and positive definite matrix (i.e., A = AT and
x Ax > 0, for all real x ^ 0) and x and 6 are n-vectors.

Preconditioned conjugate gradient methods (PCG) can be used for the solu-
tion of (1). Descriptions of these methods can be found e.g., in Concus, Golub
and O'Leary [3] or Ortega [9]. The idea of the PCG method consists of applying
the conjugate gradient method (see [5]) to a better conditioned linear system

Ax = b, where A = SAS7, x = S~Tx, and 6 = 56. The matrix M = (PSf1

is called the preconditioner or preconditioning matrix. The PCG method may
be applied without computing Ä, but solving the auxiliary system

Ms = r, (2)

at each conjugate gradient iteration, where r = 6 - Ax is the residual at the
corresponding iteration.

One of the general preconditioning techniques is the use of the truncated
series preconditioning. These preconditioners consist of considering a splitting
of the matrix A as

A = P-Q, (3)

735

FEUP - Faculdade de Engenharia da Universidade do Porto

M. Jesus Castel et al.

and performing m steps of the iterative procedure defined by the splitting (Z)
toward the solution of A» = r, choosing ,«>) = 0. It is well known that the
solution of the auxiliary system (2) is effected by s = (/ + R + R?+ +

T+# + .r.'. +h^)-iPcf! mand tHe preC°nditioning matrixis Mm = P(I+
It is in these terms that in Section 2, we construct the preconditioner based

on the two-stage methods and we study its validity. Moreover, in Section 3
we evaluate the performance of the resulting PCG algorithms on two different
parallel distributed memory multiprocessors.

2 Parallel block two-stage preconditioners

Let us consider the splitting (3), where P is a block diagonal matrix, denoted

P = ^S(Pu-..,PP), (4)

and Pj, 1 < j < p> are square nonsingular matrices of order nh YV- = n.

Note that performing m steps of the iterative procedure defined bythe above
splitting to approximate the solution oi As = r, corresponds to perform m steps
of a Block-Jacobi type method. Thus, at each step /, / = 1,2,..., m, of a Block-
Jacobi type method, p independent linear systems of the form

^f = (^('-1)+'-)i, l<i<p, (5)

with ,£> = 0, need to be solved; therefore each linear system (5) can be solved
by a different processor. However, when the order of the diagonal blocks A 1 <
J <p, is large it is natural to approximate their solutions by using an iterativ!
method, and thus we are in the presence of a two-stage iterative method; see
e-6-. 14J, loj, 17J, [8J. In a formal way, let us consider the splittings

Pj = Bj -Cjt 1 <j <p, (6)

and at each /th step perform for each j, 1 < j < p, q(j) iterations of the iterative
procedure defined by the splittings (6) in order to approximate the solution of
(5). That is, to solve the auxiliary system (2) of the PCG method, we use m
steps of the iteration

aW=Tsl,-1) + W-1r, 1=1,2,..., m,

choosing s(°) = 0, where T = H+(I-H)P^Q, W = P{I-H)~\ with P defined
in (4) and H = Diag^^)^,.... (B^CP)^); see e.g., [7]. Then, the
updated vector from m steps is given by s<m) = (I + T + T2 + - ■ ■ + Tm-1)W-1r
Therefore, the preconditioner related to the block two-stage methods is given by

Mm = W{I + T + T* + -.. + T"1-1)-1. (7)

736

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Parallel Block Two-Stage Preconditioners for the CG Method

In the rest of this section we check the validity of this preconditioned We
give sufficient conditions on the splittings to assure that Mm is symmetric and
positive definite. Given a square real matrix A, the splitting A = P - Q is
P-regular if and only if PT + Q is positive definite.

Theorem 1. Let A be a symmetric positive definite matrix. Let A = P - Q
be a splitting of A, where P = Diag{Plt...,Pp) ts the block diagonal matrix
defined in (4). Suppose that P is symmetric and Q is positive semidefinite. Let
Pj = Bj - Cj, 1 < j < p, be P-regular splittings such that Bj is symmetric.
Then the preconditioning matrix Mm defined by (7) is symmetric.

Proof. The matrix W~l = (I - H)P-X can be written as

W-1 = Diag((/ - (B^C^P-1,...,(/- (BP-1CP)'(*>)P-1)

/«UM ?(P)-I \

= Diag £ (VCO'flr1,..., £ (B^C.yB^). (8)
\ «=o ,=o j

Since Pj and Bj, 1 < j < p, are symmetric, Cj is also symmetric. Then, it is easy
to see that W x is symmetric. On the other hand, the matrix T can be written as
Tz=I-W~1A. Then, from (7) it obtains M^1 = (I+T+T2+--■+Tm-1)W-1 =
m-l

E
«=o
22(1 - W~1A)'W l. Thus, the matrix A4"1 is a linear combination of terms
«=o
of the form {W^AYW1, i = 0,1,..., m - 1, which are symmetric. Then, the
proof is completed.

Theorem 2. Let A be a symmetric positive definite matrix. Let A = P - Q
be a splitting of A, where P = Diag(P1(.. .,Pp) is the block diagonal matrix
defined in (4). Suppose that P is symmetric and Q is positive semidefinite. Let
pi = Bi - Cj. 1 < j < p, be P-regular splittings such that Bj is symmetric.
Then the preconditioning matrix Mm defined by (7) is positive definite.

Proof. Since Pj -Bj-Cj, 1 < j < p, are P-regular splittings, from Corollary
3.6 of [2] it follows that the block diagonal matrix W = P(I - H)~l is positive
definite. On the other hand, from (7) we can write

M-1W = (I + T + T2 + --. + Tm-1), (9)

with T = I- W-^A. From Theorem 3.5 of [2] it follows that p(T) < 1, and
reasoning in a similar way as in the proof of Theorem 3.4.2 of [9] it is obtained
that the eigenvalues of M^W are positive. Then from Theorem A.2.7 of [9] the
proof is completed.

3 Numerical experiments

In the experiments the problem to be solved comes from the discretization of the
Laplace's equation, V2u = uss+utt = 0, satisfying Dirichlet boundary conditions

737

FEUP - Faculdade de Engenharia da Universidade do Porto

M. Jesus Castel et al.

on the unit square Q = [0,1] x [0,1]. The discretization of the domain Q, using
five point finite differences, with JxJ points equally spaced by h, yields a linear
system Ax = b, where A is block tridiagonal, A = tridiag[-/,C, -I], where /
and C are J x J matrices, / is the identity, and C = tridiagf-1,4 -1] Note
that A has JxJ blocks of size JxJ. Clearly, A is a symmetric positive definite
matrix.

LetA = P-Q be the Block-Jacobi splitting of A, i.e., P = Dia.g(Au,..., A)
Let us consider square diagonal nonnegative matrices Dh of size nj, 1 < j <p
such that Q + Diag(Di, ...,Dp)]s positive semidefinite. Then, it is easy tolee
that the splitting A = P - Q, where

P = Diag(P1,...,Pp), Pj = Ajj + Dj, Q = Q + Diag(£>1 ,...,£>„), (10)

satisfies the assumptions of Theorems 1 and 2.
Therefore, in order to ensure the hypotheses of the above theorems we consid-

ered in our examples a block splitting as in (10), where Ajj = tridiag[-/,C, -/],

l<j<P,and£> = Diag(£ Iffyl £ |^|), with Q = [fyj1<lii<fl.
T ., . i=i,i*i j=lj*n
In these experiments reported here, we use as inner iterative procedure the

Jacobi method.

The parallel experiments have been run on two different parallel computer
systems. The first platform is an IBM RS/6000 SP with 8 nodes. The second
platform is an ethernet network of five 120 MHz Pentiums. The peak performance
of this network is 100 Mbytes per second.

We experimented with different matrix sizes. The matrices were partitioned
according to the number of available processors . The conclusions were similar
for all tested matrices. Here we discuss the results for two matrices of size 1024
and 4096 which correspond to grid sizes of 32 and 64, respectively

The initial vector used was *«» = (0,0,..., 0)T and the right hand side was
b - (1,1,..., 1) . The stopping criterion used was rT ■ r < 10-5 where r is
the residual at the corresponding iteration. All times are reported'in seconds
In the results we use the notation 2161 to represent that q(j) = 2, j = 1, and
?(j) = 6, j = 2. Similar notation is used for other block two-stage PCG methods

Tables 1 and 2 show the behavior of some PCG methods for the above Laplace
matrices. We compare these methods with the well-known m-step Block-Jacobi
PCG method that has potentially excellent parallel properties. In this case the
subdomam problems are solved by using the Choleski complete factorization'(see
e.g., [9]). One can observe that the use of two-stage preconditioned gives better
resu ts than the use of the Block-Jacobi preconditioner. The conclusions are
similar on both multiprocessors. However, the computing platform has obviously
an influence in the performance of a parallel implementation. So, the efficiency
decreases notoriously when the number of processors increases. This fact is due
to the inadequate use of the processors when the number of processors increases
for a fixed matrix, because the cost of the operations performed in parallel can
be smaller than the cost of communications. For example, in the last block
partitioning of Table 2 using four processors for the cluster of Pentiums it obtains

738

VECPAR '98 ■ 3rd International Meeting on Vector and Parallel Processing

Parallel Block Two-Stage Preconditioners for the CG Method

REAL times between 3.04 and 7.21 seconds, however the CPU times are between
0.68 and 1.54 seconds. Here the network is very slow compared to the network
in the other computing platform.

On the other hand we observed that generally the optimal number of steps
m is two for any size of the diagonal blocks. However, it seems that the choice
of the number of inner iterations (q(j)} is dependent of the size of the diagonal
blocks. So, an optimal sequence of inner iterations is that a little greater than
one producing a priori a load balance based on the block size assigned to each
processor.

We have observed, in some cases, that when the number of steps is odd, then
the number of iterations increases with respect to the previous even number of
steps. This fact is due to the condition number of the matrix A = SAS7 that

is similar to the matrix M^A. Then, cond(i) = jlj^jr"}, where Am,-n(rm)

and \max{Tm) are respectively the minimum and maximum eigenvalues of 7"".
Therefore, if T has negative eigenvalues and m is odd, the numerator of cond{A)
is greater than one. However, if m is even, the numerator is always less than one.
Thus, we must expect a better decreasing of cond(^4) for even values of m.

Table 1. Parallel implementation of the PCG method on the solution of Laplace
problems. Size of matrix A: 1024.

Proc.

m

Block two-stage PCG | Block-Jacobi PCG
n> </(» It. Time Time 1 It. Time Time

cluster •pa 1 clatter ipa

2 1
1

i2

22
49
27

0.95
0.51

0.090
0.050 1 512

512 1 3* 31 0.61 0.062
1 A1 21 0.44 0.047 8 1.28 0.71
2 i2

25 0.57 0.056
2 5' 14 0.43 0.051
2 62 12 0.41 0.050 7 1.13 0.65

2 1
1

l2

2161
59
30

1.13
0.58

0.125
0.062 11 2.64 1.73 768

256 2 22 23 0.58 0.066
2 3'e1

19 0.54 0.066 6 2.42 1.71
3 1

1
1J

43
50
20

1.08
0.49

0.128
0.051 11 1.17 0.24 352

352 2 l3 26 0.66 0.084
320 2 53 13 0.39 0.053 8 0.93 0.17

3 I* 28 0.80 0.135
3 23 16 0.50 0.069
3 33 17 0.56 0.075
3 4' 12 1 0.44 0.057 7 0.97 0.18

739

FEUP - Faculdade de Engenharia da Universidade do Porto

M. Jesus Castel et al.

Table 2. Parallel implementation of the PCG method on the solution of Laplace
problems. Size of matrix A: 4096.

|| # Proc.

m

| Block two-stage PCG | Block-Jacobi PCG |
ni 9(3) It. Time

clutter

Time

• p2

It. Time

cluster

Time

•P2

3 1
1
2
2

1*
43

l3

43

102
47
52
32

5.93
3.18
4.12
3.02

0.56
0.31
0.36
0.32

19

11

16.47

16.40

9.01

8.06

1344
1344
1408

4 1
1
2
2
3

l4

44

l4

44

A*

101
38
51
27
22

7.21
3.04
4.95
3.12
3.36

0.63
0.27
0.41
0.27
0.29

21

14
13

9.58

9.72
10.28

4.01

4.02
4.08

1024
1024
1024
1024

References

1. Adams, L.: M-step preconditioned conjugate gradient methods. SIAM Journal on
Scientific and Statistical Computing, Vol. 6 (1985) 452-462

2. Castel, M. J., Migallön, V, Penades, J.: Parallel two-stage iterative methods for
hermitian positive definite matrices. Technical Report 96-03, Departamento de Tec-
nologi'a Informatica y Computation, Universidad de Alicante, Spain (1996)

3. Concus, P., Golub, G.H., O'Leary, D.P.: A generalized conjugate gr'adient method
for the numerical solution of elliptic partial differential equations. In: Buch, J. R.,
Rose, D. J. (eds.): Sparse Matrix Computations. Academic Press, (1976) 309-332 '

4. Frommer, A., Szyld, D. B.: //-splittings and two-stage iterative methods. Nu-
merische Mathematik, Vol. 63 (1992) 345-356

5. Hestenes, M. R., Steifel, S. R.: Methods of conjugate gradient for solving linear
systems. J. of Res. Nat. Bureau Standards, Vol. 49 (1952) 409-436

6. Lanzkron, P. J., Rose, D. J., Szyld, D. B.: Convergence of nested iterative methods
for linear systems. Numerische Mathematik, Vol. 58 (1991) 685-702

7. Migallon, V., Penades, J.: Convergence of two-stage iterative methods for hermitian
positive definite matrices. Applied Mathematics Letters, Vol. 10(3) (1997) 79-83

8. Nichols, N. K.: On the convergence of two-stage iterative processes for solving linear
equations. SIAM Journal on Numerical Analysis, Vol. 10 (1973) 460-469

9. Ortega, J. M.: Introduction to Parallel and Vector Solution of Linear Systems
Plenum Press, New York (1988)

740

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

Parallelization of a Direct Method for Systems
of Linear Equations

M. F. Costa1 and R. M. Ralha2

1
 Departamento de Matemätica, Universidade do Minho,

Campus de Azurem, 4800 Guimaräes, Portugal
mfcQmath.uminho.pt

2 Departamento de Matemätica, Universidade do Minho,
Campus de Gualtar, 4710 Braga, Portugal

Abstract. In this paper we study a sequential version of the Gaussian
elimination method in which several pivots are used in each reduction
step. We carry out an error analysis and establish an upper bound for
the error in the solution. In all our tests (in which we have used ran-
dom matrices as well as matrices of special types) the numerical results
produced by an implementation of the algorithm are as good as those
produced by the classical method. From the point of view of sequential
processing, the new method is as efficient as the classical method and we
believe that it has advantages for parallel processing since it allows bet-
ter load balancing and computation/communication overlap. We develop
a parallel implementation of the new method in a distributed memory
system with a ring topology and give a performance analysis of the par-
allel algorithm based on the study of the load balancing and the cost
of communication between processors. We present preliminary results of
some computational experiences with the parallel algorithm.

1 Introduction

Much work has been published in the last years on the parallel solution of large
systems of linear equations. A considerable number of publications treat the par-
allelization of the old method of Gauss with partial pivoting [3] [5] [6] [7] [9] [11] [12]
[14][15]. The main problem of any implementation of this method in a multipro-
cessor machine resides in the need to incorporate partial pivoting to guarantee
the numerical stability of the method. This happens because, at each step, the
search for the pivotal row forces the synchronization of the activity of several
processors and part of the time is spent on communication and waiting. To
minimize these problems, we propose a modification of the method of Gaussian
elimination which consists in the use of several pivots in each reduction step; we
first study a sequential version of the modified method and then proceed with its
parallelization. Our proposal is significantly different from another variant of the
method know as "pairwise pivoting" which has been introduced by Wilkinson
[1] and more recently used by others in the context of parallel processing [3] [5].
As it is also the case with pairwise pivoting [2] [4], one possible drawback of our

741

FEUP ■ Faculdade de Engenharia da Universidade do Porto

pivoting strategy is that the theoretical upper bound for the error in the solution
is larger than in the classical method; nevertheless, in our numerical experiments
the errors produced by both methods were found to be comparable.

2 Gaussian elimination with several pivots in each step

Given a system Ax = b with A £ Rn*n non singular, consider the matrix (A\b)
divided into nB blocks of R contiguous rows. In the process of reducing A to
triangular form, we consider the kth reduction step (k = l,2,...,n - 1) as a
sequence of two phases. The first phase occurs at an internal'le'vel' within each
block and the second phase involves the various blocks.

/ °i,i

Q/i.i

0-1,2

Qfl,2
aR+l,l Gfl+1,2

a2R,l 0-2R,2

1l,n

Ofl.n

h \

bR

°-R+l,n °R+\

a-2R,n h '2R

a(n-R)+i,i a{n_R}+12 ... a{n_R]+hn b{n_R)+i

a».l an,2 ••• an,n bn J

Description of the first step of reduction: for L = 1,2,.... nB select a pivotal
row, called local pivotal row, let us say row pL where:

aPL,i = max a, J

Next, if aPL,! ^ 0 each row i (i = (L - l)R + 1,..., LR, i # Ph) is replaced bv
its sum with row ph multiplied by miti = -aitl/aPLA.

Once these elementary operations are concluded In each block, one still needs
to annihilate nB-1 elements in the first column. To do this, a global pivotal row
is selected among the nB local pivotal rows, which is row p, where:

Assuming that apd / 0, we finalize the first step of reduction by replacing the
remaining tocal pivotal rows with its sum with the global pivotal row multiplied
by »V,i = -aPL,i/aP,i (L = l,...,nB and pL ^ p), where one interchanges
rows p and 1 if p ^ 1, so that in the end the matrix of the system is in triangular

742

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

form. In the remaining n - 2 reduction steps one proceeds in an analogous way.
Note that initially the number of local pivotal rows equals the number nB of
blocks but such number will decrease along the process of elimination, as the
number of blocks involved in the reduction to triangular form decreases.

3 Matrix formulation of the method

A matrix formulation of the method with several pivots in each reduction step
can be described in terms of products with non unitary elementary matrices
(Gauss transformations)[18]. Denoting the matrices involved in the local and
global stages of the kth step respectively by MktL and Mk, we have:

Mk,L =1- T^eT
kL

Mk = I- T^eT

where:

- kL is the index of the local pivotal row in block L
- T^) represents the vector of multipliers of used in the local stage, in block

T . - {k-i) tk-i)
L {mitk = aitk /aklj,k, i = kL + l, ..., LR)

~ eIL is the kLth column of the identity matrix
- k is the index of the global pivotal row
- r(fc> represents the vector of multipliers used in the global phase

We will also denote the elementary permutation matrices by Pk<L and Pk

when referring to permutation of rows in the local phase (i.e., interchange of two
local rows in block L) and in the global phase (i.e., permutation of rows from
two distinct blocks), respectively. Therefore, at the end of step n - 1 we have a
triangular matrix U given by

■step(n-l) step (n-R)+l step (n-fi)

^n-lPn-1 • • • M(n-Ä)+lP(„-Ä)+iM(n_Ä)P(n_Ä)Mn_Ä,nBPn_ÄinB . . .
• • -MRPRMR^BPR.UB ■ ■ ■ MR,2PR,2 ... MiPiMi^sPi,*!) ■■■M1 ^ XA = U.
 —. ' > „ :—!_•

step R step j

In terms of factorization, we have A = LU where

L = P1AM-1
1...P1,nBM-1

nBP1Mi-
1 Pn-iM'l,

is not necessarily a lower triangular matrix. However, if L is required for practical
purposes, it can be readily obtained as a product of simple matrices, according
to the previous expression.

743

FEUP - Faculdade de Engenharia da Universidade do Porto

Example (n=6, nB=2):

(1-1-1-1-1-1^
-12 0 0 0 0
-10 3 111
-10 14 2 2
-10 12 5 3

V-l 0 1 2 3 6/

(1 0 0 0 00\
-110 0 00
-1-1 1 0 0 0
-1-1-14 4 1
-i-i-i J-}i

V-i-i-i I i/

/I-I-I-I-I-I\
0 1-1-1-1-1
0 0 1-1-1-1
0 0 0-2 3 1
0 0 0 0-23

\0 0 0 0 0 \j

4 Error analysis

A detailed error analysis for the new method is given in [18] where it is shown
that the calculated solution x satisfies the system:

(A + E)x = b
with

l|£||oo<15nVp||oo+0(U
2)

In the Gauss elimination method with partial pivoting one has [10]:

Halloo <8nVP||oo+0(u2)

Therefore, the limit for the rounding errors in the new method is more pes-
simist because of the factor 15n4. At this point, one should bear in mind that
the factor n3 is usually ignored in the discussion of the stability of Gaussian
elimination. As stated in [10], p.65: "...usually, the bound itself is weaker than
it might have been because of the necessity of restringing the mass of detail to a
reasonable level and because of limitations imposed by expressing the errors in
terms of matrix norms". It is usually considered that the numerical stability of
the method depends on the size of a growth factor p. We adopted the definition

max|a (fc)|
■i,j I

max|aj ,•
i,j,k

given in [16]. Although, in theory, p can be as large as 2n~\ in practice such
growth is extremely improbable and p is generally of the order 10. Indeed, in
the computational experiences carried out with both methods, we found p to be
always of such order of magnitude (see table 1). Based on this, we claim that the
numerical properties of the new method are comparable to those of the classical
algorithm.

744

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

5 Computational experiences

We implemented our algorithms (both sequential and parallel) on a transputer
based machine. In the computational tests we found out that the new method
and the classical method with partial pivoting produce solutions with the same
precision, independently of the type of matrix used. This can be appreciated in
table 1 for random matrices of different sizes. In all cases we have used a vector b
corresponding to the exact solution x{ = 1 (i = 1, ...,n), so that we can indicate

the absolute error Hz-xH»,. Also, the execution times are essentially the same
for both methods, although in the case of our method we are using several con-
current processes (in this set of experiments we set R - 10, i.e., we decomposed
each matrix in n/10 blocks of 10 rows each); the transputer hardware handles
efficiently the execution of concurrent processes and the overhead due to this is
very small, as it can be better understood for the matrix of size n = 100, since
in this case a single processor is running 10 concurrent processes.

n method ||Ai -blU l|a>x||oo P run time (sec.)
10 Ours 1.78E-15 1.64E-14 1.49 0.00614
10 Classic 1.78E-15 1.64E-14 1.49 0.00589
20 Ours 5.33E-15 6.88E-15 1.77 0.0346
20 Classic 3.55E-15 1.24E-14 2.68 0.0331
50 Ours 2.13E-14 2.13E-13 6.84 0.398
50 Classic 1.78E-14 7.37E-14 3.86 0.384

100 Ours 8.53E-14 2.17E-13 9.81 2.84
100 Classic 3.55E-14 2.99E-13 ——____ 7.18 2.76

Table 1: results obtained with the two methods on a single processor.

To make more clear that the numerical precision of the solution does not
vary significantly with the number nB of blocks used, and that the execution
time increases only slightly we tested our method with a certain matrix of size
n = 100, using successively 1, 4, 5, 10 and 20 blocks. The results are listed in
table 2.

nB \\Ax-b\U \\x-xWoo run time (sec.)
1 6.39£ - 14 6.57£ - 13 2.77
2 9.95£-14 IA0E - 13 2.77
4 6.39£-14 1.16£-13 2.78
5 5.68E - 14 1.26£ - 13 2.78

10 8.53£-14 2.17£-13 2.84
20 7.82£ - 14 1.66E-13 2.89

Table 2: varying the number nB of blocks for a matrix of size n 100.

6 The parallel algorithm

In the development of the parallel application we used a ring topology. Paral-
lelizing the algorithm consists in assigning a block of R contiguous rows of the

745

FEUP - Faculdade de Engenharia da Universidade do Porto

matrix (A\b) to each process of the ring. In this way, a local reduction is carried
out concurrently in each process of the ring. Furthermore, the task of finding
(and broadcasting to the still active processes) the global pivotal row can pro-
ceed concurrently with the local computation. After this, the processes finish
"simultaneously" the reduction step.

6.1 Load balancing

The load balancing of the parallel algorithm is not predictable since it is not
possible, in general, to know in advance which process is the owner of the global
pivotal row in each one of the n - 1 steps. Because of this, we studied two
extreme cases: the best case occurs when the pivotal row belongs cyclically to
each process (and all processes will be active almost till the end of the reduction
to triangular form), the worst case occurs when the first R global pivotal rows
belong to a particular process (this process will be idle in the remaining n- R
steps), the next R belong to another process, and so on. In this respect it is
interesting to note that for matrices generated randomly the load balancing is
always near to the ideal situation (see [18] p.69-72).

6.2 Efficiency and speedup

A theoretical study of the speedup S:=T(1)/T(P) and efficiency E := S/P of
the parallel algorithm, was carried out for the extreme cases described before;
we obtained the following expressions:

best case:

g~! /W+Zn\P+2)-n(P*-6P+12) (P(n_1)+2n ^
/ [(4n'+9n*-7n)P + U(f (P ~ *) [(4J+9nL7n)P) ad +

worst case:

C~1 /r-2n3(3P2-l) + 3n2(4P2-Pl-7nP2 . ^ , - ^(P(n-l)+2n \ 1

/[(4n<+9n'-7n)P3 + 12° (P ~ V \{4n*+9n*-7n)p) <*« +

where:

- 9 represents the number of flops per second
- ad is the start-up time
- ßd is the time required to send a floating-point number through a physical

link.

In any case, the efficiency and speedup increases when n grows and P remains
fixed and decreases when P is grows and n is kept constant. Using the values
6 = 106, ad = 2.6/is, ßA = 4.5/is given in [13] for the T800 transputer and
considering P = 4 and n = 100,200,300,400,600, one obtains from the previous
expressions the estimated values given in table 3.

746

VECPAR '98 - 3rd International Meeting on Vector and Parallel Processing

S~T(4) E~4{%)

n best case worst case
100
200
300
400
600

3.14(78,5%)
3.56(88,9%)
3.70(92,6%)
3.78(94,4%)
3.85(96,3%)

2.33(58,3%)
2.53(63,3%)
2.60(64,9%)
2.63(65,7%)
2.66(66,5%)

Table 3: estimated values for the speedup and efficiency with 4 processors.

In computational experiences applied to problems of dimension n = 100 and
using 4 processors we obtained the values for the speedup and efficiency given
in table 4.

Matrix -* seq V^eC .J ■*■ par^SGC .) ■->—J- seql -Lpar E=S/4
Moler 2.39 1.39 1.72 43,0%
Frank 2.44 1.40 1.74 43,6%
Border 3.48 1.72 2.02 50,6%
Dingdong 2.61 1.46 1.79 44,7%
Random 2.78 1.24 2.24 56,0%

Table 4: execution times, speedup and efficiency of the parallel algorithm (with
4 processors).

The best results were obtained with random matrices, as expected, since the
load balancing of the parallel algorithm was found to be good for such matrices,
as mentioned before.

References

1. L. Fox, E. Goodwin, J. Wilkinson: Modern Computing Methods. (First edition,
Philosophical Library, New-York) (1961).

2. J. Stern: A fast Gaussian elimination scheme and automated roundoff error analysis
for SIME machines. (Dept. of Computer Science, University of Illinois) (1979).

3. W. Gentleman, H. T. Kung: Matrix triangularization by systolic arrays, in Proc.
SPIE 298, Real Time Signal Processing. (San Diego, CA) (1981).

4. D. Sorensen: Analysis of Pairwise Pivoting in Gaussian Elimination. (IEE Trans.
Comput. C-34) (1985) pp. 274-278.

5. A. Sameh: On some parallel algorithms on a ring of processors. (Comp. Phys.
Comm.) (1985) pp. 159-166.

6. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker: Solving
Problems on Concurrent Processors. (Prentice-Hall) (1988).

7. B. Tourancheau, M. Cosnard and G. Villard: Gaussian elimination on message
passing architecture. (Supercomputing Lecture Notes in Computer Science) (1988)
pp. 611-628.

8. Jagdish J. Modi: Parallel Algorithms and Matrix Computation. (Oxford Universty
Press) (1988).

747

FEUP - Faculdade de Engenharia da Universidade do Porto

9. D. P. Bertsekas and John N. Tsitsiklis: Parallel and Distributed Computation
(Prentice-Hall) (1989).

10. G. H. Golub and Charles F. Van Loan: Matrix Computations. (The Johns Hopkins
University Press) (1989).

11. A. Benaini, Y. Robert: Spacetime-minimal systolic arrays for gaussian elimination
and algebraic path problem. (Parallel Computing) (1990) 15:211-225.

12. K. A. Gallivan, Michael T. Heath, and James M. Ortega: Parallel Algorithms for
Matrix Computations. (Society for Industrial and Applied Mathematics) (1990).

13. R. Ralha: Parallel Computation of Eigenvalues and Eignvectors using Occam and
transputers. (PhD thesis, University of Southampton) (1990).

14. F. F. Rivera, R. Doallo, J. D. Bruguera and E. L. Zapata: Gaussian elimination
with pivoting on hypercubes. (Parallel Computing) (1990) 14:51-60.

15. T. L. Freeman and C. Philliphs: Parallel Numerical Algorithms. (Prentice Hall
International) (1992).

16. N. J. Higham: Accuracy and Stability of Numerical Algorithms. (Society for In-
dustrial and Applied Mathematics) (1996).

17. L. V. Foster: The growth factor and efficiency of Gaussian Elimination with rook
pivoting. (Journal of Computational and Applied Mathematics) (1997) pp.177-194.

18. M. F. Costa: Paralelizagäo de um metodo directo para sistemas de equacöes line-
ares. (MSc. thesis, Universidade do Minho) (1997).

748

